初三数学总复习知识点整理归纳
初三数学知识点归纳整理

初三数学知识点归纳整理最全初三数学知识点归纳篇一一、二次根式1、二次根式:一般地,式子叫做二次根式。
注意:(1)若这个条件不成立,则不是二次根式。
(2)是一个重要的非负数,即;≥0。
2、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。
3、二次根式比较大小的方法:(1)利用近似值比大小。
(2)把二次根式的系数移入二次根号内,然后比大小。
(3)分别平方,然后比大小。
4、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
5、二次根式的除法法则:(1)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
6、最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式。
①被开方数的因数是整数,因式是整式。
②被开方数中不含能开的尽的因数或因式。
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。
(4)二次根式计算的最后结果必须化为最简二次根式。
7、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
8、二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用。
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
二、一元二次方程1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。
2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。
初三数学知识点(6篇)

初三数学知识点整理(6篇)初三数学学问点整理11.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:全部的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比拟大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
重点学问:初中数学第一课,熟悉正数与负数!新初一的来~2.相反数(1)相反数的概念:只有符号不同的两个数叫做互为相反数.(2)相反数的意义:把握相反数是成对消失的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3.肯定值1.概念:数轴上某个数与原点的距离叫做这个数的肯定值。
①互为相反数的两个数肯定值相等;②肯定值等于一个正数的数有两个,肯定值等于0的数有一个,没有肯定值等于负数的数.③有理数的肯定值都是非负数.2.假如用字母a表示有理数,则数a 肯定值要由字母a本身的取值来确定:①当a是正有理数时,a的肯定值是它本身a;②当a是负有理数时,a的肯定值是它的相反数﹣a;③当a是零时,a的肯定值是零.即|a|={a(a>0)0(a=0)﹣a(a0k0时,函数图像的两个分支分别在第一、三象限。
在每个象限内,y随x 的增大而减小。
①x的取值范围是x0,y的取值范围是y0;②当k0抛物线与x轴有两个不同交点.②△=0抛物线与x轴有的公共点(相切).③△0时,抛物线有最低点,函数有最小值.②当a<0时,抛物线有点,函数有值.(7)的符号的判定:表达式,请代值,对应y值定正负;对称轴,用处多,三种式子相约;轴两侧判,左同右异中为0;1的两侧判,左同右异中为0;-1两侧判,左异右同中为0.(8)函数图象的平移:左右平移变x,左+右-;上下平移变常数项,上+下-;平移结果先知道,反向平移是诀窍;平移方式不知道,通过顶点来寻找。
初三数学知识点归纳大全

初三数学知识点归纳大全一、代数1. 代数式的拆分与合并2. 代数式的加减乘除3. 一元一次方程的解法(整数解、分数解)4. 一元一次方程的应用问题(两式联立、三式联立等)5. 一元一次不等式的解法6. 一元一次不等式的应用问题7. 二元一次方程的解法8. 二元一次方程的应用问题9. 去括号与去分母10. 同底数幂的乘法与除法11. 平方根与立方根的计算12. 分式的加减乘除13. 分式的化简与扩展14. 一次函数的概念与性质15. 一次函数的函数图像16. 一次函数的应用17. 二次根式的性质与运算18. 二次根式的应用19. 二次函数的概念与性质20. 二次函数的函数图像21. 二次函数的顶点与轴22. 二次函数的性质与应用23. 不等式组的解法24. 不等式组的应用25. 逻辑与命题公式二、几何1. 图形的初步认识2. 各种图形的性质(正方形、长方形、平行四边形、梯形等)3. 直角三角形的性质4. 等腰三角形的性质5. 等边三角形的性质6. 直线与角的关系7. 三角形的角平分线与中线8. 三角形的垂直平分线9. 三角形的高与中线10. 三角形的内心、外心、垂心、重心11. 各种四边形的性质12. 圆的性质与计算13. 圆的应用问题14. 直线与圆的位置关系15. 平面直角坐标系16. 正多边形的性质17. 圆锥曲线的认识18. 圆锥曲线的性质与图形19. 圆锥曲线的简单应用问题三、概率统计1. 随机事件的概念和性质2. 随机事件的计算3. 随机事件的应用问题4. 频率与概率的关系5. 简单的概率计算6. 概率的应用问题7. 样本调查与统计图表8. 样本调查与统计表格9. 样本调查与统计图形10. 样本调查的简单分析四、数据与图表1. 平均数的计算与应用2. 中位数的计算与应用3. 众数的计算与应用4. 带有频数的计算5. 折线图的绘制与分析6. 饼图的绘制与分析7. 条形图的绘制与分析8. 数据的简单分析与应用以上是初三数学知识点的归纳大全,希望能帮助到你。
初三数学知识点归纳

