聚合物基复合材料ppt
合集下载
复合材料应用PPT课件

基体材料增强材料金属基复合材料聚合物基复合材料无机非金属基复合材料种类外形碳纤维复合材料玻璃纤维复合材料芳纶纤维复合材料连续纤维短纤维复合材料片状粒状材料增强复合材料金属基复合材料一方面具有一系列与金属性能相似的优点另一方面增强相的加入又赋予材料一些特殊性能这样不同金属与合金基体及不同增强体的优化组合就使金属基复合材料具有各种特殊性能和优异的综合性能
石墨烯/铜 复合材料
石墨烯/银 复合材料
石墨烯是目前发现的唯一存在的一种由碳原子致密堆积而成的二维蜂窝状晶格结构的环 保型碳质新材料,具有超大比表面积(2630 m 2/g),是目前已知强度最高的材料(达130 gpa)。
美国科学家研发了一 种全新的金属材料,能够 漂浮在水面上。在设计上, 这种镁合金基复合材料利 用中空碳化硅颗粒进行加 固,密度只有每立方厘米 0.92克,相比之下,水的 密度为每立方厘米1克。 无论是制造船只甲板、汽 车零部件、浮力模块还是 车辆装甲,这种新材料都 拥有广阔的应用前景
应力工ቤተ መጻሕፍቲ ባይዱ下的耐高温材料。
陶瓷基复合材料(CMC)由于其本身耐温高、密度低的优势,在航空发动机上的应用 呈现出从低温向高温、从冷端向热端部件、从静子向转子的发展趋势。 CMC材料具有耐温 高、密度低、类似金属的断裂行为、对裂纹不敏感、不发生灾难性损毁等优异性能,有望取 代高温合金满足热端部件在更高温度环境下的使用,不仅有利于大幅减重,而且还可以节约 甚至无须冷气,从而提高总压比,实现在高温合金耐温基础上进一步提升工作温度400~ 500℃,结构减重50%~70%,成为航空发动机升级换代的关键热结构用材。
树脂基复合材料在国外先进航空发动机冷端上的主要应用部位
树脂基复合材料在短舱的主要应用部位
树脂基复合材料由于其优异的比强度和比刚度,最初应用于航空航 天领域,目前正在快速商业化到其他行业,如汽车和体育用品行业。树 脂基复合材料通过成分设计和结构设计,实现特殊应用,这种功能定制 设计能实现许多其他功能,如电、热、光和/或磁性性能。MGI列出了 树脂基复合材料的9个重点发展方向。
石墨烯/铜 复合材料
石墨烯/银 复合材料
石墨烯是目前发现的唯一存在的一种由碳原子致密堆积而成的二维蜂窝状晶格结构的环 保型碳质新材料,具有超大比表面积(2630 m 2/g),是目前已知强度最高的材料(达130 gpa)。
美国科学家研发了一 种全新的金属材料,能够 漂浮在水面上。在设计上, 这种镁合金基复合材料利 用中空碳化硅颗粒进行加 固,密度只有每立方厘米 0.92克,相比之下,水的 密度为每立方厘米1克。 无论是制造船只甲板、汽 车零部件、浮力模块还是 车辆装甲,这种新材料都 拥有广阔的应用前景
应力工ቤተ መጻሕፍቲ ባይዱ下的耐高温材料。
陶瓷基复合材料(CMC)由于其本身耐温高、密度低的优势,在航空发动机上的应用 呈现出从低温向高温、从冷端向热端部件、从静子向转子的发展趋势。 CMC材料具有耐温 高、密度低、类似金属的断裂行为、对裂纹不敏感、不发生灾难性损毁等优异性能,有望取 代高温合金满足热端部件在更高温度环境下的使用,不仅有利于大幅减重,而且还可以节约 甚至无须冷气,从而提高总压比,实现在高温合金耐温基础上进一步提升工作温度400~ 500℃,结构减重50%~70%,成为航空发动机升级换代的关键热结构用材。
树脂基复合材料在国外先进航空发动机冷端上的主要应用部位
树脂基复合材料在短舱的主要应用部位
树脂基复合材料由于其优异的比强度和比刚度,最初应用于航空航 天领域,目前正在快速商业化到其他行业,如汽车和体育用品行业。树 脂基复合材料通过成分设计和结构设计,实现特殊应用,这种功能定制 设计能实现许多其他功能,如电、热、光和/或磁性性能。MGI列出了 树脂基复合材料的9个重点发展方向。
《复合材料的制备》课件

