冷镦锻工艺与模具设计
冷镦成型工艺

冷镦成型工艺1. 概述冷镦成型工艺是一种金属加工工艺,用于制造高精度、高效率的螺栓、螺母、螺钉等金属零件。
冷镦成型通过在常温下对金属材料进行塑性变形,实现金属材料的进一步加工和形状成型。
2. 工艺流程冷镦成型工艺主要包括以下几个步骤:2.1 原料准备冷镦成型的原料通常为金属线材,常见的材料包括碳钢、合金钢、不锈钢等。
在进行冷镦成型之前,需要对原料进行预处理,包括去除氧化层、切割成合适的长度等。
2.2 模具设计冷镦成型需要使用专门的模具进行加工,模具设计的质量对成品质量有着重要影响。
模具设计包括模具形状设计、模具材料选择等。
2.3 加热处理在进行冷镦成型之前,有时需要对金属材料进行加热处理,以改善材料的塑性和可加工性。
2.4 冷镦成型冷镦成型是整个工艺的核心步骤。
在冷镦成型机床上,金属材料通过进给机构进入模具中,通过工艺参数的控制,在一系列挤压、拉伸、剪切等力的作用下,金属材料发生塑性变形,进而形成螺纹或其他形状。
2.5 后处理冷镦成型后,通常需要进行喷油、清洗、退火等后处理工序,以提高产品的表面光洁度、硬度和机械性能。
3. 工艺优势冷镦成型工艺相较于其他金属加工工艺,具有以下优势:3.1 高生产效率冷镦成型工艺可以实现快速连续加工,每分钟可加工数十个甚至上百个零件,生产效率高。
3.2 低能耗冷镦成型是在常温下进行的加工,相较于热加工工艺,能耗更低。
3.3 降低废料率冷镦成型工艺采用线材作为原料,减少了废料的产生,降低了生产成本。
3.4 优质成品冷镦成型工艺可以获得高精度的产品,具有良好的机械性能和表面质量。
4. 应用领域冷镦成型工艺在各个工业领域都得到了广泛应用,特别适用于需要高精度、高强度螺纹的领域,如汽车、航空航天、建筑等。
5. 发展趋势随着工业自动化水平的提高和新材料的应用,冷镦成型工艺将越来越广泛应用。
未来,冷镦成型工艺将更加注重工艺参数的优化、模具材料的研发等方面,以提高产品的性能和降低生产成本。
冷镦工艺与模具设计

冷镦加工与冷镦变形力有着密切的关系。冷镦变形力是确定工艺参数、 模具设计、设备设计和选择设备的重要依据。在正常生产中,一般不需经 常进行变形力的计算,但对于非标零件与几何形状复杂零件加工时,为便 于合理地选用设备、设计工艺和模具等,必要时需要进行变形力计算,所 以必须掌握变形力的计算方法。
形过程中,随着变形的增大,由于冷作硬化
变形抗力 (N/mm2)
作用使金属的硬度和强度随之增大, 变形抗力也大大增加,而塑性却有所降 低,这将给后道工序带来变形的困难。
电工纯铁
金属材料冷作硬化后实际变形抗力如
图1.1-1所示,材料的含碳量越高,其变
形抗力越大。所以,在冷加工过程中需
适当增加中间热处理工序,以消除冷作硬 化和内应力。
4.冷镦变形力计算方法 F=KσT A 式种: F — 冷镦变形力 (MPa)
K — 镦锻头部的形状系数, 一般螺钉、螺栓取 2~2.4 σT — 考虑到冷作硬化后的变形抗力
σT = σbIn (A/A0) (MPa) σb — 金属材料的强度极限 (MPa)
A — 镦锻后头部的最大投影面积 (mm2) A0 —镦锻前坯的断面积 (mm2)
冷镦工艺与模具设计
一、冷镦变形工艺一些基本概念
1. 金属变形的基本概念
a. 金属的结构 一切金属的组织是由许多小晶体组成的,这些小晶体称为“晶粒” 。 常用冷镦材料的晶体结构:体心立方晶格、面心立方晶格和密排六方 晶格 。
