深部煤岩体高温高压下的力学性质理论研究

深部煤岩体高温高压下的力学性质理论研究
深部煤岩体高温高压下的力学性质理论研究

深部煤岩体高温高压下的力学性质理论研究

国内近年来随着埋藏在中、浅部煤炭资源的不断减少,以及机械化水平的提高,人们逐渐把目光转移到深部煤炭资源。我国东部和中西部的一些大型国有矿井相继进入深部开采阶段,如大同、平顶山、阳泉等煤矿,未来几年内将不断有更多的?大型煤矿进入800m以上的深部开采。

在深部开采中,煤岩体的力学性质发生了很大的改变,破坏机理也随之改变,最常见的是煤岩体流变和热损伤问题。因此碰到了许多与浅部开采不同的工程问题。随着采深的增加,矿山压力与温度都随之不断增加。在深部条件下,地温常达到30?C~50?C,围压达到很大,工人作业条件差,巷道维护困难,发生冲击矿压的次数与强度将显著增加,但对采场顶板压力大小的影响并不突出。岩石圈及岩石流变已成为大陆岩石圈研究的前沿和热点之一,受到国内外的科学家的重视。

1、高围压对岩石力学性质的影响

在三向压缩条件下,随着围压的增大,岩石的屈服极限强度、强度峰值和残余强度都随之增大。大部分岩石在一定的临界围压下出现屈服平台呈现塑性流动现象。因此随着采深的增加,围压变大,煤岩体的极限强度变大,承载能力变强,岩石的韧性加强,使一些在浅部表现为比较坚硬的岩石在深部表现出软岩的大变形、大地压、难维护特征。

深部开采中,在自重应力和构造应力作用下,围压相比浅部高出很多,岩石承载能力和参与强度变大,脆性向延性转化,流变现象明显,破坏机理与浅部有较大区别。王绳祖等对岩石的脆——韧性及塑性流动网络进行了深入的理论和实验研究。他指出,随着矿物组成、粒度、流变、压力、应变速率、液体介质因素的变化,岩石有脆性—>半脆性——>半延性——>延性转化,这种变化过程涉及力学行为、宏观结构和微观物理机制,尤其是岩石共轭剪断网络和塑性流动网络的实验成果不仅深化了脆-韧性转化认识,同时为岩层多层模和塑性流动网络关系提供了实验依据。对辉绿岩、辉长岩和石灰岩的脆-韧性转化,高温高压实验结果与上述结论是一致的。左键平教授等对现有岩石的众多实验资料和现象进行了总结,对压力作用下的变形破坏机理作了深入讨论,得出随着围压的升高,岩石破坏时的水平应力会有所增高,峰值应力出现在更大的变形处,当围压高于某一临界值时,岩石能在较大的应变范围内不失去承载能力,岩石表现出延性性质。孟召平教授等对结合塔里木塔河油田石炭系和三叠系砂岩所处的不同环境,剖析了不同压力对砂岩力学性质的影响,得到砂岩的力学性质与所受的地应力密切相关,刚度和强度随围压的增大而增大,但破坏机理具有在不同压力下具有较大的差异性。王子潮等通过高围压三轴试验对几种岩石的半脆性进行蠕变研究,通过岩石的蠕变曲线,蠕变类型,蠕变的时间和速度,蠕变应变的关系,稳态蠕变速度—流动应力和蠕变破坏特征的观测分析,阐述了围压所起的作用,并且给出了围压-流动应力坐标系中的岩石的半脆性蠕变区。

2、高温对岩石力学性质的影响

温度每变化1?C可以产生0.4MPa~0.5MPa的地应力变化,因此随着温度的升高,岩石的力学性能变化很大,刚度和强度都会有所降低、同时温度对岩石矿物有热激活作用,加之温度梯度的影响,使岩石脆性降低,延性增强,流变性更加明显。

同济大学的朱何华教授等通过单轴压缩实验,对不同高温后熔结凝灰岩、

花岗岩及流纹状凝灰角砾岩的力学性质进行研究,分析比较3种岩石的峰值应力、峰值应变及弹性模量随温度的变化规律,并研究了峰值应力与纵波波速、峰值应变与纵波波速的关系。得到:3种岩石的峰值轻度均随经历温度的升高而降低,且温度越高,降幅越大;熔结凝灰岩、花岗岩的峰值应变随经历温度的升高而明显增加,流纹状凝灰角砾岩高温后峰值应变有一定幅度的降低;3种岩石的弹性模量均随受火温度的升高而降低,且经历的温度越高,降幅越大。

谢和平院士等对3种常用的流变元件、弹性元件、粘性元件和塑性元件进行了组合得到改进的西原模型用于研究深部岩体的流变过程,得到在温度和压力的耦合作用下深部岩石流变模型的本构方程。嵁伦建等通过采用偏光显微镜、扫描电镜及岩石力学试验仪等设备研究了煤层顶板砂岩在常温到1200?C范围内的力学性质和破坏机理。结果表明:导致煤层顶板砂岩加热过程中强度急剧降低的温度与导致岩石内部裂隙形成和晶体变化的温度一致,说明了岩石微观结构在高温下的变化对力学性质有显著影响。

随着温度的增加,岩石热损伤现象越来越严重。刘泉声教授通过温度作用下的脆性岩石的损伤试验得出:在达到热裂化温度前,随着温度的提高,矿物颗粒的受热膨胀造成岩石原生裂隙逐渐闭合,导致岩石的弹性模量逐渐增大;在达到热裂化温度后,随着温度的增高,矿物颗粒或者颗粒内的应力进一步增大,产生微小裂纹或者致使原生微小裂纹扩展和加宽,导致岩石的弹性模量逐渐减小。随着温度的升高,岩石的损伤量释放率逐渐增大。在深部条件下,在巷道局部温度较高部分,岩石由于热损伤在围压作用下挤出现象严重。

在深部采矿中,岩石受到一个变化温度场的作用,温度场对岩石材料的物理性质和力学性质都有影响。通常随着温度的升高,岩石的力学性能劣化,岩石的刚度和强度都有所降低,但同时温度对岩石中的矿物有热激活作用,加之温度梯度的影响,最终使岩石由脆性向延性转化。

