多元线性回归模型计算分析题

合集下载

线性模型练习题(含答案)

线性模型练习题(含答案)

线性模型练习题(含答案)练题一设有线性回归模型:$ y = \beta_0 + \beta_1x_1 + \beta_2x_2 + \beta_3x_3 $,其中 $x_1$、$x_2$ 和 $x_3$ 是自变量,$y$ 是因变量。

已知模型的参数估计值如下:$ \hat{\beta}_0 = 2.5 $$ \hat{\beta}_1 = 0.8 $$ \hat{\beta}_2 = -1.2 $$ \hat{\beta}_3 = 1.3 $请判断以下哪个自变量与因变量的关系最为显著:A. $x_1$B. $x_2$C. $x_3$D. 无法确定答案:B. $x_2$练题二下面是一个简单的线性回归模型:$ y = 3x_1 + 4x_2 + 2x_3 + 1 $已知模型的参数估计值如下:$ \hat{\beta}_1 = 2.1 $$ \hat{\beta}_2 = 1.8 $$ \hat{\beta}_3 = 0.9 $请根据模型参数估计值计算预测值 $ \hat{y} $,当 $x_1 = 2$,$x_2 = 3$,$x_3 = 1$ 时的结果。

答案:$ \hat{y} = 3(2) + 4(3) + 2(1) + 1 = 23 $练题三某研究人员运用线性回归模型分析了一个因变量 $y$ 和四个自变量 $x_1$、$x_2$、$x_3$ 和 $x_4$ 的关系,得到模型方程如下:$ y = 2.6x_1 + 1.9x_2 - 1.4x_3 + 0.5x_4 - 1 $已知 $x_1 = 3$,$x_2 = 2$,$x_3 = 4$,$x_4 = 1$,请计算对应的预测值 $ \hat{y} $。

答案:$ \hat{y} = 2.6(3) + 1.9(2) - 1.4(4) + 0.5(1) - 1 = 2.9 $练题四以下是一个多元线性回归模型的参数估计值摘录:$ \hat{\beta}_0 = 1.2 $$ \hat{\beta}_1 = -0.8 $$ \hat{\beta}_2 = 0.5 $$ \hat{\beta}_3 = 1.0 $$ \hat{\beta}_4 = 0.3 $$ \hat{\beta}_5 = -0.6 $请写出该线性回归模型的方程。

多元线性回归例题第章作业(一)

多元线性回归例题第章作业(一)

多元线性回归例题第章作业(一)多元线性回归是一种统计学方法,通常用于分析建立多个变量之间的关系模型。

在实际数据分析中,多元线性回归是十分常见且实用的方法。

本文将以一道例题为例,介绍多元线性回归的基本原理及应用方法。

例题:某公司市场销售状况与广告投入的相关性分析。

根据公司过往的销售记录,有如下数据:市场销售(单位:万元):10,20,30,25,35广告投入(单位:万元):5,10,15,12,18解析:1. 确定预测模型在多元线性回归中,首先要确定 Y 与X1,X2,…,Xn 之间的函数关系,一般形式为:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,β1, β2,…, βn为自变量系数,β0为常数项,而ε 则表示随机误差。

2. 根据数据集,求解系数通过数据集计算出β0,β1, β2,…, βn的值,从而得到回归方程式,可以通过excel工具中多元线性回归的公式求解得到。

3. 结果解释根据计算结果,对于此例,得到回归方程式:Y = 7.5 + 2.5X1 + 1.5X2其中,X1表示广告投入,X2表示销售额,可以解读得到,每增加1万元广告投入,市场销售量会增加 2.5万元,同时,其拟合优度也很好,在本例中拟合优度高达 0.97。

4. 结论通过多元线性回归,我们可以得到两个变量之间的函数关系式及预测结果,从而为市场策略和决策提供理论依据。

本题中,我们能够得出有利于市场销售的投入策略,即增加广告投入可以带来市场销售量的增长,而这种关系随着投入的增加而呈现出逐渐缓和,也就是得出了“策略的上升边际递减性”这样一个结论。

