华龙一号安全注入系统(RSI)差异分析

合集下载

华龙一号核电机组与M310核电机组配电系统差异分析

华龙一号核电机组与M310核电机组配电系统差异分析

华龙一号核电机组与M310核电机组配电系统差异分析作者:骆真荣龚贵辉刘高来源:《科学与财富》2016年第24期摘要:作为具有自主知识产权的第三代核电机组,华龙一号核电机组与M310核电机组之间有许多差异,其中配电系统的差异较为明显。

文章分析华龙一号核电机组与M310核电机组配电系统之间的差异,得出华龙一号核电机组的安全性、可靠性高于M310核电机组的结论。

关键词:华龙一号核电机组;M310核电机组;配电系统;差异福建福清核电厂(福清核电)1-4号机组为M310核电机组,5、6号机组为具有自主知识产权的华龙一号核电机组。

其中福清核电5号机组是华龙一号全球首台机组,具有重要意义。

华龙一号核电机组作为第三代核电机组,与第二代的M310核电机组之间存在许多差异,包括配电系统的差异。

分析华龙一号核电机组与M310核电机组配电系统之间的差异,可以比较它们的安全性和可靠性。

16.6kV公用配电系统差异M310机组(以福清核电1、2号机组为例)的6.6kV公用配电系统是9LGI,该系统有两段母线,即9LGIA与9LGIB,其供电关系如图1中左图所示,图中黑色方块代表闭合状态的开关,黑色方框代表断开状态的开关(下同)。

当1、2号机组都正常运行时,9LGIA由1LGC供电,9LGIB由2LGC供电,1LGC、2LGC有两路电源,分别来自厂用变压器(厂变)和辅助变压器(辅变),这两路电源可以通过自动慢切换装置进行切换。

但1LGC、2LGC均是单元机组的厂用电母线,单元机组大修时会停役。

当1LGC或2LGC失电时,通过手动合上9LGIA与9LGIB之间的母线联络开关,可让9LGIA或9LGIB转由另一台机组供电。

华龙一号机组(以福清核电5、6号机组为例)的6.6kV公用配电系统是7ESH和7ESI,每个系统有两段母线,即7ESHA与7ESHB和7ESIA与7ESIB,6.6kV公用负荷接在7ESHB 和7ESIB上,其供电关系如图1中右图所示。

华龙一号能动与非能动安全系统介绍

华龙一号能动与非能动安全系统介绍
收稿日期:2016-03-21
5结语
本文从实际出发,针对高速公路超载超限问题,提出了运
作者简介:李淼(1982一),男,河北唐山人,工程硕士,工程师 研究方向:交通机电工程。 机电信息2016年第12期总第474期
57
万方数据
Pቤተ መጻሕፍቲ ባይዱS揪i ;疑水收
注功能分离,上充泵不再执行安注功能。安注功能由2台中压 安注泵和2台低压安注泵实现,中压安注泵与低压安注泵独 立,不需低压安注泵进行增压。同时取消安注管线上浓硼注入 箱、硼酸再循环回路,简化系统,提高系统可靠性。 在非能动功能上,仍设置3台中压安注箱,用于在事故后 以非能动方式快速向堆芯注入大量含硼水,防止堆芯裸露,以 保证堆芯的完整性。
5结语
华龙一号采用能动与非能动相结合的安全技术,根据PSA 分析结果,降低了内部事件和外部事件CDF和LRF,确保了 CDF<1E一6/堆年、LRF<1E一7/堆年安全目标的实现,满足三 代核电站设计安全标准。歹
Ld
鞠剑_
4 (上接第55页)
■飞一一
刖I一
[参考文献] [1]中国核动力研究设计院.华龙一号能动和非能动安全系统设
Yingyong yu
Yanjiu
华龙一号能动与非能动安全系统介绍
易飞顾传俊
(福建福清核电有限公司,福建福州350300)
摘要:对华龙一号采用的4套能动与非能动相结合的安全系统进行了简要介绍。
关键词:华龙一号;能动;非能动;安全系统