3.煤在高温高压下的性质

有关煤在高温高压下的试验无论是国外还是国内都是比较少的。国外Bustin等做有关实验,国内周建勋选择了镜质组最大放射率分别为0.67%,3.41%和4.90%的3种煤级的样品进行高温(300?C~500?C)高压变形实验。这些研究取得了一定的成果,发现温度、压力和煤岩内部的产气情况对于煤的力学属性有很大的影响。姜波等对河南、山西等地包括气煤到无烟煤5组煤岩样品进行了相同温度和压力下的高温(200?C~700?C)高压煤变形实验。结果表明,煤的变形受多种因素的影响,并且在不同温度压力条件产生脆性变形和韧性变形构造。Liu 等对沁水盆地5组煤岩样品进行同步升温和升压条件下的高温高压煤岩实验,结果表明:在不同温度压力下,煤岩的强度有显著的变化;温度对煤岩的影响要高于压力的效应,在不同的温度压力条件下产生不同的脆性变形和韧性变形构造。

煤是多孔介质,煤中水和大量吸附气的存在,也可大大降低煤岩组分韧性变形所需的温度条件,使之在较低的温度(<200?C)下就可以发生变形.应力作用和低应变速率不仅降低煤岩变形所需的温度条件,而且对煤岩的超微尺度变形产生重要影响。煤岩作为一种有机岩石,对温度压力等环境条件十分敏感。当煤层围岩仍保持原生沉积特征时,煤层也可呈现强烈流变韧性变形现象,煤脆韧性变转化的温度远低于大多数围岩。煤岩的这一属性导致周边的其他岩石仍处于脆性变形域时便发生流变,构成软弱层。在高温高压下煤的渗透性发生很大改变。赵阳升,万志军等教授利用自主研制的600?C 200MN伺服控制高温高压三轴试验机系统,分别研究晋城无烟煤和兴隆庄气煤试样在恒定500m原岩应力条件下不

同温度时,渗透特性的演化规律。结果表明:(1)在室温~300?C 中低温段,煤体渗透率随温度的变化存在一个阀值温度。当温度达到阀值温度时,渗透率降至最低。(2)在300?C~600?C高温段,煤体渗透率随温度的变化存在一个峰值温度,峰值温度处渗透率为该温度段内的最大值。(3)煤体渗透率随温度的变化呈现阶段性:室温至阀值温度为第一阶段,渗透率随温度的增加而降低;阀值温度至峰值温度为第二阶段,渗透率随温度的升高而增加;高于峰值温度后,渗透率随温度的增加而降低。(4)渗透率随温度变化的阀值温度和峰值温度与煤阶有关。无烟煤的阀值温度是150?C~200?C,峰值温度为450?C~500?C,而气煤渗透率的温度为200?C~250?C。

综上所诉,处于深部高温高压下的煤岩体:刚度和强度增加,岩石的屈服

极限强度、强度峰值和残余强度都随之增大。弹性模量变小,韧性变强,弹性向粘塑性转变,脆性—>半脆性——>半延性——>延性转化,逐渐失稳向突发失稳

转变,具有明显的流变性,热损伤现象严重,岩石往往出现很大的位移和变形,难维护,矿井动压现象严重。对于煤温度对其力学性质的影响要高于压力对其的影响,温度对煤的渗透性、脆性变形和韧性变形构造影响很大。

参考文献:

①郭文兵,李小双,深部煤岩体高温高压下力学性质的研究与展望

②冯子军,万志军,赵阳升,李根威,,张源,王冲,朱南京,高温三轴应力下无烟煤、气煤煤体渗透特性的试验研究

③朱合华,阎治国等,3种岩石高温后力学性质的试验研究

④王绳组。高温高压岩石力学——历史、现状、展望[J],地球物理学进展,1995

⑤琚宜文,谭静强,侯泉林,谭永杰,武煜东,煤层流变研究现状及发展趋

⑥Busin R M,Ross J V,Rouzaud J N.Mechanisms of graphite formation from kerogen: experimental evidence [J].Jnt J of Coal Geol,1995,28 (1):1—36

⑦Liu J,Yang G,Ma R.Macro - and microscopic mechanical behaviour of flow of coal samples experimentally deformed at high temperatures and pressure[J].Chinese Science Bullentin,2005,50(Supp)

⑧刘泉生,许锡昌。温度作用下脆性岩石的损伤分析[J].岩石力学与工程学报,2000,19 (4):408-411

⑨姜波,秦勇.变形煤的结构演化机理及其他地质意义[M].江苏徐州:中国

矿业出版社,1998.1- 100.

⑩左建平,谢和平,周宏伟.温度压力耦合作用下的岩石屈服破坏研究[J].

岩石力学与工程学报,2005,24(16):2917-2921

煤岩地层岩石的力学特性分析(初稿)

煤岩地层岩石的力学特性分析 摘要:煤岩地层岩石的力学特性包括变形特征和强度特征。本文对煤岩的力学特性进行了系统的分析,探讨了岩石试件在各种载荷作用下的变形规律和开始破坏时的最大应力(强度极限)以及应力与破坏之间的关系,为煤矿的开采和煤层气的开发提供理论依据。 关键词:煤岩力学特性变形特征强度特征 1、煤岩的结构构造特征 岩石的组成成分、结构构造特征造成了岩石物质成分的非均质性、物理力学性质的各向异性和结构构造的不连续性。这是区别于其他力学材料的最突出特征,而煤岩层的这些特征尤为显著。 煤岩的非均质性和各向异性突出表现在其组成成分在同一煤层中纵向(垂直层理)和横向不同方向和深度上的差异,以及在其生成过程中所形成的明显层状构造和孔隙结构所体现出的差异。通常煤岩中存在有两组近于垂直的割理,主要裂隙组面割理发育较完善延伸可至数百米,而端割理发育在面理之间,沟通了面割理。两组割理与层理面近于垂交或陡角相交。由于煤岩层状构造发育,空隙结构特殊,构造作用对后期的改造或产生裂隙,都充分体现出了煤岩结构构造的不连续性。 2、煤岩地层岩石的强度特征

2.1单轴压缩条件下煤岩的强度特征 对鲍店矿3煤31个煤样和新河矿3煤48个煤样在MTS815.03岩石伺服试验机上采用s 15- ?的轴向应变加载速度进行 10 mm/ 单轴压缩试验(加载方向均垂直于煤层层面),得出的详细力学参数见论文第3章表.33和.34,结果汇总在表4.1中。 煤岩强度较低且离散性大的原因除与试验条件、取样制样技术等外在因素有关外,第2章的研究结果表明,主要与其微组分、微孔隙裂隙、微结构等内在因素有关。对煤岩单轴抗压强度的试验结果表明,煤岩强度与其容重、空隙率、含水率、煤体结构以及煤岩变质程度等有关。具体来讲,煤块的单轴抗压强度随其容重的增加而增加;随其孔隙率的增加而减小;煤体节理裂隙越发育,其强度越低;受火成岩影响,煤的变质程度越高,其强度越高。 2.2三轴压缩条件下煤样的强度特征 岩石在三轴压缩条件下的最大承载能力称三轴极限强度或