b. 金属变形的基本概念 金属材料在外力作用下,所引起尺寸和形状的变化称为“变形”。
表面润滑要求
冷镦材料的改制过程
材料热处理—低温去应力退火、完全退火、球化退火(对于C>0.25% 中碳钢,为了满足冷变形工艺要求,常需要进行球化退火。)、固溶 处理(对于冷镦用的1Cr18Ni9Ti等奥氏体不锈钢,需采用固溶处理方 法,实现钢材软化。)
模具设计与制造-第9章冷锻工艺概述及其基本工序

提高冷锻工艺质量的措施
选用优质材料
选用质量稳定、性能优良的材 料进行冷锻。
控制模具精度
提高模具的制造精度,确保冷 锻件的尺寸和形状符合要求。
控制加工参数
合理选择和调整加工参数,如 压力、温度、时间等,以保证 冷锻件的质量。
加强质量检测
对冷锻件进行严格的质量检测 ,及时发现和解决质量问题。
模具设计与制造-第9章 冷 锻工艺概述及其基本工序
Байду номын сангаас
• 冷锻工艺概述 • 冷锻工艺的基本工序 • 冷锻工艺的设备与工具 • 冷锻工艺的质量控制 • 冷锻工艺的发展趋势与展望
01
冷锻工艺概述
冷锻工艺的定义
冷锻工艺是一种金属塑性加工技术, 它是在室温下利用模具对金属坯料施 加压力,使其发生塑性变形,从而获 得所需形状和尺寸的零件。
表面处理
表面处理是冷锻工艺中的一道 重要工序,其目的是提高产品 的表面质量和耐腐蚀性能。
表面处理的方法包括喷丸、抛 光、电镀和涂装等,选择何种 方法应根据产品的表面质量和 用途而定。
表面处理的注意事项包括确保 表面处理的质量、防止表面损 伤和保持产品美观等。
03
冷锻工艺的设备与工具
冷锻设备的分类与选择
与热锻工艺相比,冷锻工艺不需要将 金属坯料加热至高温状态,而是在室 温下进行加工,因此得名。
冷锻工艺的特点
加工精度高
表面质量好
由于冷锻工艺是在室温下进行加工,金属 坯料的塑性变形抗力较小,容易实现大变 形量,因此可以获得较高的加工精度。
冷锻工艺可以减少金属坯料的表面粗糙度 ,提高表面质量。
材料利用率高
01
冷镦模具设计培训资料

冷镦模具设计培训资料冷镦模具设计是一项重要的工程技术,它涉及到冷镦工艺和模具结构的设计。
在冷镦生产过程中,模具起着关键性的作用,它决定了产品的加工精度、质量和生产效率。
因此,加强冷镦模具设计的培训是十分必要的。
以下是一份关于冷镦模具设计的培训资料。
一、冷镦模具设计的基本知识1.冷镦工艺的基本原理与特点:冷镦是利用金属在常温下的可塑性进行成型的一种冷加工方法。
冷镦工艺的特点是成型力量小、能耗低、能高效地将原材料加工成型,具有广泛的应用前景。
2.冷镦模具的分类:根据不同的加工要求和产品形状,冷镦模具主要可分为剪切模具、折边模具、拉伸模具和成形模具等几类。
3.冷镦模具的工作原理:冷镦模具是利用金属在受力作用下发生塑性变形,以达到所需产品形状和尺寸的一种工具。
冷镦模具的工作原理主要包括切削原理、切断原理、拉伸原理和成形原理等。
二、冷镦模具设计的基本步骤与方法1.冷镦模具设计的基本步骤:a.明确产品形状与尺寸要求;b.建立产品三维几何模型;c.分析产品的特点与加工工艺;d.制定模具加工工艺方案;e.进行模具结构设计;f.完善模具零部件设计;g.进行模具装配与调试;h.进行模具试验与修正;i.完善模具设计文件。