总结:多元线性回归在实际数据分析中的应用非常广泛,并且能够解决多个自变量与因变量之间的复杂关系。

在研究某种现象或问题时,通过多元线性回归建立适当的模型,可以通过计算得到更加准确的结果,从而更科学更有效地解决问题。

12章 多元线性回归

12章 多元线性回归

统计学第十二章 多元线性回归一. 选择题1. 在多元线性回归分析中,t 检验是用来检验( ) A 总体线性关系的显著性 B.各回归系数的显著性 C.样本线性关系的显著性 D .H 0:β1=β2=…βk =02.在多元线性回归模型中,若自变量x i 对因变量y 的影响不显著,那么它的回归系数 βi 的取值( )A.可能为0B.可能为1C.可能小于0 D 可能大于13.在多元线性回归方程 y i ˆ=βˆ0+x 11ˆβ+x 22ˆβ+…+xkkβˆ中,回归系数βˆi表示( ) A.自变量x i 变动1个单位时,因变量y 的平均变动额为βˆiB.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的平均变动额为βˆiC.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的变动总额为βˆiD.因变量y 变动1个单位时,因变量x i 的变动总额为βˆi4.设自变量的个数为5个,样本容量为20。

在多元回归分析中,估计标准误差的自由度为( )A.20B.15C.14D.18 5.在多元回归分析中,通常需要计算调整的多重判定系数R a2,这样可以避免的值()A. 由于模型中自变量个数的增加而越来越接近1B. 由于模型中自变量个数的增加而越来越接近0C. 由于模型中样本容量的增加而越来越接近0D. 由于模型中样本容量的增加而越来越接近16.在多元线性回归分析中,如果F检验表明线性关系显著,则意味着()A.在多个变量中至少有一个自变量与因变量之间的线性关系显著B.所有的自变量与因变量之间的线性关系都显著C.在多个变量中至少有一个自变量与因变量之间的线性关系不显著D.所有的自变量与因变量之间的线性关系都不显著7.在多元线性回归分析中,如果t检验表明回归系数βi不显著,则意味着()A.整个回归方程的线性关系不显著B.整个回归方程的线性关系显著C.自变量x i与因变量之间的线性关系不显著D.自变量x i与因变量之间的线性关系显著8.设多元线性回归方程为Yˆ=βˆ0+x11ˆβ+x22ˆβ+…+xkkβˆ,若自变量x i的回归系数βˆi的取值接近0,这表明()A.因变量y对自变量ix的影响不显著B.因变量y对自变量ix的影响显著C.自变量ix对因变量y的影响不显著D.自变量x对因变量y的影响显著i9.一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(a=0.05)根据上表计算的判定系数为()A. 0.9229B. 1.1483C. 0.3852D. 0.851610. 一家出租汽车公司为确定合理的管理费用,需要研究出租车四级每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的估计标准误差为()A. 306.18B. 17.50C. 16.13D. 41.9311. 一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的用于检验线性关系的统计量F=()A. 306.18B. 48.80C. 5.74D. 41.9312.一家产品销售公司在30个地区设有销售分公司。

(完整版)多元线性回归模型习题及答案

(完整版)多元线性回归模型习题及答案

多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D )A. 0.8603B. 0.8389C. 0.8655D.0.8327 2.下列样本模型中,哪一个模型通常是无效的(B ) A.iC (消费)=500+0.8iI (收入)B. di Q (商品需求)=10+0.8i I (收入)+0.9i P (价格) C. si Q (商品供给)=20+0.75i P (价格)D. iY (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t ty b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C )A.)30(05.0t B.)28(025.0t C.)27(025.0t D.)28,1(025.0F4.模型tt t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数 与多重判定系数之间有如下关系( D )A.2211n R R n k -=-- B. 22111n R R n k -=---C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。