常用岩土材料参数和岩石物理力学性质一览表

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为:

岩体力学习题及答案

一、绪论 一、解释下例名词术语 岩体力学:研究岩体在各种力场作用下变形与破坏规律的科学。. 二、简答题 1.从工程的观点看,岩体力学的研究内容有哪几个方面? 答:从工程观点出发,大致可归纳如下几方面的内容: 1)岩体的地质特征及其工程分类。 2)岩体基本力学性质。 3)岩体力学的试验和测试技术。 4)岩体中的天然应力状态。 5)模型模拟试验和原型观测。 6)边坡岩体、岩基以及地下洞室围岩的变形和稳定性。 7)岩体工程性质的改善与加固。 2.岩体力学通常采用的研究方法有哪些? 1)工程地质研究法。目的是研究岩块和岩体的地质与结构性,为岩体力学的进一步研究提供地质模型和地质资料。 2)试验法。其目的主要是为岩体变形和稳定性分析提供必要的物理力学参数。 3)数学力学分析法。通过建立岩体模型和利用适当的分析方法,预测岩体在各种力场作用下变形与稳定性。 4)综合分析法。这是岩体力学研究中极其重要的工作方法。由于岩体力学中每一环节都是多因素的,且信息量大,因此,必须采用多种方法考虑各种因素进行综合分析和综合评价才能得出符合实际的正确结论,综合分析是现阶段最常用的方法。 二、岩块和岩体的地质基础 一、解释下例名词术语 1、岩块:岩块是指不含显著结构面的岩石块体,是构成岩体的最小岩石单元体。有些学者把岩块称为结构体、岩石材料及完整岩石等。 2、波速比k v:波速比是国标提出的用来评价岩的风化程度的指标之一,即风化岩块和新鲜岩块的纵波速度之比。 3、风化系数k f:风化系数是国标提出的用来评价岩的风化程度的指标之一,即风化岩块和新鲜岩块饱和单轴抗压强度之比。 4、结构面:其是指地质历史发展过程中,在岩体内形成的具有一定的延伸方向和长度、厚度相对较小的地质面或带。它包括物质分异面和不连续面,如层面、不整合、节理面、断层、片理面等,国内外一些文献中又称为不连续面或节理。 5、节理密度:反映结构发育的密集程度,常用线密度表示,即单位长度内节理条数。 6、节理连续性:节理的连续性反映结构面贯通程度,常用线连续性系数表示,即单位长度内贯通部分的长度。 7、节理粗糙度系数JRC:表示结构面起伏和粗糙程度的指标,通常用纵刻面仪测出剖面轮廓线与标准曲线对比来获得。 8、节理壁抗压强度JCS:用施密特锤法(或回弹仪)测得的用来衡量节理壁抗压能力的指标。 9、节理张开度:指节理面两壁间的垂直距离。 10、岩体:岩体是指在地质历史过程中形成的,由岩块和结构面网络组成的,具有一定的结构,赋存于一定的天然应力状态和地下水等地质环境中的地质体。 11、结构体:岩体中被结构面切割围限的岩石块体。 12、岩体结构:岩体中结构面与结构体的排列组合特征。

岩石的基本物理力学性质及其试验方法

第一讲岩石的基本物理力学性质及其试验方法(之一) 一、内容提要: 本讲主要讲述岩石的物理力学性能等指标及其试验方法,岩石的强度特性。 二、重点、难点: 岩石的强度特性,对岩石的物理力学性能等指标及其试验方法作一般了解。 一、概述 岩体力学是研究岩石和岩体力学性能的理论和应用的科学,是探讨岩石和岩体对其周围物理环境(力场)的变化作出反应的一门力学分支。 所谓的岩石是指由矿物和岩屑在长期的地质作用下,按一定规律聚集而成的自然体。由于成因的不同,岩石可分成火成岩、沉积岩、变质岩三大类。岩体是指在一定工程范围内的自然地质体。通常认为岩体是由岩石和结构面组成。所谓的结构面是指没有或者具有极低抗拉强度的力学不连续面,它包括一切地质分离面。这些地质分离面大到延伸几公里的断层,小到岩石矿物中的片理和解理等。从结构面的力学来看,它往往是岩体中相对比较薄弱的环节。因此,结构面的力学特性在一定的条件下将控制岩体的力学特性,控制岩体的强度和变形。 【例题1】岩石按其成因可分为( )三大类。 A. 火成岩、沉积岩、变质岩 B. 花岗岩、砂页岩、片麻岩 C. 火成岩、深成岩、浅成岩 D. 坚硬岩、硬岩、软岩答案:A 【例题2】片麻岩属于( )。 A. 火成岩 B. 沉积岩 C. 变质岩 答案:C 【例题3】在一定的条件下控制岩体的力学特性,控制岩体的强度和变形的是( )。 A. 岩石的种类 B. 岩石的矿物组成 C. 结构面的力学特性 D. 岩石的体积大小答案:C 二、岩石的基本物理力学性质及其试验方法 (一)岩石的质量指标 与岩石的质量有关的指标是岩石的最基本的,也是在岩石工程中最常用的指标。 1 岩石的颗粒密度(原称为比重) 岩石的颗粒密度是指岩石的固体物质的质量与其体积之比值。岩石颗粒密度通常采用比重瓶法来求得。其试验方法见相关的国家标准。岩石颗粒密度可按下式计算 2 岩石的块体密度 岩石的块体密度是指单位体积岩块的质量。按照岩块含水率的不同,可分成干密度、饱和密度和湿密度。 (1)岩石的干密度 岩石的干密度通常是指在烘干状态下岩块单位体积的质量。该指标一般都采用量积法求得。即将岩块加工成标准试件(所谓的标准试件是指满足圆柱体直径为48~54mm,高径比为2.0~2.5,含大颗粒的岩石,其试件直径应大于岩石最大颗粒直径的10倍;并对试件加工具有以下的要求;沿试件高度,直径或边长的误差不得大于0.3mm;试件两端面的不平整度误差不得大于0.05mm;端面垂直于试件轴线,最大偏差不得大于0.25。)。测量试件直径或边长以及高度后,将试件置于烘箱中,在105~110℃的恒温下烘24h,再将试件放入干燥器内冷却至重温,最后称试件的质量。岩块干