2.冷镦模具设计的基本方法:a.模具结构设计方法;b.模具加工工艺与工装设计方法;c.模具材料与热处理的选择方法;d.模具零部件装配与调试方法;e.模具试验与优化设计方法。
三、冷镦模具设计的关键技术与注意事项1.冷镦模具设计的关键技术:a.模具结构设计技术;b.模具零件设计技术;c.模具加工与装配技术;d.模具热处理技术。
2.冷镦模具设计的注意事项:a.注意材料的选择与热处理;b.注意模具结构的合理性与刚度;c.注意模具零部件的制造精度;d.注意模具的涂层保护与维护。
四、冷镦模具设计的应用与发展趋势1.冷镦模具设计的应用领域:冷镦模具广泛应用于汽车、摩托车、电子、家电、建筑设备等工业领域。
2.冷镦模具设计的发展趋势:a.使用CAD/CAM/CAE等先进技术进行模具设计与分析;b.开展模具标准化与模具设计规范的制定与推广;c.结合数值模拟与优化技术,提高冷镦模具设计与生产过程的效率和质量。
冷锻工艺及辅助设计方法(下)

g
相关的设计案例作为参考 ( 见图1 6 )。
2 . 模具 的计 算
预 应 力 组 合压 套 模 具 的 强 度和 变 形 计 算 是 模具 设 计 的 重 要 内容 ,热 处 理过 的模具 钢通 常 是 以 容许 0 . 2 %塑 性 应 变的 应 力表 示 屈 服 点 ,所 以为 了使 预应 力组 合 套 筒 在弹 性 范 围内 工作 ,工 作 时的 最 大 应 力 应 低 于0 . 2 %倍 的 塑性 应 变 应 力 。 另外 ,模 芯硬 质合 金 工 作 负荷 时 的 拉 应 力 不能 太 大 ,否 则会 影 响使 用 寿 命 。 模 具 设计 的一 般 步 骤 如 下 :①确 定 套 筒 的 组 合 个 数 。 ②选择 模 芯 和 各 套筒 的材 质 和热 处 理 。③确 定 内径 ,外径 和 中 间直径 尺 寸 。④ 给定 材 料 的 屈服 准 则 等 。 材料 的屈 服 准 则有 最 大 剪 应 力说 和 等 效应 力说 ,一 般等 效 应 力 说适 用 于 韧性 好 的材 料 ,脆性
1 。 ~2 。 锥形 面 的 冷 压入 法 与具 有 笔 直 孔径 的 组 合
的模 具 预应 力
组合 压 套 包括 单 层 、两 层 及
套 筒 的 热 套 法 配 合 ,也 可 以把 组 合 套 筒 做 成 0 . 5 。
~
1 。 锥 形 在 热 套 配 合 时 并 用 压 入 法 。冷 压 入 法 的
模 具 装 配 的 顺序 如 图1 4 所 示 ,分 从 内侧 向 外 装 配和 由外 侧 向内 装 配两 种 方式 ,严 格说 来 应 有 理论
1 3 给 出 了单 层
结 构 的 预应 力
组合 模 具在 无
冷镦模具设计介绍ppt

定期检查模具的磨损情况,发现异 常及时修复。
清洗保养
定期清洗模具,保持清洁干燥,防 止锈蚀和积垢。
调整维修
对磨损严重的模具进行修复或更换 ,调整模具间隙和高度,保证正常 使用。
润滑保养
定期为模具涂抹润滑脂,减少磨损 和摩擦阻力,延长模具使用寿命。
05
冷镦模具设计发展趋势
高效节能设计
高效节能设计理念
未来冷镦模具设计将更加注 重材料的选择和优化,采用 高性能材料和新型复合材料 ,提高模具的强度、耐磨性 和抗疲劳性。
未来冷镦模具设计将更加注 重绿色制造和可持续发展, 采用环保材料和节能技术, 减少对环境的负面影响,推 动制造业可持续发展。
THANKS
谢谢您的观看