3多元线性回归模型

3多元线性回归模型

第三章 多元线性回归模型一、单项选择题1、决定系数2R 是指【 】A 剩余平方和占总离差平方和的比重B 总离差平方和占回归平方和的比重C 回归平方和占总离差平方和的比重D 回归平方和占剩余平方和的比重2、在由n=30的一组样本估计的、包含3个解释变量的线性回归模型中,计算的多重决定系数为0.8500,则调整后的决定系数为【 】A 0.8603B 0.8389C 0.8 655D 0.83273、设k 为模型中的参数个数,则回归平方和是指【 】 A 21)(y yn i i -∑= B 21)ˆ(i n i i yy -∑= C 21)ˆ(y yn i i -∑= D )1/()(21--∑=k y y n i i4、下列样本模型中,哪一个模型通常是无效的【 】A i C (消费)=500+0.8i I (收入)B d i Q (商品需求)=10+0.8i I (收入)+0.9i P (价格)C s i Q (商品供给)=20+0.75i P (价格)D i Y (产出量)=0.656.0i L (劳动)4.0i K (资本)5、对于iki k i i i e x x x y +++++=ββββˆˆˆˆ22110 ,统计量∑∑----)1/()ˆ(/)ˆ(22k n y y k y y i i i 服从【 】 A t(n-k) B t(n-k-1) C F(k-1,n-k) D F(k,n-k-1)6、对于iki k i i i e x x x y +++++=ββββˆˆˆˆ22110 ,检验H 0:0=i β),,1,0(k i =时,所用的统计量)ˆvar(ˆi it ββ=服从【 】A t(n-k-1)B t(n-k-2)C t(n-k+1)D t(n-k+2)7、调整的判定系数 与多重判定系数 之间有如下关系【 】A 1122---=k n n R RB 11122----=k n n R R C 11)1(122---+-=k n n R R D 11)1(122-----=k n n R R 8、用一组有30 个观测值的样本估计模型i i i i u x x y +++=22110βββ后,在0.05的显著性水平下对1β的显著性作t 检验,则1β显著地不等于零的条件是其统计量大于等于【 】 A 05.0t (30)B 025.0t (28)C 025.0t (27)D 025.0F (1,28)9、如果两个经济变量x 与y 间的关系近似地表现为当x 发生一个绝对量变动(∆x )时,y 有一个固定地相对量(∆y/y )变动,则适宜配合地回归模型是【 】A i i i u x y ++=10ββB ln i i i u x y ++=10ββC i ii u x y ++=110ββ D ln i i i u x y ++=ln 10ββ 10、对于iki k i i i e x x x y +++++=ββββˆˆˆˆ22110 ,如果原模型满足线性模型的基本假设,则在零假设j β=0下,统计量)ˆ(/ˆjj s ββ(其中s(j β)是j β的标准误差)服从【 】 A t (n-k ) B t (n-k-1) C F (k-1,n-k ) D F (k ,n-k-1)11、下列哪个模型为常数弹性模型【 】A ln i i i u x y ++=ln ln 10ββB ln i i i u x y ++=10ln ββC i i i u x y ++=ln 10ββD i ii u x y ++=110ββ 12、模型i i i u x y ++=ln 10ββ中,y 关于x 的弹性为【 】A i x 1βB i x 1βC iy 1β D i y 1β 13、模型ln i i i u x y ++=ln ln 10ββ中,1β的实际含义是【 】A x 关于y 的弹性B y 关于x 的弹性C x 关于y 的边际倾向D y 关于x 的边际倾向14、关于经济计量模型进行预测出现误差的原因,正确的说法是【 】A.只有随机因素B.只有系统因素C.既有随机因素,又有系统因素D.A 、B 、C 都不对15、在多元线性回归模型中对样本容量的基本要求是(k 为解释变量个数):【 】A n ≥k+1B n<k+1C n ≥30或n ≥3(k+1)D n ≥3016、下列说法中正确的是:【 】A 如果模型的2R 很高,我们可以认为此模型的质量较好B 如果模型的2R 较低,我们可以认为此模型的质量较差C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量 二、多项选择题1、对模型i i i i u x x y +++=22110βββ进行总体显著性检验,如果检验结果总体线性关系显著,则有【 】A 1β=2β=0B 1β≠0,2β=0C 1β≠0,2β≠0D 1β=0,2β≠0E 1β=2β≠02、剩余变差(即残差平方和)是指【 】A 随机因素影响所引起的被解释变量的变差B 解释变量变动所引起的被解释变量的变差C 被解释变量的变差中,回归方程不能作出解释的部分D 被解释变量的总变差与回归平方和之差E 被解释变量的实际值与拟合值的离差平方和3、回归平方和是指【 】A 被解释变量的实际值y 与平均值y 的离差平方和B 被解释变量的回归值yˆ与平均值y 的离差平方和 C 被解释变量的总变差与剩余变差之差D 解释变量变动所引起的被解释变量的变差E 随机因素影响所引起的被解释变量的变差4、下列哪些非线性模型可以通过变量替换转化为线性模型【 】A i i i u x y ++=210ββB i ii u x y ++=110ββ C ln i i i u x y ++=ln 10ββ D i i i u x y ++=210ββE i i i i u x y ++=ββ05、在模型ln i i i u x y ++=ln 10ββ中【 】A y 与x 是非线性的B y 与1β是非线性的C lny 与1β是线性的D lny 与lnx 是线性的E y 与lnx 是线性的三、判断题观察下列方程并判断其变量是否线性,系数是否线性,或都是或都不是。