初三数学知识点归纳
初三数学知识点归纳(上)
1. 实数与实数运算:实数的分类、实数运算的基本性质、实数的逆元、实数的绝对值、实数之间的大小比较、实数的平方与平方根、两个实数的算术平均数与几何平均数
2. 代数式与等式:代数式与字母的运用、等式的性质、解方程的基本方法、根的概念、一元二次方程的解法
3. 函数初步:函数的基本概念、函数的图象、函数的性质、函数的运算、复合函数、反函数
4. 平面图形初步:平面直角坐标系、平面内的点、线、角、多边形、圆的性质、相似与全等
5. 实际问题与数学模型:解决实际问题的基本方法、数学模型及其应用
初三数学知识点归纳(下)
1. 空间图形初步:空间直角坐标系、空间内的点、直线、平面、角、多面体、圆锥、圆柱、球的性质、相似与全等
2. 三角形初步:勾股定理与勾股性质、三角形的面积公式、三角形的中线、高线、角平分线、垂线和中垂线
3. 三角函数初步:正弦函数、余弦函数、正切函数、余切函数的性质及图象、辅助角公式、三角函数的应用
4. 统计初步:统计调查、频数分布表、频率分布图、样本均值及总体均值、误差、抽样、调查结果的分析和处理
5. 概率初步:随机事件、概率的概念、概率的计算方法、样本空间、排列组合、锁链法、概率的应用
以上是初三数学全部知识点的归纳总结,希望对大家有所帮助。
希望同学们认真学习,多做练习,提高数学成绩。
初三数学复习知识点总结

初三数学复习知识点总结1.1.1 有理数:整数、分数、零、正数、负数、正有理数、负有理数、非负有理数、非正有理数1.1.2 实数:有理数、无理数、实数轴、实数单位、正实数、负实数、非负实数、非正实数1.2.1 函数概念:函数、函数值、自变量、因变量、函数关系式、函数图像1.2.2 一次函数:斜率、截距、一次函数图像、一次函数的性质1.2.3 二次函数:开口方向、顶点、对称轴、判别式、二次函数图像、二次函数的性质1.2.4 反比例函数:反比例函数概念、反比例函数图像、反比例函数的性质1.2.5 函数的单调性、奇偶性、周期性1.3 方程(组)1.3.1 一元一次方程:解、解集、解的判别式、一元一次方程的解法1.3.2 二元一次方程:解、解集、解的判别式、二元一次方程的解法1.3.3 一元二次方程:解、解集、解的判别式、一元二次方程的解法1.3.4 分式方程:解、解集、解的判别式、分式方程的解法1.3.5 方程组的解法:代入法、加减法、乘除法、换元法2.1 点、线、面2.1.1 点:坐标、两点间的距离2.1.2 直线:斜率、倾斜角、直线方程、平行直线、相交直线2.1.3 平面:平面方程、平面内的点、直线在平面上的位置关系2.2 三角形2.2.1 三角形的性质:边、角、三角形的内角和、三角形的面积2.2.2 三角形的判定:三角形的三个内角、三角形的三个边2.2.3 特殊三角形:等边三角形、等腰三角形、直角三角形2.3 四边形2.3.1 四边形的性质:边、角、四边形的内角和、四边形的面积2.3.2 四边形的判定:四边形的四个内角、四边形的四条边2.3.3 特殊四边形:矩形、平行四边形、梯形、正方形2.4.1 圆的性质:圆心、半径、圆的方程、圆的周长、圆的面积2.4.2 圆的判定:圆上的点、圆的直径、圆的弦2.4.3 圆的周长和面积的计算2.5 空间几何2.5.1 空间点、线、面的关系:点线关系、线面关系、点面关系2.5.2 空间几何体的性质:棱柱、棱锥、球、圆柱、圆锥2.5.3 空间几何体的计算:表面积、体积三、统计与概率3.1.1 数据:总体、个体、样本、样本容量3.1.2 统计量:众数、中位数、平均数、方差、标准差3.1.3 概率:随机事件、必然事件、不可能事件、概率的计算3.2.1 概率的基本概念:概率、不可能事件、必然事件、随机事件3.2.2 概率的计算:古典概型、条件概率、独立事件的概率、互斥事件的概率四、综合应用4.1 数学建模:实际问题、数学模型、求解方法4.2 数学阅读:数学文章、数学问题、解题思路4.3 数学探究:发现问题、提出假设、验证假设、总结规律4.4 数学竞赛:竞赛题目、解题策略、解题技巧以上是初三数学复习的知识点总结习题及方法:习题1:判断下列各组数中,哪些是实数?a)2, -5, √3, √-1b)1/2, -3/4, 5/6, √2方法:实数包括有理数和无理数,有理数包括整数和分数,无理数包括开方开不尽的数。
初三数学知识点考点归纳总结