岩体力学

岩块:不含显著结构面的岩石块体,是构成岩石的最小岩石单元体。岩体:通常是指一定工程范围内的自然地质体。 结构面:指地质历史发展过程中,在岩体内形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带。 岩石的结构:矿物颗粒的形状、大小和联结方式所决定的结构特征。 岩石的构造:各种不同结构的矿物集合体的各种分布和排列方式。 岩石的水理性质:岩石在含水或者浸水等条件下体现主来的的与水作用有关的性质。包括:吸水性,软化性,崩解性,膨胀性,抗冻性和渗透性。表征吸水率的指标:含水率、吸水率、饱和吸水率、饱水系数。 含水率:岩石空隙中含水的质量与固体质量之比。 吸水率:一定实验条件下岩石吸入水的质量和岩石固体质量之比,用百分数表示。 软化性:岩石在保水状态下强度相对降低的性能,用软化系数来表征。 软化系数:饱和岩石单轴抗压强度与干燥岩石单轴抗压强度的比值。 崩解性:岩石与水相互作用时失去粘结性并且变成完全丧失强度松散物质的性能。 膨胀性:岩石浸水后体积增大的性质。抗冻性:岩石地抗冻融破坏的能力。 岩石密度:单位体积内岩石的质量。岩石颗粒密度:岩石固体部分的质量与固体体积比值。 岩体和岩块的区别:块,强度高,无结构面,体积小,连续性均匀介质,研究方法简单,反应工程实际较差。体相反。 岩石应力应变全过程曲线:孔隙裂隙压密阶段 OA,弹性变形阶段 A B,微弹性裂隙稳定发展阶段 BC,非稳定破裂阶段 CD,破坏后阶段 DE。 岩石的拉伸破坏实验分为:直接拉伸实验法、抗弯法、劈裂法、点载荷实验法。后两种常用。 单轴抗压强度:岩石在单轴压缩荷载作用下所能承受的最大压应力。 单轴抗拉强度:岩石在单轴拉伸荷载作用下达到破坏是所能承受的最大拉应力。 泊松比:在材料的比例极限内,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。 变形模量:在部分侧限条件下,其应力增量与相应的应变增量的比值。 残余强度:达到峰值强度之后,强度急剧下降并且不等于 0 的强度值。 岩石三周抗压强度:岩石在三周荷载作用下,达到破坏时所能承受的最大压应力。 脆性:在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。 延性:结构,构件或构件的某个截面从屈服开始到达最大承载能力或到达以后而承载能力还没有明显下降期间的变形能力。 弹性:物体在外力作用下发生形变,当外力撤消后能恢复原来大小和形状的性质。 塑性:一种在某种给定载荷下,材料产生永久变形的材料特性。粘性:度量流体粘性大小的物理量。 抗剪强度:岩石的剪切荷载作用下达到剪切破坏前所能承受的最大切应力。岩石剪切试验分为:岩石抗剪实验、抗切试验以及弱面剪切试验。 抗剪断强度:一定正应力作用下的岩石试件沿预定剪切面剪断时的最大切应力。是岩石内聚力和内摩擦力的综合体现。岩石抗切试验通常有单(双)面剪切及冲孔试验。取决于岩石内聚力。 岩石流变包括:蠕变、松弛、弹性后效和粘性流动。 蠕变:应力保持不变应变随时间增长而增加的现象。 松弛:应变保持不变应力随时间增加而减小的现象。

岩体的力学性质及分类doc

―――岩体力学作业之二 一、名词释义 l.结构面:①指在地质历史发展过程中,岩体内形成的具有一定的延伸方向和长度,厚度相对较小的宏观地质界面或带。 ②又称弱面或地质界面,是指存在于岩体内部的各种地质界面,包括物质分异面和不连续面,如假整合、不整合、褶皱、断层、层面、节理和片理等。 2.原生结构面:在成岩阶段形成的结构面,根据岩石成因的不同,可分为沉积结构面、岩浆(火成)结构面和变质结构面三类。 3.构造结构面:指在构造运动作用下形成的各种结构面,如劈理、节理、断层面等。 4.次生结构面:指在地表条件下,由于外力(如风力、地下水、卸荷、爆破等)的作用而形成的各种界面,如卸荷裂隙、爆破裂隙、风化裂隙、风化夹层及泥化夹层等。 5.结构面频率:即裂隙度,是指岩体中单位长度直线所穿过的结构面数目。 6.结构体:结构面依其本身的产状,彼此组合将岩体切割成形态不一、大小不等以及成分各异的岩石块体,被各种结构面切割而成的岩石块体称为结构体。 7.结构效应:是指岩体中结构面的方向、性质、密度和组合方式对岩体变形的影响。 8.剪胀角(angle of dilatancy):岩体结构面在剪切变形过程中所发生的法向位移与切向位移之比的反正切值。 9.节理化岩体:是指被各种节理、裂隙切割呈碎裂结构的岩体。 10.结构面产状的强度效应:指结构面与作用力之间的方位关系对岩体强度所产生的影响。 11.结构面密度的强度效应:指结构面发育程度(数量)对岩体强度所产生的影响。 12.岩体完整性指标:是指岩体弹性纵波与岩石弹性纵波之比的平方。 13.岩体基本质量:岩体所固有的、影响工程岩体稳定性的最基本属性,岩体基本质量由岩石坚硬程度和岩体完整程度决定。 14.自稳能力:在不支护条件下,地下工程岩体不产生任何形式破坏的能力。 15.体积节理数:是指单位岩体体积内的节理(结构面)数目。 16.岩石质量指标(RQD):长度在10cm(含10 cm)以上的岩芯累计长度占钻孔总长的百分比,称为岩石质量指标RQD(Rock Quality Designation)。 二、填空题 1.岩体是指经历过多次反复地质作用,经受过变形,遭受过破坏,形成了一定的岩石成分和结构,赋存于一定地质环境中的地质体。因此,岩体力学性质与岩体中的、以及 2 密切相关。 2.岩体由结构面和结构体组成,结构面根据形成原因通常可分为三种类型:、 和。 3.在工程岩体范围内,结构面按贯通情况可分为、以及三种类型。 4.在岩体中被各种结构面切割而成的岩石块体称为结构体。结构体的形状主要有、、1 以及菱形和锥形等,如果风化强烈或挤压严重,也可形成、、 1 等。 5.岩体抵抗外力作用的能力称为岩体的力学性质。它包括岩体的特征、特征和1 特征等。 6.岩体结构面的剪切变形与、和有关。 7.岩体结构面的几何特性是反映节理的外貌,它的组成要素包括:、、、 以及和。 8.岩体的力学性质不仅取决于岩石本身及结构面的力学性质,也与密切相关。 9.岩体的强度不仅与组成岩体的的性质有关,而且与岩体内的有关,此外还与岩体有关。 10.岩体中存在各种结构面,结构面的变形大小主要由和控制的。

