石油烃类污染物在天然水体中的迁移转化
污染物在环境中迁移与转化

一、基本概念 二、实例分析 三、控制防治
一、污染物的迁移
污染物的迁移(transport of pollutants)是指
污染物在环境中发生的空间位置的相对移动
过程。迁移的结果导致局部环境中污染物的
种类、数量和综合毒性强度发生变化。
1、污染物迁移的方式
(1) 机械迁移 根据污染物在环境中发生机械性迁移的作用力,可以将其分为气的、水 的、和重力机械性迁移三种作用。 i)气的机械性迁移作用,包括污染物在大气中的自由扩散作用和被气流搬 运的作用。其影响因素有:气象条件、地形地貌、排放浓度、排放高度 。一般规律:污染物在大气中的排放量成正比,于平均风速和垂直混合 高度成反比。 ii)水的机械性迁移作用,包括污染物在水中的自由扩散作用和被水流的搬 运作用。一般规律:污染物在水体中的浓度与污染源的排放量成正比, 与平均流速和距污染源的距离成反比。 iii)重力的机械迁移作用,主要包括悬浮物污染物的沉降作用以及人为的 搬运作用。
(3)生物性迁移 指污染物通过生物体的吸附、吸收、代谢、死亡等过 程而发生的迁移叫做生物迁移。 1.生物浓缩 生物体从环境中蓄积某种污染物,出现生物体 中浓度超过环境中浓度的现象,又称生物富集。 2.生物累积 生物个体随其生长发育的不同阶段从环境中蓄 积某种污染物,从而浓缩系数不断增大的现象。(生物累积 某种污染物浓度水平取决于该生物摄取和消除该污染物的速 率之比,摄取大于消除,则发生生物积累) 3.生物放大 生态系统的同一食物链上,某种污染物在生物 体内的浓度随着营养级的提高而逐步增大的现象。
(2)物理化学迁移 物理化学迁移是污染物在环境中最基本的迁移过程。污 染物以简单的离子或可溶性分子的形势发生溶解-沉淀、吸 附-解吸附。同时还会发生降解等作用。 1.风化淋溶作用 风化淋溶作用是指环境中的水在重力作用 下运动时通过水解作用使岩石、矿物中的化学元素溶入水中 的过程,其作用的结果是产生游离态的元素离子。 2.溶解挥发作用 降水、固体废弃物水溶性成份的溶解; 3.酸碱作用(常表现为环境pH值的变化) 4.络合作用(改变毒物吸附和溶解的能力) 5.吸附作用 6. 氧化还原作用
水环境污染物迁移转化与净化

水环境污染物迁移转化与净化下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!水环境是地球上最为重要的自然环境之一,然而随着工业化和城市化的快速发展,水环境污染问题日益严重。
水中有机污染物的迁移转化

半衰期与有机物属性、温度、 pH有关,与有机物初始浓度 无关.
五 . 光解作用
光解作用是有机污染物真正的分解过程,因为它不可逆地 改变了反应分子,强烈地影响水环境中某些污染物的归趋。 1、直接光解:化合物本身直接吸收了光能而进行分解反应。 2、敏化光解:水体中存在天然物质被阳光激发后,又将其激 发态的能量转移给化合物而导致的分解反应。 3、氧化反应:天然物质被辐射而产生自由基或纯态氧等中间 体,这些中间体又与化合物作用而生成转化的产物。
b) 吸附作用一般有较大的吸附热放出,而分配作用放热很少。
c) 分配作用的等温线为直线,而吸附作用的等温线为非直线。
d) 当有多种有机物并存时,吸附作用受吸附位竞争的影响,而分 配作用只与有机物的溶解度有关,与表面吸附位无关。
二 . 分配作用
2. 标化分配系数
分配系数: Kp= ρa / ρw
式中:ρa、ρw—分别为有机毒物在沉积物中和水中的平衡质量浓度。
二 . 分配作用
b.几种疏水 性有机化合 物在活性炭 -水体系中 的吸附—非 线性等温线
二 . 分配作用
二 . 分配作用
• 理论提出: 在土壤-水体系中,土壤对非离子性有机物的吸着主要是溶 质的分配过程(溶解),即非离子性有机物可通过溶解作用分 配到土壤有机质中,并经过一定时间达到分配平衡。此时有机 物在土壤有机质和水中含量的比值称为分配系数。
有机物在土壤(沉积物)中的吸着存在两种机理: 1)分配作用:即在水溶液中,土壤(沉积物)有机质对有机 物的溶解作用。 2)吸附作用:即在非极性有机溶剂中,土壤矿物质对有机物 的表面吸附作用或干土壤矿物质对有机物的表面吸附作用。