初三数学知识点考点归纳总结一. 代数运算1.1 有理数有理数的四则运算,分数的加减乘除运算,化简分数、约分、分数转小数与百分数。
1.2 代数式代数式的基本概念、同类项合并、分配律、消元、整除关系、基本恒等式。
1.3 方程式一元一次方程式的解及其应用,一元二次方程式的解及其应用,二元一次方程式的解及其应用。
1.4 比例比例的概念、性质,比例的计算及应用,重复比例,反比例定理及其应用。
二. 几何与图形2.1 三角形角的概念、角度和弧度的转换,三角形的分类及性质,三角形的内角和定理,三角形的外角和定理。
2.2 直线与角平行直线和平行线特征及其性质,垂直直线和直角的特征及其性质,角的大小以及相邻角、对顶角等相关概念。
2.3 圆和圆的性质圆的基本性质,弧、弦、切线、割线等相关概念及其性质,圆内接四边形和正多边形。
2.4 空间几何与立体图形线面体的概念,正方体、长方体、棱柱、棱锥、圆柱、圆锥的性质和计算。
三. 概率与统计3.1 随机事件和概率事件的概念和性质,基本事件概率、加法规则,条件概率和乘法规则,概率分布和直方图的绘制。
3.2 常见概率问题求样本空间、容斥原理,贝叶斯定理,计算机模拟实验,概率统计中的应用问题。
四. 函数4.1 一些常见函数幂函数、指数函数、对数函数、三角函数、反三角函数的基本概念和性质。
4.2 函数的运算函数的加、减、乘、除的运算,函数的复合运算,导数的概念,导数的基本应用:切线问题和极值点问题。
以上是初三数学知识点考点的归纳总结。
需要注意的是,以上知识点只是初三数学所要学习的知识点的一个大致的方向,可能还存在某些细节问题需要重点学习。
同时,不管学习的什么知识点,都需要掌握好其基本概念和方法,这样才能在应用中灵活运用,解决问题,取得相应的成绩。
初三数学知识点全总结

初三数学知识点全总结初三数学是初中数学学习的重要阶段,知识点繁多且复杂,需要我们认真梳理和掌握。
以下是对初三数学知识点的全面总结。
一、函数1、一次函数一次函数的表达式为 y = kx + b(k、b 为常数,k ≠ 0)。
当 b = 0 时,函数为正比例函数y =kx。
我们需要掌握一次函数的图像和性质,例如斜率 k 决定了函数图像的倾斜程度,k > 0 时函数单调递增,k <0 时函数单调递减。
同时,要能根据给定的条件求出函数的解析式,并解决与一次函数相关的实际问题。
2、反比例函数反比例函数的表达式为 y = k/x(k 为常数,k ≠ 0)。
反比例函数的图像是以原点为对称中心的两条曲线,当 k > 0 时,图像在一、三象限,在每个象限内 y 随 x 的增大而减小;当 k < 0 时,图像在二、四象限,在每个象限内 y 随 x 的增大而增大。
3、二次函数二次函数的一般式为 y = ax²+ bx + c(a ≠ 0),顶点式为 y =a(x h)²+ k,交点式为 y = a(x x₁)(x x₂)。
二次函数的图像是一条抛物线,对称轴为 x = b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。
我们要学会求二次函数的解析式、顶点坐标、对称轴,掌握二次函数的图像和性质,并能利用二次函数解决最值问题和实际应用题。
二、几何图形1、圆圆的相关概念包括圆心、半径、直径、弧、弦、圆心角、圆周角等。
圆的性质有:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;直径所对的圆周角是直角;圆的切线垂直于过切点的半径等。
我们要掌握圆的周长和面积公式,以及弧长和扇形面积的计算方法,并能解决与圆有关的证明和计算问题。
2、相似三角形相似三角形的判定方法有:两角对应相等的两个三角形相似;两边对应成比例且夹角相等的两个三角形相似;三边对应成比例的两个三角形相似。
相似三角形的性质有:对应边成比例,对应角相等;相似三角形的周长比等于相似比,面积比等于相似比的平方。
初三数学知识点总结归纳(4篇)