131-煤岩物理力学性质与冲击倾向性关系

煤岩物理力学性质与冲击倾向性关系 李宏艳 1,2 (1.煤炭科学研究总院,北京100013;2.煤炭资源高效开采与洁净利用国家重点实验室(煤炭科学研究总院),北京100013) [摘 要] 冲击倾向性是煤岩介质的固有属性,是发生冲击矿压的必要条件,物理力学参数表征煤岩介质的性质,基于大量煤岩介质物理力学参数数据及冲击倾向性结果,分析了煤岩物理力学性质中吸水性、强度参数、变形参数与冲击倾向性之间的定量或定性关系。试验研究及理论分析结果表明,随着煤岩介质吸水性增强,其动态破坏时间越长,冲击能量指数越低,冲击倾向性程度越低;煤岩介质随着单轴抗压强度的增强,受载过程中积蓄的弹性应变能增大而耗散的永久变形能减少,冲击倾向性增加;弹性模量大于9G P a 时,冲击倾向性类别只为强冲击。 [关键词] 冲击倾向性;物理力学参数;动态破坏时间;冲击能量指数;弹性能量指数[中图分类号]T U 45 [文献标识码]A [文章编号]1006-6225(2011)03-0043-04 P h y s i c a l a n dMe c h a n i c a l P r o p e r t y o f C o a l a n dR o c k a n dI t s R e l a t i o n s h i pw i t hR o c k -b u r s t L i a b i l i t y L I H o n g -y a n 1,2 (1.C h i n a C o a l R e s e a r c h I n s t i t u t e ,B e i j i n g 100013,C h i n a ; 2.S t a t eK e y L a b o r a t o r y o f C o a l R e s o u r c e s H i g h -e f f i c i e n c y M i n i n g a n d C l e a nU t i l i z a t i o n ,C h i n a C o a l R e s e a r c hI n s t i t u t e ,B e i j i n g 100013,C h i n a ) A b s t r a c t :R o c k -b u r s t l i a b i l i t y i s i n n e r p r o p e r t y o f c o a l a n d r o c k b o d y a n d i s n e c e s s a r y c o n d i t i o n o f r o c k -b u r s t .P h y s i c a l a n d m e c h a n i c a l p a r a m e t e r s r e p r e s e n t c o a l a n dr o c kb o d y 's p r o p e r t y . B a s e d o na m o u n t o f e x p e r i m e n t a l d a t a o f p h y s i c a l ,m e c h a n i c a l p a r a m e t e r a n d r o c k -b u r s t l i a b i l i t y o f c o a l a n dr o c kb o d y ,t h e q u a l i t a t i v e a n d q u a n t i t a t i v e r e l a t i o n s h i p s o f w a t e r a b s o r b a b i l i t y ,s t r e n g t h ,d e f o r m a t i o n m o d u l e a n d r o c k -b u r s t l i a b i l i t y w e r e a n a l y z e d .R e s u l t s s h o w e d t h a t w i t h a b s o r b a b i l i t y o f c o a l a n d r o c k b o d y i n c r e a s i n g ,i t s d y n a m i c d a m a g e t i m e i n c r e a s e d ,r o c k -b u r s t e n e r g y i n d e x r e d u c e d a n d r o c k -b u r s t l i a b i l i t y d e c r e a s e d .W i t h u n i a x i a l c o m p r e s s i o n s t r e n g t hi n c r e a s e d ,e l a s t i c e n -e r g ya c c u m u l a t e di nl o a d i n gp r o c e d u r ei n c r e a s e da n dr e l e a s e dp e r m a n e n t d e f o r m a t i o ne n e r g yr e d u c e d ,s or o c k -b u r s t l i a b i l i t yi n -c r e a s e d .Wh e ne l a s t i c m o d u l e w a s l a r g e r t h a n 9G P a ,r o c k -b u r s t l i a b i l i t y o f a l l s a m p l e s w a s s t r o n g . K e yw o r d s :r o c k -b u r s t l i a b i l i t y ;p h y s i c a l a n d m e c h a n i c a l p a r a m e t e r ;d y n a m i cd a m a g e t i m e ;r o c k -b u r s t e n e r g yi n d e x ;e l a s t i c e n e r g y i n d e x [收稿日期]2011-02-25 [基金项目]国家重点基础研究发展计划(973计划)课题(2010226801) [作者简介]李宏艳(1978-),女,河北唐山人,博士后,高级工程师,主要从事矿山岩石力学与煤岩动力灾害防治相关研究工作。 煤岩作为典型的脆性岩石赋存于复杂的地质环境中,煤岩介质的物理力学性质更趋于复杂化,尤其是具有积蓄变形能并产生冲击式破坏的性质,即 冲击倾向性,冲击倾向性是煤岩介质固有属性。煤岩介质冲击倾向性是引发煤矿冲击矿压等煤岩动力灾害的必要条件。因此,准确把握煤岩介质冲击倾向性的强弱,是控制冲击矿压等煤矿突发性灾害的重要前提。针对煤岩介质冲击倾向性实验、指标、判别,国内外学者作了大量研究工作,从不同角度对冲击倾向性的影响因素进行了分析,从而提出了一系列冲击倾向性评价指标,例如弹性能指标(W E T ) [1-3]、能量指标(P E S )[2] 、脆性指标修正值 (B I M )[4] 、能量耗散指标(K )[5]、动态破坏时间(D T )[6]、有效释放率 (B E R )[3,7] 、脆性指标 (B )[8] ,能量释放率(E R R)[9] 、有效冲击能 [10] 等。指标的提出为冲击倾向性评价奠定了基础,同时也为冲击矿压的预测预报提供了依据。而影响煤岩介质冲击倾向性的因素较多,主要分为内在因素与外部因素。内在因素以煤岩属性(矿物成分、碎屑含量、颗粒大小、岩石结构、颗粒接触方式、 胶结物成分、胶结类型)为主要影响因素的研究主要包括煤岩介质矿物成分及细观结构对冲击倾向性的影响 [11-12] 。外部因素主要体现在对煤岩体生 成条件、赋存环境、围岩应力、围岩性质(顶底板条件)以及密度、温度和湿度等的影响,如对组合煤岩结构冲击倾向性的试验研究 [13-14] ,探讨含水量对煤岩冲击倾向性的影响的研究 [15] 。煤岩 介质内在属性是决定煤岩介质冲击倾向性的内在因素,通过煤岩介质的物理力学参数加以定量表征,因此以煤岩物理力学参数为媒介,探讨冲击倾向性 第16卷第3期(总第100期) 2011年6月 煤 矿 开 采C o a l m i n i n g T e c h n o l o g y V o 1.16N o .3(S e r i e s N o .100) J u n e 2011 DOI :10.13532/j .cn ki .cn11-3677/td .2011.03.013