水文地球化学过程中污染物迁移与转化机理分析

水文地球化学过程中污染物迁移与转化机理分析随着人类经济增长和社会发展,水环境污染愈发严重,污染物的迁移与转化机理成为热门研究课题。
水文地球化学过程影响着污染物的迁移和转化,从而决定着污染物对环境的危害程度和寿命。
一、水文地球化学过程以及其影响污染物迁移的机理水文地球化学过程包括水文循环过程和地球化学过程。
水文循环过程是地球上水分从一处不同的状态、介质、形式不断转化,包括蒸发、降雨、地下水循环、河道和湖泊等。
地球化学过程则是水环境中的化学反应,包括化学平衡、溶解氧、微量元素和有机物的溶解、膜过滤和交换反应等。
水循环过程和地球化学过程决定了水环境中污染物的迁移和转化。
水循环过程对于污染物的迁移主要体现在水流速度、径流和渗透度等方面。
污染物通过水流速度被带动向下游迁移,径流和渗透度则影响着污染物的扩散速率。
地球化学过程则对污染物的转化有重要影响。
比如,在水体途中,有氧和无氧的水位条件会导致水体中污染物的化学形态发生改变,从而影响着其对生态与环境的危害程度。
二、不同的环境和类型的污染物对迁移和转化的影响不同的污染物和不同的环境会对迁移和转化机理产生影响。
1.水体中无机物的迁移和转化机理水体中的常见无机物污染物种类有氨氮、硝酸盐和磷酸盐等。
这些无机物污染物是水体富营养化和水体产生异味的重要原因。
随着水流速度和沉积速度的变化,氨氮、硝酸盐和磷酸盐的浓度呈现不同的分布规律。
在水流速度较慢,沉积速度较快的环境中,污染物的浓度较高,而在水流速度较快,沉积速度较慢的环境中,污染物的浓度较低。
除了流速和沉积速度之外,无氧和有氧的水环境也会影响着无机物的转化。
在无氧水环境中,氮氧化物可以还原为氨氮,从而使污染物的浓度增加。
当水环境中存在足够的溶解氧时,氮氧化物会被氧化为无害的氮气,从而使污染物的浓度降低。
2.水体中有机物的迁移和转化机理水体中的有机物污染物包含多种有机化合物,如乙二胺四酸盐、十二烷基苯磺酸钠等。
这些有机物污染物不仅排放难度大,而且对水体生态和环境危害更大。
第11讲水中有机污染物的迁移转化

Kp=Koc[0.2(1-wf)wocs+wfwocf]
其中,Wf—细颗粒的质量分数(d<50um) wocs—粗颗粒组分的有机碳含量 wocf—细颗粒组分的有机碳含量
第11讲水中有机污染物的迁移转化
憎水有机物的Koc与辛醇-水分配系数的关系
Koc =0.63 Kow Kow—辛醇-水分配系数,即化学物质在辛醇中和水中的 浓度比
第11讲水中有机污染物的迁移转化
三、水解反应速度 ❖ 通常有机物的水解是一级反应
❖ 半衰期与有机物属性、温度、 pH有关,与有机物 初始浓度无关.
第11讲水中有机污染物的迁移转化
水解速率与pH的关系
❖ Mabey等把水解速率归纳为
◎酸性催化过程 ◎碱性催化过程 ◎中性催化过程
❖ 水解速率为三个催化过反应速度的和:
❖ 有机物在沉积物与水之间的分配
Kp —分配系数(与沉积物中有机质浓度有关) cT —总有机物浓度(μg/L) cs —沉积物中有机物浓度(μg/kg) cw —溶解在溶液中的有机物浓度(μg/L) cp —沉积物浓度(kg/L)
第11讲水中有机污染物的迁移转化
标化分配系数Koc
Koc=Kp/Xoc Xoc—沉积物中有机碳的质量分数。 对非极性有机物,Koc与沉物性质无关
式中: αw——有机毒物可溶解相分数 c,cT—有机物溶解相中的浓度和 表示化学物质在气—液相达到平衡时,溶解 于水相的浓度与气相中化学物质浓度(或分压 力)有关: p=KHcw
式中:p—污染物在大气中的平衡分压,Pa; cw——污染物在水中平衡浓度,mol/m3; KH——亨利定律常数, Pa·m3/mol。
❖ Kow和溶解度的关系
水中有机污染物的迁移转化(ppt46张)

生长代谢过程中的转化速率方程--Mond模型
Monod方程用来描述当化合物作为唯一碳源时的降解速率
E(酶)+S(底物)
ES
E+P(产物)
dB dc B c 1 1K s 1 R Y max dt dt K c R B c s max max
半衰期与有机物属性、温度、 pH有关,与有机物 初始浓度无关.