第三章多元线性回归模型习题答案

第三章多元线性回归模型习题答案

&第三章 多元线性回归模型一、单项选择题1、C2、A3、B4、A5、C6、C7、A8、D9、B 10、D一、单项选择题1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明( C ) A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著】C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。

则对回归模型进行总体显著性检验(F 检验)时构造的F 统计量为 ( A )A 、(1)ESS k F RSS n k =--B 、(1))ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、已知二元线性回归模型估计的残差平方和为2800i e =∑,估计用样本容量为23n =,则随机误差项t μ的方差的OLS 估计值为( B )!A 、B 、 40C 、D 、4、在多元回归中,调整后的决定系数2R 与决定系数2R 的关系为 ( A )A 、22R R <B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定5、下面说法正确的有 ( C )A 、时间序列数据和横截面数据没有差异B 、对回归模型的总体显著性检验没有必要C 、总体回归方程与样本回归方程是有区别的:D 、决定系数2R 不可以用于衡量拟合优度6、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞7、线性回归模型的参数估计量ˆβ是随机向量Y 的函数,即1ˆ()X X X Y β-''=。

ˆβ是 ( A )A 、随机向量B 、非随机向量C 、确定性向量D 、常量8、下面哪一表述是正确的 ( D )A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ ;B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系9、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 ( B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --10、下列说法中正确的是 ( D )。

多元线性回归模型习题及答案

多元线性回归模型习题及答案

多元线性回归模型一、单项选择题1.在由n = 30的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定 系数为,则调整后的多重决定系数为(D ) A. B. C. 下列样本模型中,哪一个模型通常是无效 的(B )A. G (消费)=500+4(收入)B. Q d (商品需求)=10+4(收入)+ P (价格)C.Qs (商品供给)=20+ P (价格)D. 1 (产出量)=L 0'(劳动)£”(资本)3 .用一组有30个观测值的样本估计模型工=b 0 + b i x i t + b 2x 21 + u t 后,在的显著性水平上对b i 的显著性作t 检验,则b i 显著地不等于零的条件是其统计量t 大于等于(Ct (30) t (28) t (27) F (1,28)A. 0.05B. 0.025C. 0.025D. 0.025ln y = ln b + b In x + u , b ,,4 .模型 乙 0 i t t 中,i 的实际含义是(B )A. x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明 模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度 6 .线性回归模型y = b + bx + b x + ... + b x + u 中,检验H :b = 0(i = 0,1,2,...k ) 时,所用的统计量服从(1 C 2 22 k kt t 0 t (n-k+1) (n-k-2) (n-k-1) (n-k+2)7 . 调整的判定系数与多重判定系数之间有如下关系( D )— n — 1— n — 1 A. R 2 = ------------ R 2B. R 2 = 1 ------------- R 2n 一 k 一 1 n 一 k 一 1 n 一 1n 一 1 ~C. R 2 = 1 ----------- (1+ R 2)D, R 2 = 1 ----------- (1-R 2)n 一 k 一 1n 一 k 一 18 .关于经济计量模型进行预测出现误差的原因,正确的说法是(C )。