岩体力学重点

概念 岩石:是由矿物或岩屑在地质作用下按一定的规律聚集而成的自然体。 岩石结构:是指岩石中矿物颗粒间的关系,包括颗粒大小、形状、排列、结构连结特点以及岩石中的微结构面。 岩石构造:岩石中不同矿物集合体之间及其与其他组成部分之间在空间的排列方式及充填方式。 岩石块体密度:单位体积岩石(包括岩石孔隙体积)的质量。 颗粒密度:岩石固相物质的质量与其体积的比值(不包括岩石孔隙体积)。 孔隙率:孔隙体积与总体积(包含孔隙)之比。 渗透系数:表征岩石透水性的重要标志,在数值上等于水力梯度为1时的渗流速度。 软化系数:岩石浸水后的饱和抗压强度与岩石干抗压强度之比。 膨胀性:岩石侵水后发生体积膨胀的性质。 岩石吸水性:岩石在一定的实验条件下吸收水分的能力。 扩容:岩石在外力作用下,形变过程中发生的非弹性的体积增长(岩石破坏的前兆)。 弹性模量:单向压缩条件下,弹性变形范围为轴向应力与试件轴向应变之比。 变形模量:岩石在单轴压缩条件下,轴向应力与总应变(弹性应变与塑性应变之和)的比值。泊松比:横向应变与纵向应变之比,也叫横向变形系数。 脆性度:对脆性程度的一种度量,脆性度愈小,材料抗断裂的抗力愈高;反之愈大。 尺寸效应:岩石试件尺寸越大,则强度越低,反之越高,这一现象。 常规三轴试验:试件处于σ1 >σ2=σ3应力状态下。 真三轴试验:试件处于σ1 >σ2 >σ3应力状态下。 岩石三轴压缩强度:岩石在三轴压缩荷载作用下,试件破坏时所承受的最大轴向压应力。流变性:介质在外力不变的条件下,应力与应变随时间而变化的性质。 蠕变:介质在大小和方向均不改变的外力作用下,其变形随时间变化而增大的现象。 松弛:介质的变形(应变)保持不变时,内部应力随时间变化而降低的现象。 弹性后效:介质加载或卸载时,弹性应变滞后于应力的现象。它是一种延迟发生的弹性变形和弹性恢复,外力卸除后最终不留下永久变形。 岩石长期强度:岩石的强度是随外载作用时间的延长而降低,作用时间t趋向于正无穷的强度(最低值)。 强度准则:表征岩石破坏条件的应力状态与岩石强度参数间的函数关系,通过它来判断岩石在什么样的应力应变条件下破坏。 岩石抗拉强度测定方法:直接拉伸法、抗弯法、劈裂法、点载荷法。 简答论述 1、岩石结构与岩石构造有什么区别?并举例加以说明。 岩石结构:是指岩石中矿物颗粒间的关系,包括颗粒大小、形状、排列、结构连结特点以及岩石中的微结构面。岩石构造:岩石中不同矿物集合体之间及其与其他组成部分之间在空间的排列方式及充填方式。如岩浆岩中的流线、流面、块状构造,沉积岩中的层理、叶片状构造,变质岩中的片理、片麻理和板状构造等。 2、岩石颗粒间的连接方式有哪几种? 结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩以及部分沉积岩的结构连结。胶结连结:指颗粒与颗粒之间通过胶结物质连结在一起的连结。如沉积碎屑岩、部分粘土岩的结构连

煤和岩石物理力学性质测定方法

煤和岩石物理力学性质测定方法 第1部分:采样一般规定 1 范围 本部分规定了煤和岩石物理力学性质测定所需煤、岩样的采样的设备工具、技术要求、方法、记录与编号和封装要求。 本部分适用于煤及与煤层相关岩层中岩石的基本性质及冲击倾向性鉴定的室内实验。 2 规范性引用文件 下列文件中的条款通过GB/T ××××的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本部分。 GB/T 19222-2003 煤岩样品采取方法 JIS M0301-1975 强度试验用岩石的取样和试样的制备方法 3 术语和定义 下列术语和定义适用于本部分。 3.1 说明 煤、岩样 coal rock sample 采集后基本能保持煤、岩体原有结构和状态的煤、岩块体。 4 设备工具和包装器材 4.1 取样设备及工具 取样设备和工具主要有:煤电钻、风镐、地质钻机(钻取煤、岩芯)。 4.2 包装器材 试验样品的包装器材如下: a)具有一定厚度及强度的塑料布、宽胶带; b)铁锅、石蜡; c)木屑、泡沫塑料、木箱。 5 技术要求 5.1 采样基本要求 5.1.1 采样前应提取采样地点的地质综合柱状图,了解清楚采样地点的地层结

构。 5.1.2 在研究某一局部地点的岩石性质时,应在所研究地点附近,应寻找具有代表性的采样点采样。按照GB/T 19222-2003的规定,常规煤层煤岩样品采样点应避开岩浆岩体侵入区、烧变区、风化带、冲蚀带、断层破碎带及其影响区域等地段。煤岩样采样前应清理煤壁,使表面新鲜、平整。。 5.1.3 在研究较大范围内的岩石性质时,应根据岩性变化情况,分别在几个具有代表性的采样点采样。 5.1.4 当沿岩层厚度岩性变化较大时应分别在上、中、下不同层位采样。 5.1.5 每一组煤、岩样应采自岩性相同的同一层位。 5.1.6 对岩性变化很大的岩层,禁止将在不同地点和不同层位采取的煤、岩样编为一组。 5.1.7 按照JIS M0301-1975的规定,尽量不采用爆破方法采样。如只能用爆破方法采样时,应降低炮眼装药量,以防产生大量人为裂隙。 5.2 采样技术要求 5.2.1 煤层取样 根据试验要求及煤层厚度分层取样,煤层厚度3.5m以下,采一组煤样;(3.5~5.0)m之间采两组煤样,一组靠近煤层顶板取样,另一组靠近煤层底板取样;煤层厚度大于(5.0~10)m之间可分上、中、下采取三组煤样;如煤层厚度大于10m,可根据煤层厚度,分更多层次采取煤样或用钻机采取煤样。 5.2.2 岩层取样 5.2.2.1 如测试岩层的常规物理力学性质,一般采集煤层的直接顶与基本顶两层岩样。 5.2.2.2 如需鉴定岩层冲击倾向性,应在煤层顶板或底板30m以内的岩层中,分别取不同岩性、单层厚度大于2m的各分层为一组,采取各个分层的岩样。 5.2.2.3 煤层底板一般只采一组岩样。如有厚度小于1.0m的伪底,并有底臌现象,除采此层伪底外,还应采其下另一组不同岩性的底板岩样。 5.2.2.4 如煤层中有夹矸层,应根据夹矸层的厚度、岩性、及对煤层开采影响的程度,酌情采取各夹矸层的岩样。 5.2.3 采样规格及数量 5.2.3.1 岩样每组四块,煤样每组七块。所采的岩块与煤块的规格大体为(25×25×20)cm的六面体,其高度方位应垂直煤、岩层的层理面。所采集的煤、岩样不