引言
“华龙一号”是在我国30余年核电科研、设计、建造和运行
经验的基础上,充分借鉴国际三代核电技术先进理念,吸收福 岛核事故经验反馈,采用国际最高安全标准研发设计的三代 核电机型。华龙一号采用177组燃料组件、单堆布置、双层安全 壳,创新提出了“能动与非能动相结合”的安全理念。本文将简 要介绍华龙一号采用的4套能动与非能动相结合的安全系统。

华龙一号主管道设计及国内外技术对比

华龙一号主管道设计及国内外技术对比

Science &Technology Vision 科技视界科技视界0引言,,,,,,[1]。

,5、6K2、K3。

,,、、。

1华龙一号主管道设计思路1.1总体思路,,;(LBB ),,、、,60[2]。

,,、、、、;,LBB :JR 、—、。

1.2华龙一号主管道技术难点,,[3]:(1):;(2)L BB ;(3),,、,;(4);(5)。

1.3华龙一号主管道设计难点问题的解决,:(1)60,。

(2),,,。

、、。

(3),,、。

,,。

(4)LBB ,LBB ,华龙一号主管道设计及国内外技术对比刘向红陶舒畅黄均麟蒋鸿黄燕(中国核动力研究设计院核反应堆系统设计技术重点实验室,四川成都610213)【摘要】主管道连接反应堆压力容器、蒸汽发生器和反应堆冷却剂泵(简称主泵),形成重要的一回路压力边界,为反应堆冷却剂提供循环通道,承受高温、高压和高强放射性,是关系反应堆安全运行的关键部件之一,属于核安全一级设备。

华龙一号采用自主化设计、制造的主管道技术,降低了设备采购和核电站建造成本,提高了工程建造效率,缩短了核电站建造周期,对核电自主化具有重要意义。

文章论述了华龙一号主管道设计的主要思路,对国内外同类技术进行总结对比,为后续核电工程提供借鉴。

【关键词】主管道;设计思路;对比中图分类号:TM623.2文献标识码:A DOI:10.19694/ki.issn2095-2457.2021.17.05作者简介:刘向红(1979—),女,高级工程师,硕士,从事核电系统和设备设计工作。

建筑工程. All Rights Reserved.Science &Technology Vision 科技视界科技视界,。

2国内外同类技术比较2.1材料设计AP1000、ASME II SA-376TP316LN,EPR ,RCC-M M3321X2CrNi19.10()。

,RCC-M M3321X2CrNiMo18.12(),,1。

华龙一号反应堆冷却剂系统(RCS)差异分析

华龙一号反应堆冷却剂系统(RCS)差异分析

华龙一号反应堆冷却剂系统(RCS)差异分析1. 引言1.1 研究背景华龙一号反应堆是中国自主研发的第三代核电技术,具有一系列创新特点和技术优势。

在反应堆冷却剂系统方面,华龙一号采用了先进的设计理念和技术方案,以确保核电站的安全、高效运行。

对华龙一号反应堆冷却剂系统的研究和比较分析具有重要意义。

在当前全球能源形势下,清洁能源的发展已经成为各国共同的目标。

对于反应堆冷却剂系统的研究不仅可以提高核电站的运行效率,降低运行成本,还可以促进核能在全球范围内的应用和推广。

本文旨在通过对华龙一号反应堆冷却剂系统的差异分析,探讨其优劣势,并为未来的核能开发提供参考和借鉴。

1.2 研究目的华龙一号反应堆冷却剂系统(RCS)的研究目的主要包括以下几个方面:1. 分析华龙一号反应堆冷却剂系统的技术特点和设计理念,探究其在核电领域的应用前景和优势;2. 比较华龙一号反应堆冷却剂系统与其他类型反应堆冷却剂系统的异同之处,揭示其在性能和安全方面的优劣;3. 探讨华龙一号反应堆冷却剂系统存在的不足之处,提出改进建议和技术进步方向;4. 通过对华龙一号反应堆冷却剂系统的研究,为我国核电技术的发展提供参考和借鉴,推动我国核电行业的创新和发展。