(完整版)第三章(多元线性回归模型)3-3答案

(完整版)第三章(多元线性回归模型)3-3答案

3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元),会影响t 统计量和 2R 的数值。

( F )2、在多元线性回归中,t 检验和F 检验缺一不可。

( T )3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。

( F )4、多元线性回归中,可决系数2R 是评价模型拟合优度好坏的最佳标准。

( F )二 、单项选择1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明 ( C )A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。

则对回归模型进行总体显著性 检验(F 检验)时构造的F 统计量为 ( A )A 、1)ESS k F RSS n k =--B 、(1)()ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、在多元回归中,调整后的可决系数2R 与可决系数2R 的关系为 ( A ) A 、22R R < B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定4、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞5、下面哪一表述是正确的 ( D ) A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假 设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 (B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --6、在由的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重可决系数为0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.83277、可决系数R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型01122i i i i Y X X βββμ=+++进行总体显著性检验,如果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、120ββ==B 、120,0ββ≠=C 、120,0ββ≠≠D 、120,0ββ=≠E 、120,0ββ==2、设k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所 用的F 统计量可以表示为 ( BC )A 、()()()∑∑---1k e k n Y Y 2i 2i i //ˆ B 、()()()∑∑---k n e 1k Y Y 2i2ii //ˆ C 、()()()k n R 11k R 22---// D 、()()()1k R k n R 122---// 30n =E 、()()()1k R 1k n R 22---// 3、在多元回归分析中,调整的可决系数2R 与可决系数2R 之间 ( AD )A 、22R R <B 、22R R ≥C 、2R 只可能大于零D 、2R 可能为负值E 、2R 不可能为负值四、简答题1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数2R 的值往往会变大,从而增加了模型的解释功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元线性回归模型计算分析题1、某地区通过一个样本容量为722的调查数据得到劳动力受教育年数的一个回归方程为R2=0.214式中,为劳动力受教育年数,为劳动力家庭中兄弟姐妹的个数,与分别为母亲与父亲受到教育的年数。

问(1)sibs是否具有预期的影响?为什么?若与保持不变,为了使预测的受教育水平减少一年,需要增加多少?(2)请对的系数给予适当的解释。

(3)如果两个劳动力都没有兄弟姐妹,但其中一个的父母受教育的年数均为12年,另一个的父母受教育的年数均为16年,则两人受教育的年数预期相差多少年2、考虑以下方程(括号内为标准差):(0.080) (0.072) (0.658)其中:——年的每位雇员的工资——年的物价水平——年的失业率要求:(1)进行变量显著性检验;(2)对本模型的正确性进行讨论,是否应从方程中删除?为什么?3、以企业研发支出(R&D)占销售额的比重(单位:%)为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个容量为32的样本企业的估计结果如下:其中,括号中的数据为参数估计值的标准差。

(1)解释ln(X1)的参数。

如果X1增长10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?(2)检验R&D强度不随销售额的变化而变化的假设。

分别在5%和10%的显著性水平上进行这个检验。

(3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响?4、假设你以校园内食堂每天卖出的盒饭数量作为被解释变量,以盒饭价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:千人)作为解释变量,进行回归分析。

假设你看到如下的回归结果(括号内为标准差),但你不知道各解释变量分别代表什么。

(2.6) (6.3) (0.61) (5.9)试判定各解释变量分别代表什么,说明理由。

5、下表给出一二元模型的回归结果。

方差来源平方和(SS)自由度(d.f.)来自回归(ESS)65965—来自残差(RSS)_——总离差(TSS)6604214求:(1)样本容量是多少?RSS是多少?ESS和RSS的自由度各是多少?(2)和?(3)检验假设:解释变量总体上对无影响。

你用什么假设检验?为什么?(4)根据以上信息,你能确定解释变量各自对的贡献吗?6、在经典线性回归模型的基本假定下,对含有三个自变量的多元线性回归模型:你想检验的虚拟假设是:。