岩石的基本物理力学性质

岩石的基本物理力学性质 岩石的基本物理力学性质是岩体最基本、最重 要的性质之一,也是岩体力学中研究最早、最完善 的力学性质。 岩石密度:天然密度、饱和密度、 质量指标密度、重力密度 岩石颗粒密度 孔隙性孔隙比、孔隙率 含水率、吸水率 水理指标 渗透系数 抗风化指标软化系数、耐崩解性指数、膨胀率 抗冻性抗冻性系数 单轴抗压强度 单轴抗拉强度 抗剪强度 三向压缩强度 岩石的基本物理力学性质 ◆岩石的变形特性 ◆岩石的强度理论 试验方法参照标准:《工程岩体试验方法标准》(GB/T 50266-99)。 第二章岩石的基本物理力学性质 第一节岩石的基本物理性质 第二节岩石的强度特性 第三节岩石的变形特性

第四节岩石的强度理论 回顾----岩石的基本构成 岩石是自然界中各种矿物的集合体,是天然地质作用的产物,一般而言,大部分新鲜岩石质地均坚硬致密,空隙小而少,抗水性强,透水性弱,力学强度高。 岩石是构成岩体的基本组成单元。相对于岩体而言,岩石可看作是连续的、均质的、各向同性的介质。 岩石的基本构成:由组成岩石的物质成分和结构两大方面来决定的。 回顾----岩石的基本构成 一、岩石的物质成分 ●岩石是自然界中各种矿物的集合体。 ●岩石中主要的造岩矿物有:正长石、斜长石、石英、黑云母、角闪石、辉石、方解石、白云石、高岭石等。 ●岩石中的矿物成分会影响岩石的抗风化能力、物理性质和强度特性。 ●岩石中矿物成分的相对稳定性对岩石抗风化能力有显著的影响,各矿物的相对稳定性主要与化学成分、结晶特征及形成条件有关。 回顾----岩石的基本构成 二、岩石的结构 是指岩石中矿物(及岩屑)颗粒相互之间的关系,包括颗粒的大小、性状、排列、结构连结特点及岩石中的微结构面(即内部缺陷)。其中,以结构连结和岩石中的微结构面对岩石工程性质影响最大。 回顾----岩石的基本构成 ●岩石结构连结 结晶连结和胶结连结。 结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩及部分沉积岩的结构连结。这种连结结晶颗粒之间紧密接触,故岩石强度一般较大,但随结构的不同而有一定的差异。 胶结连结:指颗粒与颗粒之间通过胶结物在一起的连结。对于这种连结的岩石,其强度主要取决于胶结物及胶结类型。从胶结物来看,硅质铁质胶结的岩石强度较高,钙质次之,而泥质胶结强度最低。 回顾----岩石的基本构成 ●岩石中的微结构 岩石中的微结构面(或称缺陷),是指存在于矿物颗粒内部

岩石力学性质试验指导书

实验一岩石单轴抗压强度试验 1.1 概述 当无侧限岩石试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 在测定单轴抗压强度的同时,也可同时进行变形试验。 不同含水状态的试样均可按本规定进行测定,试样的含水状态用以下方法处理: (1)烘干状态的试样,在105~1100C下烘24h。 (2)饱和状态的试样,使试样逐步浸水,首先淹没试样高度的1/4,然后每隔2h分别升高水面至试样的1/3和1/2处,6h后全部浸没试样,试样在水下自由吸水48h;采用煮沸法饱和试样时,煮沸箱内水面应经常保持高于试样面,煮沸时间不少于6h。 1.2 试样备制 (1)试样可用钻孔岩芯或坑、槽探中采取的岩块,试件备制中不允许有人为裂隙出现。按规程要求标准试件为圆柱体,直径为5cm,允许变化范围为4.8~5.2cm。高度为10cm,允许变化范围为9.5~10.5cm。对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径比必须保持=2:1~2.5:1。 (2)试样数量,视所要求的受力方向或含水状态而定,一般情况下必须制备3个。 (3)试样制备的精度,在试样整个高度上,直径误差不得超过0.3mm。两端面的不平行度最大不超过0.05mm。端面应垂直于试样轴线,最大偏差不超过0.25度。 1.3 试样描述 试验前的描述,应包括如下内容: (1)岩石名称、颜色、结构、矿物成分、颗粒大小,胶结物性质等特征。 (2)节理裂隙的发育程度及其分布,并记录受载方向与层理、片理及节理裂隙之间的关系。 (3)测量试样尺寸,并记录试样加工过程中的缺陷。 1.4 主要仪器设备 试样加工设备:钻石机、锯石机、磨石机或其他制样设备。 量测工具与有关检查仪器: 游标卡尺、天平(称量大于500g,感量0.01g),烘箱和干燥箱,水槽、煮沸设备。 加载设备: 压力试验机。压力机应满足下列要求: (1)有足够的吨位,即能在总吨位的10%~90%之间进行试验,并能连续加载且无冲击。 (2)承压板面平整光滑且有足够的刚度,其中之一须具有球形座。承压板直径不小于试样直径,且也不宜大于试样直径的两倍。如大于两倍以上时需在试样上下端加辅助承压板,辅助承压板的刚度和平整光滑度应满足压力机承压板的要求。 (3)压力机的校正与检验应符合国家计量标准的规定。 1.5 试验程序 (1)根据所要求的试样状态准备试样。 (2)将试样置于压力机承压板中心,调整有球形座的承压板,使试样均匀受力。