水解速率与pH的关系
Mabey等把水解速率归纳为
◎酸性催化过程 ◎碱性催化过程 ◎中性催化过程
水解速率为三个催化过反应速度的和:
d[RX] K [RX] h dt K K [H ] K K [OH ] K [H ] K K K /[H ] h A N B A N BW
①分配作用
②吸附作用
土壤矿物质对有机化合物的表面吸附作用
2. 标化分配系数
有机物在沉积物与水之间的分配
Kp cs cw cT cscp cw cw( 1Kpcp) cw cT ( 1Kpcp)
Kp —分配系数(与沉积物中有机质浓度有关) cT —总有机物浓度(μg/L) cs —沉积物中有机物浓度(μg/kg) cw —溶解在溶液中的有机物浓度(μg/L) cp —沉积物浓度(kg/L)
KA、KB、KN的计算
在lg Kh—pH图中,三个交点相对应于三个pH值
IAN-酸性催化与中性催化直线的交点的pH值 IAB-酸性催化与碱性催化直线的交点的pH值 INB-中性催化与碱性催化直线的交点的pH值
水污染严重的原因是什么

水污染严重的原因是什么水污染是由有害化学物质造成水的使用价值降低或丧失,污染环境的水。
为什么水污染严重,以下就是店铺给你做的整理,希望对你有用。
水污染严重的原因病原体污染物生活污水、畜禽饲养场污水以及制革、洗毛、屠宰业和医院等排出的废水,常含有各种病原体,如病毒、病菌、寄生虫。
水体受到病原体的污染会传播疾病,如血吸虫病、霍乱、伤寒、痢疾、病毒性肝炎等。
历史上流行的瘟疫,有的就是水媒型传染病。
如1848年和1854年英国两次霍乱流行,死亡万余人;1892年德国汉堡霍乱流行,死亡750余人,均是水污染引起的。
受病原体污染后的水体,微生物激增,其中许多是致病菌、病虫卵和病毒,它们往往与其他细菌和大肠杆菌共存,所以通常规定用细菌总数和大肠杆菌指数及菌值数为病原体污染的直接指标。
病原体污染的特点是:⑴数量大;⑵分布广;⑶存活时间较长;⑷繁殖速度快;⑸易产生抗药性,很难绝灭;⑹传统的二级生化污水处理及加氯消毒后,某些病原微生物、病毒仍能大量存活。
常见的混凝、沉淀、过滤、消毒处理能够去除水中99%以上病毒,如出水浊度大于0.5度时,仍会伴随病毒的穿透。
病原体污染物可通过多种途径进入水体,一旦条件适合,就会引起人体疾病。
耗氧污染物在生活污水、食品加工和造纸等工业废水中,含有碳水化合物、蛋白质、油脂、木质素等有机物质。
这些物质以悬浮或溶解状态存在于污水中,可通过微生物的生物化学作用而分解。
在其分解过程中需要消耗氧气,因而被称为耗氧污染物。
这种污染物可造成水中溶解氧减少,影响鱼类和其他水生生物的生长。
水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、氨和硫醇等难闻气味,使水质进一步恶化。
水体中有机物成分非常复杂,耗氧有机物浓度常用单位体积水中耗氧物质生化分解过程中所消耗的氧量表示,即以生化需氧量(BOD)表示。
一般用20℃时,五天生化需氧量(BOD5)表示。
植物营养物植物营养物主要指氮、磷等能刺激藻类及水草生长、干扰水质净化,使BOD5升高的物质。
地下水位波动带中石油烃污染r迁移转化规律综述