复合材料的特性
总结词
复合材料的特性
详细描述
复合材料具有多种优良的特性,如高强度、高刚性、耐腐蚀、隔热等。这些特性使得复合材料在许多 领域都有广泛的应用,如航空航天、汽车、建筑等。
复合材料的应用领域
总结词
复合材料的应用领域
详细描述
复合材料在许多领域都有广泛的应用,如航空航天领域的飞机和卫星结构件,汽车领域 的安全气囊和刹车系统,建筑领域的桥梁和高层建筑等。此外,复合材料在电子产品、
《复合材料的制备》 ppt课件
目录
• 复合材料概述 • 复合材料的制备方法 • 复合材料的性能优化 • 复合材料的发展趋势与挑战
CHAPTER 01
复合材料概述
定义与分类
总结词
复合材料的定义和分类
详细描述
复合材料是由两种或两种以上材料组成的一种特殊材料,这些材料在微观尺度上相互结合,以实现单一材料无法 达到的性能。根据不同的分类标准,复合材料可以分为多种类型,如按基体材料可分为金属基复合材料、树脂基 复合材料等。
基体与增强材料的界面优化
选择合适的界面剂
使用具有良好粘结性能和 流动性的界面剂,改善基 体与增强材料之间的界面 结合力。
控制界面润湿性
通过调整界面润湿性,提 高基体与增强材料之间的 润湿性和粘结强度。
优化界面结构设计
通过优化界面结构设计, 改善基体与增强材料之间 的应力传递和载荷传递。
复合材料的结构设计优化
CHAPTER 03
复合材料的性能优化
增强材料的表面处理
01
02
03
表面涂层技术
通过在增强材料表面涂覆 一层具有优异性能的涂层 ,以提高复合材料的整体 性能。
表面化学处理
第二章复合材料的基体材料ppt课件

病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
❖ 四、 聚合物材料 ❖ 1. 复合材料中常用的聚合物种类
❖ (1)不饱和聚酯树脂。用于玻璃纤维复合材料 ❖ (2)环氧树脂。性能优异,用于碳纤维复合材
料和优质玻璃纤维复合材料。 ❖ (3)酚醛树脂。性能较差,且需高压成形,用
性好的;对于非连续性增强复合材料,选高强度
合金为基体。
• (3)根据基体金属与增强物的相容性选择
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
2.1.2 结构复合材料的基体
结构复合材料的基体大致可分为轻金属基体和耐热合金基体两大类。
❖ 主要的增强物为:陶瓷颗粒或晶须。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
❖
Байду номын сангаас
Al2O3(刚玉)—典型的纯氧化物陶瓷。
有较高室温和高温强度。
❖
ZrO2—使用温度达2000~2200℃,主要
用作耐火坩锅,反应堆的绝缘材料,金属表面的
二、 无机胶凝材料 水泥,石膏,菱苦土,水玻璃等。
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
2.2 陶瓷材料
传统陶瓷是指陶器和瓷器,主要由含二氧化硅的 天然硅酸盐矿物质制成。
现代陶瓷:高纯度、高性能的氧化物、碳化物、 硼化物、氮化物等。
复合材料PPT