冷镦模具设计技术不断发展,可以提高模具设计 效率、减少设计成本、提高模具精度和寿命等方 面的优势。
对未来发展的展望
未来,随着制造业的快速发 展和技术的不断创新,冷镦 模具设计将会有更加广泛的 应用和发展。
技术创新是推动冷镦模具设 计发展的关键因素,未来可 以通过采用先进的 CAD/CAM软件、智能制造 技术等手段进一步提高模具 设计精度和效率。
高稳定性设计
优化模具材料和热处理工艺,提高模具材料的强度和稳定性,降低模具变形 和开裂的风险,提高生产效率。
高寿命、低成本设计
高寿命设计
选用高性能模具材料和表面强化技术,提高模具的耐磨性和抗疲劳性能,延长模 具的使用寿命。
低成本设计
采用优化结构设计、标准化模块化设计等手段,降低模具制造成本和提高维修维 护效率,实现低成本高效益的目标。
制造工艺:采用先进的数控机床进行高 精度加工,确保模具各部件的精度和表 面粗糙度。
模具材料选择:电子零件材质多为铜、 铝等有色金属,应选择专用的不锈钢或 硬质合金。
冷镦锻工艺与模具设计

以GB5786-M8六角头螺栓为例来说明。
..冷镦锻工艺是一种少无切削金属压力加工工艺。
它是一种利用金属在外力作用下所产生的塑性变形,并借助于模具,使金属体积作重新分布及转移,从而形成所需要的零件或毛坯的加工方法。
冷镦锻工艺的特点:1.冷镦然是在常温条件进行的.冷镦锻可使金属零件的机械性能得到改善.2.冷镦锻工艺可以提高材料利率。
它是以塑性变形为基础的压力加工方法,可实现少切削或者无切削加工。
一般材料利用率都在85%以上,最高可达99%以上.3.可提高生产效率.金属产品变形的时间和过程都比较短,特别是在多工位成形机上加工零件,可大大提高生产率.4.冷镦锻工艺能提高产品表面粗糙度、保证产品精度。
二、冷镦锻工艺对原材料的要求1.原材料的化学成份及机械性能应符合相关标准.2.原材料必须进行球化退火处理,其材料金相组织为球状珠光体4—6级。
3.原材料的硬度,为了尽可能减少材料的开裂倾向,提高模具使用寿命还要求冷拔料有尽可能低的硬度,以提高塑性.一般要求原材料的硬度在HB110~170(HRB62—88)。
4.冷拔料的尽寸精度一般应根据产品的具体要求及工艺情况而定,一般来说,对于缩径和强缩尺寸精度要求低一些。
5.冷拔料的表面质量要求有润滑薄膜呈无光泽的暗色,同时表面不得有划痕、折叠、裂纹、拉毛、锈蚀、氧化皮及凹坑麻点等缺陷。
6.要求冷拔料半径方向脱碳层总厚度不超过原材料直径的1-1。
5%(具体情况随各制造厂家的要求而定)。
7.为了保证冷成形时的切断质量,要求冷拔料具有表面较硬,而心部较软的状态。
8.冷拔料应进行冷顶锻试验,同时要求材料对冷作硬化的敏感性越低越好,以减少变形过程中,由于冷作硬化使变形抗力增加.三、紧固件加工工艺简述紧固件主要分两大粪:一类是螺纹类紧固件;另一类是非螺纹类紧固件或联接件。
这里仅针对螺纹类紧固件进行简述。
1. 螺纹类紧固件加工流程一般都是由剪断、冷镦、或者冷挤压、切削、螺纹加工、热处理、表面处理等生产工序组成的.材料改制工艺流程一般为:酸洗→拉丝→退火→磷化皂化→拉丝→(球化磷化)螺纹类紧固件冷加工艺流程订要有以下几种情况:8。
冷镦基础知识和工艺分析

冷镦基础知识和工艺分析冷镦是一种金属加工方法,用于在室温下通过挤压和塑造金属材料,从而使其变为中空或实心形状。
冷镦过程能够在不改变材料的化学或物理属性的情况下,改善材料的强度、硬度和耐磨性。