(1)用的方差及其协方差求出。

(2)写出检验H0:的t统计量。

(3)如果定义,写出一个涉及0、、2和3的回归方程,以便能直接得到估计值及其样本标准差。

7、假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里以上的人数,以便决定是否修建第二条跑道以满足所有的锻炼者。

你通过整个学年收集数据,得到两个可能的解释性方程:方程A:方程B:其中:——第i天慢跑者的人数——第i天降雨的英寸数——第i天日照的小时数——第i天的最高温度(按华氏温度)——第i天的后一天需交学期论文的班级数请回答下列问题:(1)这两个方程你认为哪个更合理些,为什么?(2)为什么用相同的数据去估计相同变量的系数得到不同的符号?8、考虑以下预测的回归方程:其中:为第t年的玉米产量(吨/亩);为第t年的施肥强度(千克/亩);为第t年的降雨量(毫米)。

要求回答下列问题:(1)从和对的影响方面,说出本方程中系数和的含义;(2)常数项是否意味着玉米的负产量可能存在?(3)假定的真实值为,则的估计量是否有偏?为什么?(4)假定该方程并不满足所有的古典模型假设,即参数估计并不是最佳线性无偏估计,则是否意味着的真实值绝对不等于?为什么?9、已知描述某经济问题的线性回归模型为,并已根据样本容量为32的观察数据计算得,,,查表得,。

(1)求模型中三个参数的最小二乘估计值(2)进行模型的置信度为95%的方程显著性检验(3)求模型参数2的置信度为99%的置信区间。

10、下表为有关经批准的私人住房单位及其决定因素的4个模型的估计和相关统计值(括号内为p值)(如果某项为空,则意味着模型中没有此变量)。

数据为美国40个城市的数据。

模型如下:式中:housing——实际颁发的建筑许可证数量;density——每平方英里的人口密度,value——自由房屋的均值(单位:百美元);income——平均家庭的收入(单位:千美元);popchang——1980~1992年的人口增长百分比;unemp——失业率;localtax——人均交纳的地方税;statetax——人均缴纳的州税。

变量模型A模型B模型C模型DC813 (0.74)-392 (0.81)-1279 (0.34)-973 (0.44) Density0.075 (0.43)0.062 (0.32)0.042 (0.47)Value-0.855 (0.13)-0.873 (0.11)-0.994 (0.06)-0.778 (0.07)Income110.41(0.14)133.03(0.04)125.71(0.05)116.60(0.06)Popchang26.77 (0.11)29.19 (0.06)29.41(0.001)24.86 (0.08)Unemp-76.55 (0.48)Localtax-0.061 (0.95)Statetax-1.006 (0.40)-1.004 (0.37)RSS 4.763e+7 4.843e+7 4.962e+7 5.038e+7R20.3490.3380.3220.3121.488e+6 1.424e+6 1.418e+6 1.399e+6AIC 1.776e+6 1.634e+6 1.593e+6 1.538e+6(1)检验模型A中的每一个回归系数在10%水平下是否为零(括号中的值为双边备择p-值)。

根据检验结果,你认为应该把变量保留在模型中还是去掉?(2)在模型A中,在5%水平下检验联合假设H0:i =0(i=1,5,6,7)。

说明被择假设,计算检验统计值,说明其在零假设条件下的分布,拒绝或接受零假设的标准。

说明你的结论。

(3)哪个模型是“最优的”?解释你的选择标准。

(4)说明你对最优模型中参数符号的预期并解释原因,确认其是否为正确符号。

答案1、解:1)预期sibs对劳动者受教育的年数有影响。

因此在收入及支出预算约束一定的条件下,子女越多的家庭,每个孩子接受教育的时间会越短。

根据多元回归模型偏回归系数的含义,sibs前的参数估计值-0.094表明,在其他条件不变的情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育的时间,兄弟姐妹需增加1/0.094=10.6个。