地下水位波动带中石油烃污染r迁移转化规律综述刘月峤;丁爱中;刘宝蕴;梁信;李实;张伦梁;尹洪峰【摘要】石油烃污染是中国土壤-地下水环境中存在的普遍问题.石油烃因其毒性及难降解性而受到广泛关注.主要论述地下环境中石油烃污染物的迁移转化规律及生物降解途径、地下水位季节性波动给石油烃污染物在地下环境中的赋存状态及生物修复带来怎样的影响;以及针对这一特殊地质条件,如何开展石油烃微生物原位修复技术研究及优化方案探索.【期刊名称】《科学技术与工程》【年(卷),期】2018(018)024【总页数】7页(P172-178)【关键词】地下水位波动带;石油烃污染;微生物修复;污染物迁移转化【作者】刘月峤;丁爱中;刘宝蕴;梁信;李实;张伦梁;尹洪峰【作者单位】北京师范大学水科学研究院,北京 100875;北京师范大学水科学研究院,北京 100875;博天环境集团股份有限公司,北京100082;博天环境集团股份有限公司,北京100082;博天环境集团股份有限公司,北京100082;博天环境集团股份有限公司,北京100082;中国电力工程顾问集团东北电力设计院有限公司,长春130061【正文语种】中文【中图分类】P641.69石油烃类化合物可以大体分为四类:饱和烃、芳香烃、沥青质(酚类化合物、脂肪酸、酮类、酯类和卟啉)和树脂类(吡啶、喹啉、咔唑、亚砜和酰胺)[1],多为非水溶相流体(non-aqueous phase liquid,NAPL)类物质,对自然环境及人体健康均有显著毒性。
其中而地下环境作为水-土-气-微生物多介质的综合复杂系统[2],会发生物理化学的吸附迁移及生物好氧厌氧转化过程[3]。
受大气季节性降水补给变化的影响,地下水水位会出现明显波动[4];因此存在季节性地下水位变动带。
在这个波动区域内,水分含量、氧气含量、污染物含量及微生物种类会发生周期性变化[5],是一个地下水动力相当活跃的变化地带[6];而且也是水文地质条件和生物群落结构复杂的地下环境。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石油烃类污染物在天然水体中的迁移转化 成员:王逸夫、袁康庄、汤明亮、张书浩 一、 绪论 石油地质组成复杂,主要包括饱和与不饱和烃、芳烃类化合物、沥青质、树脂类等。石油的开采、冶炼、使用和运输过程的污染和遗漏事故,以及含油废水的排放、污水灌溉、各种石油制品的挥发、不完全燃烧物飘落等引起一系列石油污染问题。石油烃是由碳氢化合物组成的复杂混合体,没有明显的总体特征,主要由烃类组成,目前对环境污染构成威胁的主要分为(1)烷烃,可分为直链烃、支链烃和环烃;(2)芳烃、多环芳烃。石油烃中不同的馏分会对人类和动植物产生不同影响。 当石油类污染发生时,污染物往往不是单一组分,而是多种污染物共存的复合污染,各组份间往往会发生各种相互作用,并对水体的迁移转化过程产生影响,如不同组分在含水层介质的吸附上,往往会发生竞争吸附,从而改变部分组分的迁移性和生物降解特性。以往对于复合污染物迁移转化研究主要集中在多环芳烃类(芘、萘、菲),以及苯系物(BTEX)的复合污染等,组分之间从分子结构、化学性质、作用机制方面均具有一定的相似性,而对组分种类、理化性质、作用机制差别较大的芳香烃和氯代烷烃复合污染所开展的研究则较少,此类复合污染物对地下水的污染机制和在地下水中的迁移转化机理尚不明确,诸如地下水中多组分竞争吸附规律、含水层介质中有机质对污染物吸附作用机理、污染场地包气带、含水层微生物多样性等。 由于资料匮乏,以及关于石油烃类污染物在水体中效应的研究不够完善,并且石油类污染物一般相对集中在特定区域的地下水、废水、以及水体沉积物中。故本文主要对这三种环境中的石油烃污染物的迁移转化机理进行论述和总结。