同济大学出版岩体力学考试复习资料

岩体力学考试复习资料(2011/04/17) 一、名词释义 结构面:指地质历史发展过程中,在岩体内形成的具有一定的延伸方向和长度,厚度相对较小的地质界面或带. 岩体:在地质历史过程中形成的,由岩石单元体和结构面网络组成的,具有一定的结构并赋存于一定的天然应力状态和 地下水等地质环境中的地质体. 颗粒密度:岩石固体相部分的质量与其体积的比值。块体密度(岩石密度):指岩石单位体积内的质量。 弹性;在一定的应力范围内物体受外力作用产生的全部变形去除外力后能立即恢复原有形状和尺寸。塑性;物体受力后产生变形,在外力去除后不能完全回复的性质。 粘性;物体受力后变形不能再瞬时完成,且应变速率随应力增加而增加的性质。脆性; 物体受力后变形很小时就发生碎裂的性质。 延性;物体能承受较大塑性变形而不丧失其承载力的性质。 流变;在外部条件不变的情况下,岩石的变形或应力随时间的变化的现象弹性后效:应变恢复总是落后于应力的现象 单轴抗压强度:在单向压缩条件下,岩块能承受的最大压应力 法向刚度:在法向应力作用下,结构面产生单位法向变形所需的应力 剪切强度:岩体内任一方向剪切面在法向应力作用下所能抵抗的最大剪应力天然应力:人类工程活动之前存在于岩体中的应力重分布应力:岩体中由于工程活动改变后的应力 天然应力比值系数:岩体中天然水平应力与铅直应力之比 岩爆:高地应力地区由于洞壁围岩中应力高度集中使围岩产生突发性变形破坏的现象 围岩压力:地下洞室在重分布应力作用下产生过量的塑性变形或松动破坏,进而引起施加于支护衬砌上的压力围岩抗力:围岩对衬砌的反力 围岩抗力:使洞壁围岩产生一个单位径向变形所需要的内水压力蠕变:岩石在恒定的荷载作用下,变形随时间逐渐增大的性质尺寸效应:试件尺寸越大,岩块强度越低剪胀角:剪切位移线与水平的夹角 岩(体)石力学:是力学的一个分支学科,是研究岩(体)石在各种力场作用下变形与破坏规律的理论及其实际应用 的一门基础学科。 工程岩体力学:为各类建筑工程及采矿工程等服务的岩体力学 RQD(岩体质量指标):指大于10cm的岩芯,累计长度与钻孔进尺长度之比的百分比软化性:岩石浸水饱和后强度降低的性质。 二、填空 岩体力学主要分支学科:工程岩体力学、构造岩体力学、破碎岩体力学。 岩体力学研究对象是:在各种地质作用下形成的天然岩体。 结构面连续性指标:线连续性系数、迹长、面连续性系数。 按充填厚度和连续性,结构面充填分为:薄膜充填、断续充填、连续充填、厚层充填。岩石软化性取决于岩石的:矿物组成、空隙性。流变包括:蠕变、松弛、弹性后效。 岩块抗拉强度测定方法:直接拉伸法和间接法;间接法有:劈裂法、抗弯法、点荷载法。影响抗剪强度因素:结构面的形态、连续性、胶结充填特征、壁岩性质。 岩体法向变形曲线分为:直线型、上凹型、上凸型、复合型;又称为弹性、弹-塑性、塑-弹性、塑-弹-塑性岩体。岩石天然应力测量方法:水压致裂法、扁千斤顶法、钻孔套应力解除法。铅直天然应力σv等于上覆岩体自重,σv=ρgh 水平天然应力σh=λσv,λ=μ/

常用土层和岩石物理力学性质综述

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用

各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3 流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。

岩石及其岩体的基本性质

第一章岩石及岩体的基本性质 第一节概述 岩石是组成地壳的基本物质,它由各种造岩矿物或岩屑在地质作用下按一定规律(通过结晶或借助于胶结物粘结)组合而成。 一、岩石的分类 自然状态下的岩石,按其固体矿物颗粒之间的结合特征,可分为: ①固结性岩石:固结性岩石是指造岩矿物的固体颗粒间成刚性联系,破碎后仍可保持一定形状的岩石。 ②粘结性岩石、③散粒状岩石、④流动性岩石等。 在煤矿中遇到的大多是固结性岩石。常见的有砂岩、石灰岩、砂质页岩、泥质页岩、粉砂岩等。 按岩石的力学性质不同,常把矿山岩石分为: ①坚硬岩石②松软岩石两类。 工程中常把饱水状态下单向抗压强度大于10MPa的岩石叫做坚硬岩石,而把低于该值的岩石称为松软岩石。 松软岩石具有结构疏松、密度小、孔隙率大、强度低、遇水易膨胀等特点。 从矿压控制角度看,这类岩石往往会给采掘工作造成很大困难。 二、岩石的结构和构造 岩石的强度与岩石的结构和构造有关。 1.岩石的结构指决定岩石组织的各种特征的总合。如岩石中矿物颗粒的结晶程度、颗粒大小、颗粒形状、颗粒间的联结特征、孔隙情况,以及胶结物的胶结类型等。 岩石中矿物颗粒大小差别很大,在沉积岩中,有的颗粒小到用肉眼难以分辩(如石灰岩、泥岩、粉砂岩中的细微颗粒),有的颗粒可大至几厘米(如砾岩中的粗大砾石)。组成岩石的物质颗粒大小,决定着岩石的非均质性。颗粒愈均匀,岩石的力学性质也愈均匀。一般来说,组成岩石的物质颗粒愈小,则该岩石的强度愈大。

2.岩石的构造是指岩石中矿物颗粒集合体之间,以及与其它组成部分之间的排列方式和充填方式。主要有以下几种构造: 1.整体构造——岩石的颗粒互相紧密地紧贴在一起,没有固定的排列方向; 2.多孔状构造——岩石颗粒间彼此相连并不严密,颗粒间有许多小空隙; 3.层状构造——岩石颗粒间互相交替,表现出层次叠置现象(层理)。 岩石的构造特征对其力学性质有明显影响,如层理的存在常使岩石具有明显的各向异性。在垂直于层理面的方向上,岩石承受拉力的性能很差,沿层理面的抗剪能力很弱。受压时,随加载方向与层理面的交角不同,强度有较大差别。 第二节 岩石的物理性质 一、岩石的相对密度(比重) 岩石的相对密度就是岩石固体部分实体积(不包括空隙)的质量与同体积水质量的比值。其计算公式为: w c d V G γ?=? (1-1) 式中 Δ—岩石的比重; G d —绝对干燥时岩石固体实体积的重量,g ; V c —岩石固体部分实体积,cm 3; γw —水的密度,g/cm 3 岩石比重的大小取决于组成岩石的矿物比重,而与岩石的空隙和吸水多少无关。岩石的比重可用于计算岩石空隙度和空隙比。煤矿中常见岩石的比重见表1-1。 二、岩石的质量密度 岩石的密度是指单位体积(包括空隙)岩石的质量。 根据含水状态不同,岩石的密度分为天然密度、干密度、和饱和密度。 天然密度是岩石在天然含水状态下的密度。 干密度是岩石在105~110℃烘箱内烘至恒重时的密度。 饱和密度是岩石在吸水饱和状态下的密度。 干密度、饱和密度和天然密度的表达式如下:

相关文档
最新文档