冷镦工艺广泛应用于汽车、电气、机械和建筑等行业,生产出各种紧固件,如螺钉、螺栓、销钉和肩销等。
1.材料选择:冷镦加工适用于多种金属材料,如碳钢、不锈钢、铜、铝等。
不同材料具有不同的加工性能和机械性能,因此在选择材料时需要考虑到工件的使用环境和要求。
2.冷镦设备:冷镦设备主要包括镦头机、滚压机和冷挤压机。
镦头机用于将材料挤压成所需形状,滚压机用于将材料滚压成螺纹或花纹,冷挤压机用于将材料从材坯中挤出成型。
3.镦钢途径:冷镦过程中,将材料送入镦头机的路径称为镦钢途径。
镦钢途径的设计和选择直接影响到工件的加工效果和形状稳定性。
4.模具设计:模具是冷镦过程中必不可少的工具,用于形成工件的形状。
模具的设计需要考虑到工件的形状、尺寸和材料特性等因素,以确保工件的质量和精度。
冷镦工艺分析:1.工件设计:在冷镦工艺中,工件的设计是关键因素之一、工件的形状和尺寸应该符合冷镦设备和模具的要求,同时考虑到材料的挤压和延展性能。
2.材料预处理:在冷镦加工之前,材料需要进行一些预处理,如清洗、除油和退火等。
这些处理可以减少材料的不均匀性、气泡和应力,提高加工的稳定性和表面质量。
3.加热处理:一些情况下,冷镦工艺需要在加热状态下进行,以提高材料的延展性和塑性。
加热温度和时间的选择需要考虑到材料的特性和工艺要求。
4.加工参数:冷镦过程中的加工参数包括挤压速度、压力和润滑剂的选择等。
这些参数的选择需要经验和试验,以确保加工的稳定性和工件的质量。
5.表面处理:冷镦工艺后,工件的表面需要进行一些处理,如退火、焊接、镀锌等。
这些处理可以进一步改善工件的力学性能和抗腐蚀性能。
总结:冷镦是一种常见的金属加工方法,通过挤压和塑造金属材料,制造出各种紧固件和零部件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷镦锻工艺与模具设计
冷镦锻工艺是一种利用冷变形原理,通过冲击力使材料表面产生塑性
变形,通过模具来塑造材料形状的工艺。
冷镦锻工艺主要应用于金属制品
的生产中,如螺丝、螺母、铆钉等。
本文将重点介绍冷镦锻工艺的基本原
理以及模具设计的要点。
1.材料准备:选择合适的材料进行冷镦锻加工。
通常选择易于塑性变
形的材料,如碳钢、合金钢等。
2.材料切割:将材料按照需要的长度进行切割。
切割过程需要注意保
持材料的质量和精度。
3.镦头设计:根据产品的需求和形状设计镦头。
镦头是冷镦锻的关键
部件,它决定了最终产品的形状和质量。
4.冷镦锻加工:将切割的材料放入冷镦机床中,通过冲击力和挤压力
使材料发生塑性变形。
冷镦机床通常由强制进料装置、冷锻头和后处理装
置等组成。
5.后处理:对冷镦锻加工后的产品进行去毛刺、清洗、校直等处理。
这些处理过程可以提高产品的表面质量和精度。
1.模具材料选择:模具需要选择耐磨、耐冲击和耐高温的材料,如合
金钢、硬质合金等。
2.模具结构设计:模具结构需要合理,能够实现产品的形状要求,并
且易于装卸和调整。
模具结构通常包括模具座、模具芯、模具套等组件。
3.模具热处理:模具需要进行适当的热处理,以增加其硬度和耐磨性。
4.模具表面处理:模具表面需要进行适当的涂层处理,以减少摩擦和磨损。
5.模具维护:模具需要定期进行维护和保养,以延长其使用寿命和保持良好的工作状态。
综上所述,冷镦锻工艺与模具设计密不可分。
只有合理选择冷镦锻工艺并设计优化的模具,才能保证产品的质量和生产效率。