二、 浅层地下水中石油烃污染物迁移转化机理 1. 迁移转化方式 当芳香烃、氯代烷烃污染物进入地下水系统后,所发生的迁移转化作用主要包括对流弥散、吸附、降解、挥发等几个过程。污染物的迁移转化作用除受自身特性影响外,同时受污染场地的地下水环境因素、地质、水文地质条件等要素的影响。目前国内外关于有机污染物在地下水中的迁移转化机理研究主要集中在吸附作用和生物降解作用两方面。 弥散迁移,又称水动力弥散,研究单个流体粒子的运动速度偏离于平均渗流速度的效应。当污染物在地下水中存在浓度梯度时,污染物粒子将受到扩散作用的影响,但与对流作用相比,扩散项通常非常小,只有当流速极低时,扩散作用影响才会显现。 吸附作用:孔隙介质中含有溶解某种物质的地下水时,该溶质会受到静电或化学力的作用离开溶剂,并被固定于空隙介质固体基质的表面或内部,这个过程称为吸附作用。固体对溶质的亲和吸附作用主要分为三种基本作用力,通过静电引力和范德华力引起的吸附作用叫物理吸附;通过固体表面和溶质之间化学键力引起的吸附称为化学吸附,而介质对污染物的吸附往往是多种吸附共同作用的结果。有机物在土壤上的吸附,主要分为两部分,一部分被矿物质吸附,另一部分被有机质吸附。由于土壤中矿物质颗粒通常具有极性,在水溶液中发生偶极作用,使水分子在极性作用下同有机污染物发生竞争吸附,占据矿物颗粒表面的吸附位,非极性的有机物则较难与矿物质结合,因此有机质对污染物的吸附起到了更加主要的作用。 生物降解作用:石油类污染物会在微生物作用下被氧化成为低分子化合物或完全分解为二氧化碳和水,所以生物降解是地下水中石油类污染物主要的自然衰减作用之一,对石油类污染物的去除起着重要的作用。石油类污染物的降解作用主要受自身分子结构、环境因素、以及微生物条件等影响。石油类污染物属于成分复杂的混合物,含有链烃、环烷烃、芳香烃、卤代烃以及其他衍生物等。由于每种污染物自身的物理、化学性质不同,导致被微生物降解难易程度不尽相同,其中最易降解的是饱和烃,其次是芳香烃,不易降解的为分子量较高的芳香烃类化合物等。 2. 特征污染物 研究者所选取的特征污染物为二氯甲烷、三氯甲烷、笨。石油类污染地下水中的苯主要来自于石油中芳香烃族化合物,而氯代烃的主要来源则有两种:(1)天然存在的有机氯化物以复杂的络合物形式存于原油中,且主要存在于沥青质和胶质中。(2)污染场地所在区域以开采稠油为主。稠油粘度高、凝固点高、密度大,为了便于开采和运输,会采用掺入稀油或加入以含氯代烃为主的降凝剂、减黏剂、乳化剂等方式降低其黏度。此外,由于石油埋藏深度大或过度开采导致产量减少,采油企业往往依赖于使用化学添加剂等手段来提高产量,原油中化学添加剂的含量比例也逐渐升高。根据研究发现,原油生产过程中添加的化学药剂中所含氯代烃一般为二氯甲烷、三氯甲烷、四氯化碳、二氯丙烷、二氯乙烷、环氧氯丙烷等。 3. 研究结果 研究者通过管道泄漏形成的上浮大量原油的地表积水入渗过程,对三种特征污染物在此种污染途径下的迁移规律进行研究,并测定三种特征污染物的阻滞系数。从计算结果来看,含水层介质对特征污染物阻滞系数顺序为:苯>三氯甲烷>二氯甲烷,二氯甲烷在含水层中的迁移性是最强的,三氯甲烷其次,苯在含水层中的迁移性则最弱,即在同等条件下,二氯甲烷、三氯甲烷对地下水造成的危害更大。含水层渗流柱模拟实验主要用于模拟特征污染物的迁移过程,实验结果显示,吸附作用对特征污染物去除的贡献率:三氯甲烷为 87%,二氯甲烷为 85%,苯为 94%;生物降解作用对特征污染物去除的贡献率:三氯甲烷为 3%,二氯甲烷为 2%。苯为 3%。说明研究区含水层介质粒径细,对污染物吸附容量大;地下水径流滞缓,使污染物同含水层介质的接触时间增长;含水层介质中,有机质含量高,对有机物吸附量大。从 DNA 测序结果来看氯代烃、苯降解菌并非场地中的显著微生物群落,降解菌含量少,导致生物降解作用所占比重偏低,说明还需要长时间的自然选择和驯化作用才会使生物降解作用加强。 4. 