初三数学知识点总结归纳初三数学复习五大方法初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
初三数学知识点总结归纳(二)1.数的分类及概念数系表:说明:分类的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x0)性质:若干个非负数的和为0,则每个非负数均为0。
3.倒数:①定义及表示法②性质:A.a1/a(a1);B.1/a中,aC.04.相反数:①定义及表示法②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。
5.数轴:①定义(三要素)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学总复习知识点整理归纳
初三数学总复习知识点整理归纳
1.有理数:
〔1〕凡能写成形式的数,都是有理数。
正整数、0、负整数统称整数;
正分数、负分数统称分数;
整数和分数统称有理数.注意:0即不是正数,也不是负数;
-a不一定是负数,+a也不一定是正数;
p不是有理数;
〔2〕有理数的分类:① 有理数分成整数,分数;
整数又分成正整数,负整数和0;
分数分成正分数和负分数。
②有理数分成正数、0、负数。
正数又分成正整数和正分数,负数分成负整数和负分数。
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
〔1〕只有符号不同的两个数,我们说其中一个是另一个的相反数;
0的相反数还是0;
〔2〕相反数的和为0, a+b=0 a、b互为相反数.
4.绝对值:
〔1〕正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;
注意:绝对值的意义是数轴上表示某数的点分开原点的间隔;
〔2〕绝对值可表示为:
或;
绝对值的问题经常分类讨论;
5.有理数比大小:
〔1〕正数的绝对值越大,这个数越大;
〔2〕正数永远比0大,负数永远比0小;
〔3〕正数大于一切负数;
〔4〕两个负数比大小,绝对值大的反而小;
〔5〕数轴上的两个数,右边的数总比左边的数大;
〔6〕大数-小数 > 0,小数-大数拓展阅读:初三数学学习方法
一、学习的方案
为了让学习的目的更加明确,需要合理安排学习时间,不慌不忙,稳打稳扎,它是推动学生主动学习和克制困难的内在
动力。
但方案一定要实在可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨练学习意志。
二、错题反思
我们不要笼统地抱怨自己解题时“粗心”,而应该把做错的题目研究一下,是不是因为注意力不集中,顾此失彼;
或者审题马虎,误解题意;
或者记错概念、公式、定理;
或者是心急慌忙,随意跳步骤,造成运算错误等等。
只要找到根,就能做到不让同一错误出现第二次;
只要把所有会做的题目都做对,就能获得优良成绩。
三、复习很重要
数学学习往往是通过做作业到达对知识的稳固、加深理解和学会运用,从而形成技能技巧,以及开展智力与数学才能。
学生在做作业时应该注意以下四点,从而进步学习效率。
首先,先复习后做作业。
在做作业前需要先复习,在根本理解与掌握所学教材的根底上进展,否那么事倍功半,花费了时间,得不到应有的效果。
四、构建知识网络
要学会构建知识网络,数学概念是构建知识网络的出发点,也是数学中考考察的重点。
因此,我们要掌握好代数中的数、式、不等式、方程、函数、三角比、统计和几何中的平行
线、三角形、四边形、圆的概念、分类、定义、性质和断定,并会应用这些概念去解决一些问题。
五、积极进展课外学习
课外学习是课内学习的补充和继续,包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或教师交流学习心得等。
它不仅能丰富学生的文化科学知识,加深和稳固课内所学的知识,而且可以满足和开展学生的兴趣爱好,培养独立学习和工作的才能,激发求知欲与学习热情。