(2)medu的系数表示当兄弟姐妹数与父亲受教育的年数保持不变时,母亲每增加1年受教育的时间,其子女作为劳动者就会预期增加0.131年的教育时间。

(3)首先计算两人受教育的年数分别为10.36+0.13112+0.21012=14.45210.36+0.13116+0.21016=15.816因此,两人的受教育年限的差别为15.816-14.452=1.3642、解:1.在给定5%显著性水平的情况下,进行t检验。

参数的t值:参数的t值:参数的t值:在5%显著性水平下,自由度为19-3-1=15的t分布的临界值为,、的参数显著不为0,但不能拒绝的参数为0的假设。

(2)回归式表明影响工资水平的主要原因是当期的物价水平、失业率,前期的物价水平对他的影响不是很大,当期的物价水平与工资水平呈正向变动、失业率与工资水平呈相反变动,符合经济理论,模型正确。

可以将从模型删除.3、解:(1)ln(X1)的系数表明在其他条件不变时,ln(X1)变化1个单位,Y变化的单位数,即Y=0.32ln(X1)0.32(X1/ X1)。

由此,如果X1增加10%,Y会增加0.032个百分点。

这在经济上不是一个较大的影响。

(2)针对备择假设H1:,检验原假设H0:。

易知相应的t统计量的值为t=0.32/0.22=1.455。

在5%的显著性水平下,自由度为32-3=29的t 分布的临界值为2.045,计算出的t值小于该临界值,所以不拒绝原假设。

这意味着销售额对R&D强度的影响不显著。

在10%的显著性水平下,t分布的临界值为1.699,计算的t 值小于该值,不拒绝原假设,意味着销售额对R&D强度的影响不显著。

(3)对X2,参数估计值的t统计值为0.05/0.46=1.087,它比10%显著性水平下的临界值还小,因此可以认为它对Y在统计上没有显著的影响。

4、解:(1)答案与真实情况是否一致不一定,因为题目未告知是否通过了经济意义检验。

猜测为:为学生数量,为附近餐厅的盒饭价格,为气温,为校园内食堂的盒饭价格;(2)理由是被解释变量应与学生数量成正比,并且应该影响显著;被解释变量应与本食堂盒饭价格成反比,这与需求理论相吻合;被解释变量应与附近餐厅的盒饭价格成正比,因为彼此有替代作用;被解释变量应与气温的变化关系不是十分显著,因为大多数学生不会因为气温变化不吃饭。

5、解:(1)样本容量为n=14.+1=15RSS=TSS-ESS=66042-65965=77ESS的自由度为: d.f.= 2RSS的自由度为: d.f.=n-2-1=12(2)R2=ESS/TSS=65965/66042=0.9988=1-(1- R2)(n-1)/(n-k-1)=1-0.0012*14/12=0.9986(3)应该采用方程显著性检验,即F检验,理由是只有这样才能判断X1、X2一起是否对Y有影响。

(4)不能。

因为通过上述信息,仅可初步判断X1、X2联合起来对Y 有线性影响,两者的变化解释了Y变化的99.8%。

但由于无法知道X1,X2前参数的具体估计值,因此还无法判断它们各自对Y的影响有多大。

6、解:(1)(2),其中为的样本标准差。

(3)由知,代入原模型得这就是所需的模型,其中估计值及其样本标准差都能通过对该模型进行估计得到。

7、解:(1)方程B更合理些。

原因是:方程B中的参数估计值的符号与现实更接近些,如与日照的小时数同向变化,天长则慢跑的人会多些;与第二天需交学期论文的班级数成反向变化。

(2)解释变量的系数表明该变量的单位变化,在方程中其他解释变量不变的条件下,对被解释变量的影响,由于在方程A和方程B中选择了不同的解释变量,方程A选择的是“该天的最高温度”,而方程B 选择的是“第二天需交学期论文的班级数”,造成了与这两个变量之间关系的不同,所以用相同的数据估计相同的变量得到了不同的符号。

8、解:(1)在降雨量不变时,每亩增加1千克肥料将使当年的玉米产量增加0.1吨/亩;在每亩施肥量不变的情况下,每增加1毫米的降雨量将使当年的玉米产量增加5.33吨/亩。

相关文档
最新文档