资料补充 石油类有机污染物通常为不溶性有机污染物,进入地下环境后通常以非水相流体(Non-Aqueous Phase Liquids,简称 NAPL)的形式存在于含水介质和地下水中,根据其密度大小,可以把它们分为两类:一类是密度小于水的轻非水相液体(LNAPL)主要是石油烃类,如汽油、柴油煤油等,简称轻油;另一类是密度大于水的重非水相液体(DNAPL),主要是含氯的碳氢化合物的人工添加剂,如三氯乙烯(TCE),四氯乙烯(PCE)等,简称重油。 石油烃污染物在地下水系统中的动态分配过程:石油污染物进入地下含水系统后,并非在单一媒介中以单一的形式存在,而是随着环境条件的改变,在地下水和含水介质中的一个动态分配的过程,而这些过程又受到多种因素制约。Davis 等(1997 年)研究发现石油污染物不仅会在地下水面形成自由的、独立的非水相流体,还会分配进入土壤、水、气体中,分配的过程受到蒸汽压力、亨利常数、比重、溶解度等因素影响。Barker 等(2007年)研究发现污染物进入含水介质后在介质空隙中残留的小液滴形成了残余相,虽然这些残余态的污染物随地下水流迁移能力较弱,但是会长期的、持续的、缓慢的再分配释放到气相和水相中去。Walter 等(1996年)经过大量的室内实验研究,指出含水介质对石油污染物的吸附作用不仅发生在介质表面,而且会进入颗粒内部,被表面吸附的有机物具有一定的交换性和可浸出性,可以被解吸下来成为可逆吸附的部分;而进入颗粒内部有机碳等有机物则大多成为不可逆吸附的部分,难以被解吸出来,具体表现为解吸过程的滞后现象和污染物在含水介质中的老化过程。
三、 油田废水中污染物的迁移 1. 油田废水 油田开采过程中,伴生有大量含油污水产生。这类污水中含油浓度高且有大量的固体悬浮物和脂肪酸、环烷酸、碘、嗅、硼、苯、酚基甲烷等重烃系列化合物。处理不好,不仅污染环境,而且浪费资源。油井采出液经油气集输系统的脱水转油站进行脱水,油水分离后产生大量的含油污水,称为油田采出水或油田产出水,又称采油污水。 油田采出水在地下时与高温高压的油层接触,因此这部分废水不仅携带有原油,还溶入盐类、悬浮物、溶剂油、有害气体、有机物。另外,由于石油长期贮存于地下,有些生存条件适合的微生物和细菌还会在水中大量繁殖。由于油水乳化不易分离,为了脱除水分还要加入破乳剂等一些助剂,因而废水中还引入了化学剂成分。 其共有特性有含油量高,成分复杂,矿化度高。 2. 物理法 物理处理法的重点去除废水中的矿物质和大部分固体悬浮物、油类等。包括重力分离法、离心分离法、粗粒化法、过滤法等方法
3. 化学法 化学处理方法主要用于处理废水中不能单独用物理方法或生物方法去除的一部分胶体和溶解性物质,特别是采出水中的乳化油。化学法是用化学作用将废水中的污染物成分转化为无害物质,使废水得到净化。常用的方法有混凝沉淀、氧化还原、中和等方法。 4. 生物法 生物法是利用微生物的生化作用,将复杂的有机物分解为简单的物质,将有毒的 物质转化为无毒物质,从而使废水得以净化。随着生物处理技术的不断发展,越来越 多的生物处理方法被应用于油田污水的处理,并获得了良好的处理效果。微生物的除油原理,即利用微生物的新陈代谢作用降解分散到水中的有机污染物一原油,使其降解成为小分子的物质直至最终完全无机化。微生物降解原油的总反应过程为微生物石油烃类碳源十营养物,等氧、微生物增殖二氧化碳水氨及磷酸根等。
四、 水体沉积物中多环芳烃的迁移转化 1. 沉积物污染现状 有毒有机污染物对水生态系统的危害是近年来越来越严重的问题。多环芳烃( PAHs) 、多氯联苯类( PCBs) ,以及有机氯化合物等不断在水体以及沉积物、水生生物中被发现。据储少岗等对松花江、白洋淀等地的调查,发现水体中 DDT、六