总论 复合材料的基体材料 复合材料的增强材料 复合材料的界面 聚合物基复合材料 金属基复合材料 碳/碳复合材料
第一章
总 论
1.1 发展概况
1.2 复合材料定义、命名 和分类 1.3 复合材料的基本性能
第一章 总 论
1.1 发展概况
材料发展历史: 石器、铜器、铁器时代等 实现生产、科学目的: 新材料研究 材料科学历史: 四十多年
问 题: (1)复合产物能否为液体或气体? (2)复合材料是不是只能是一个
连续相与一个分散相的复合?
1.2.2 命名
例:玻璃纤维增强树脂基复合材料命名
玻璃钢 玻纤增强塑料、玻璃塑料、玻璃布 层压板、玻璃纤维复合材料
命名原则:
增强材料+基体材料+复合材料
例:碳纤维环氧树脂复合材料 书写: 碳/环氧复合材料
亚短钢纤维(长度40—60mm) 短钢纤维(长度20—35mm) 超短钢纤维(长度<15mm)
横截面形状:圆形、矩形截面 钢纤维主要品种:不锈钢、低碳钢
图 15
高架桥
1.3.6 三种复合材料性能比较 (1)使用温度、硬度 使用温度: CMC >MMC > PMC 硬 度: CMC >MMC > PMC
纤维增强树脂基复合材料:
● 基体强韧性降低裂纹扩展速度 ● 纤维对裂纹阻隔作用,使裂纹 尖端变纯或改变方向
裂纹扩展路径曲折、复杂
图12 三种材料疲劳性能比较
1—碳纤维复合材料
3—铝合金
2—玻璃钢
金属疲劳强度=20—50%抗张强度
碳纤维复合材料疲劳强度=
70—80%抗张强度
(3)减振性能好 影响自振频率因素:
1.3.2 聚合物基复合材料及主要性能
第一章
总 论
1.1 发展概况
1.2 复合材料定义、命名 和分类 1.3 复合材料的基本性能
第一章 总 论
1.1 发展概况
材料发展历史: 石器、铜器、铁器时代等 实现生产、科学目的: 新材料研究 材料科学历史: 四十多年
问 题: (1)复合产物能否为液体或气体? (2)复合材料是不是只能是一个
连续相与一个分散相的复合?
1.2.2 命名
例:玻璃纤维增强树脂基复合材料命名
玻璃钢 玻纤增强塑料、玻璃塑料、玻璃布 层压板、玻璃纤维复合材料
命名原则:
增强材料+基体材料+复合材料
例:碳纤维环氧树脂复合材料 书写: 碳/环氧复合材料
亚短钢纤维(长度40—60mm) 短钢纤维(长度20—35mm) 超短钢纤维(长度<15mm)
横截面形状:圆形、矩形截面 钢纤维主要品种:不锈钢、低碳钢
图 15
高架桥
1.3.6 三种复合材料性能比较 (1)使用温度、硬度 使用温度: CMC >MMC > PMC 硬 度: CMC >MMC > PMC
纤维增强树脂基复合材料:
● 基体强韧性降低裂纹扩展速度 ● 纤维对裂纹阻隔作用,使裂纹 尖端变纯或改变方向
裂纹扩展路径曲折、复杂
图12 三种材料疲劳性能比较
1—碳纤维复合材料
3—铝合金
2—玻璃钢
金属疲劳强度=20—50%抗张强度
碳纤维复合材料疲劳强度=
70—80%抗张强度
(3)减振性能好 影响自振频率因素:
1.3.2 聚合物基复合材料及主要性能
聚合物基复合材料 Polymer Matrix Composite

s 1.9 10 Ck
N/cm
高分子复合材料-聚合物与粘接
31
固体临界表面张力求取法
乙二醇 45 二碘甲烷 50 甲酰胺 57.5 甘油 62.5 水 72
高分子复合材料-聚合物与粘接
32
固液界面张力和浸润角
固液间界面张力公式可以估计为 1 sl s l 2 ( s l ) 2
高分子复合材料-概述 19
纤维单向铺层(单层)复合材料
基体
Em
纤维
Ef
E x E m V m E f V f E f V f E m 1 V f
高分子复合材料-概述 20
纤维增强机理
粘解完好且在弹性范围内,应力
f E f f , m Em m
复合材料弹性模量
高分子复合材料-概述
2
高分子复合材料-概述
3
复合材料无所不在!
高分子复合材料-概述
4
我们住在复合材料里
高分子复合材料-概述
5
复合材料定义要点
复合材料包含两种或两种以上物理上不同 并可能用机械方法分离的材料。一般其中 一种为连续相,另一种为功能增强相。 几种材料通过某种方法混合在一起获得复 合性能。 复合材料的总体性能优于各单独组分材料, 并在某些方面可能具有独特性能。
聚合物基复合材料 Polymer Matrix Composite
刘和文
哈工大教授、中国工结合、学科交叉融合, 既解决了实际工程问题,又解决了学科 发展的理论问题。 用力学新的理论和方法去解决复合 材料及一些新材料应用中的问题,为祖
国的航天和国防事业服务。
高分子复合材料-概述 22
界面粘着理论
聚合物基复合材料 聚合物基复合材料界面

树脂基体 基体表面区 相互渗透区 增强材料表面区 增强材料 外力场
4
在化学成分上,除了基体 增强物及涂层中的 基体、增强物 涂层中的 元素外,还有基体中杂质 由环境带来的杂质。 元素 基体中杂质和由环境带来的杂质 这些成分或以原始状态存在,或重新组合成新 的化合物。 界面上的化学成分 相结构很复杂 化学成分和 界面上的化学成分和相结构很复杂
7
2.液体对固体的浸润能力 2.液体对固体的浸润能力
在复合材料制备过程中,通常都存在一个液 体对固体的相互浸润。 浸润: 浸润: 不同的液滴放在不同的固体表面上,有时液 滴会马上铺展开来,遮盖固体表面,这一现象称 为浸润, 有时液滴会仍团聚成球状,这一现象称为 “不浸润”或“浸润不好”。
8
浸润角: 浸润角:即气~液界面与液~固之间的夹角
12
4.2.2 界面的粘结和作用机理
当基体浸润增强材料后,紧接着便发生基体 基体浸润增强材料后,紧接着便发生基体 与增强材料的粘结(Bonding)。 与增强材料的粘结 。 粘结(或称粘合 粘着、粘接)是指不同种类的两 粘结(或称粘合、粘着、粘接)是指不同种类的两 粘合、 种材料相互接触并结合在一起的一种现象 的一种现象。 种材料相互接触并结合在一起的一种现象。 界面的粘结强度直接影响着复合材料的 直接影响着复合材料的力学性能 界面的粘结强度直接影响着复合材料的力学性能 以及其它物理 化学性能,如耐热性、耐蚀性、 其它物理、 以及其它物理、化学性能,如耐热性、耐蚀性、 耐磨性等。 耐磨性等。
9
σLV σSV σSL
它们与浸润角之间存在如式(4-1)关系:
σ SV = σ SL + σ LV cos θ σ SV − σ SL cos θ = σ LV
6.聚合物基复合材料的性能

钛
玻璃钢 碳纤维Ⅰ/ 环氧 碳纤维Ⅱ/ 环氧 有机纤维 / 环氧
硼纤维 / 环氧
7.8 2.8 4.5 2.0 1.45 1.6 1.4 2.1
1.03 0.47 0.96 1.06 1.5 1.07 1.4 1.38
2.1 0.75 1.14 0.4 1.4 2.4 0.8 2.1
0.13 0.17 0.21 0.53 1.03 0.7 1.0 0.66
直线上的两个力F作用时,发生简单剪切。 g = △l / l0 = tan q, s s = F/ A0 • 均匀压缩: gv = △V / V0
力学性能的基本指标—弹性模量
弹性模量(模量)
单位应变所需应力的大小,是材料刚性的表征。
三种形变对应三种模量 拉伸模量(杨氏模量):E = s / e 剪切模量 :G = ss / g 体积模量(本体模量):B = P / gv
应变
受到外力作用而又不产生惯性移动时,材料的几何形状和尺寸发生的变化
应力
定义为单位面积上的内力,内力是材料宏观变形时,其内部分子及原子间 发生相对位移,产生分子间及原子间对抗外力的附加内力。
材料的受力方式
• 简单拉伸:张应变e = △l / l0, 习用应力s = F/ A0.
• 简单剪切:材料受到与截面相平行、大小相等、方向相反且不在同一
会迅速重新分配到未破坏的纤维上,使整个构件在短期内不致于失去承 载能力。
聚合物基复合材料的总体性能(3)
可设计性强、成型工艺简单
通过改变纤维、基体的种类及相对含量、纤维集合形式及排列方式、 铺层结构等可满足材料结构和性能的各种设计要求。 整体成型,一般不需二次加工,可采用手糊成型、模压成型、缠绕成 型、注射成型和拉挤成型等各种方法制成各种形状的产品。
3第四章 聚合物基复合材料(PMC)

第一节 PMC基体
传统的聚合物基体是热固性的,其最大 的优点是具有良好助工艺性。由于固化 前热固性树脂粘度很低,因而宜于在常 温常压下浸渍纤维,并在较低的温度和 压力下固化成型;固化后具有良好的耐 药品性和抗蠕变性;缺点是预浸料需低 温冷藏且贮存期有限,成型周期长和材 料韧性差。
第四章 聚合物基复合材料(PMC) 第一节 概 述
三、层合复合材料的表示法 最常见的聚合物基复合材料结构形式为 层合(或层压)板。层合板中的最小结构单 元称为铺层(1dminar),铺层分单向和双 向两类。单向铺层即由连续纤维浸渍树 脂后所形成的单向预浸料(通常标准厚度 为o.13mm),而双向铺层是由织物浸渍 树脂后形成的预浸料,一般厚度比单向 铺层厚。
第二类方法是基于实际复合材料的测试技术, 如短梁剪切方法、薄壁管扭转方法、90°拉伸 方法等.它们通常是在简单的平面应力假设下, 测得复合材料层板的面内或层间剪切强度,它 们适用于作为工程数据并用于不同材料的比较, 但不是真实的界面强度数据,有时也不能真实 反映界面失效机制。 其他测试方法:单纤维临界长度法、微压入方 法、短梁剪切强度等。
一、 二、 三、 四、 五、 六、 七、 八、
预浸料及预浸料制造工艺 手糊成型 袋压成型 缠绕成型 拉挤成型 模压成型 纤维增强热塑性塑料(FRTP)成型技术 其它成型方法 1.注射成型; 2.喷射成型; 3.树脂传递成型; 4.