通过深入探讨和分析华龙一号反应堆冷却剂系统的相关内容,可以为核电领域的研究和应用提供理论基础和实践指导,促进核电技术的不断进步和提高。

1.3 研究意义研究华龙一号反应堆冷却剂系统可以促进核能技术的发展和应用。

随着社会的发展,核能作为清洁能源受到了越来越多的关注。

而冷却剂系统作为核反应堆的重要组成部分,对于核能的安全性和效率起着至关重要的作用。

深入研究华龙一号反应堆冷却剂系统的特点和优劣势,可以为核能技术的推广和应用提供重要参考。

研究华龙一号反应堆冷却剂系统有助于提高核能设施的安全性。

冷却剂系统是核反应堆的重要防护屏障之一,其性能直接关系到核能设施的安全性。

通过对冷却剂系统的深入研究和分析,可以发现其中存在的潜在问题和安全隐患,进而采取相应措施进行修复和加固,提高核能设施的安全性。

海外“华龙一号”中压安注泵厂内性能测试及调整

海外“华龙一号”中压安注泵厂内性能测试及调整

海外“华龙一号”中压安注泵厂内性能测试及调整摘要:为了保证“华龙一号”海外首堆卡拉奇核电项目3#机组中压安注泵性能测试调整顺利、最终性能试验结果在满足设计规格书要求同时、性能曲线处于较优区域。

通过将工程样机零部件、测试叶轮、产品泵零部件按照一定顺序相组合进行装配、试验、分析每一次性能测试试验结果、进行切割叶轮或者导叶,保证最终产品中压安注泵性能试验结果性能曲线处于较优区域。

总结和优化得到性能调整时间最短、质量风险最小的多级离心泵性能测试和调整方案。

关键词:华龙一号、中压安注泵、性能试验一、引言巴基斯坦卡拉奇核电项目是我国首个走出国门的具有完全自主知识产权的百万千瓦级三代压水堆核电项目。

“华龙一号”实现了先进性和成熟性的统一、安全性和经济性的平衡、能动与非能动的结合。

“华龙一号”的设备国产化率达到了90%以上,K3项目中压安注泵就是其中之一。

“华龙一号”中压安注泵是多级离心泵,多级离心泵的性能调整是一个非常复杂、艰难、和质量风险很大的过程,如果切割叶轮不当就将造成报废的风险,因此,如何优化多级离心泵性能调整方案是一直在进行的科研课题。

二、参数要求“华龙一号”百万千瓦级先进压水堆核电站用中压安注泵为核二级泵,是安全注入系统(RSI)的组成部分,主要功能为:安全注入泵,防止LOCA事件中堆芯的裸露。

中压安注泵设备规格书中,泵运行工况要求非常高:从零流量点到最大流量点250m3/h,扬程变化非常大,平均单级叶轮扬程变化150m~15m,泵流量扬程曲线陡降;要求具有高抗汽蚀的性能,250 m3/h流量汽蚀比转数为1371。

高温运行工况,泵入口最高温度160℃;三、结构介绍为了达到中压安注泵设计规格书性能参数的要求,在中压安注泵在结构设计上做了很多的优化方案:采用卧式、双壳体多级离心泵,芯包可抽,泵芯由转子、导叶、中段、密封部件、轴承体等组成,泵芯包连同泵盖可在只拆除主螺母之后就可以整体从泵体中抽出进行检修或更换,拆装快速、方便。

华龙一号反应堆冷却剂系统(RCS)差异分析

华龙一号反应堆冷却剂系统(RCS)差异分析

华龙一号反应堆冷却剂系统(RCS)差异分析
华龙一号反应堆冷却剂系统(RCS)是一种新一代的核电站冷却剂系统,相比于传统的冷却剂系统有着许多差异化的特点。

华龙一号采用的是先进的固定床反应堆技术,可以实现强化传热和流动,提高热效率。

其冷却剂系统更加先进,采用了四条主回路供冷,具有更高的冷却效果和冷却能力。

而传
统的反应堆冷却剂系统一般只有一条主回路,其冷却效果较为有限。

华龙一号的RCS采用了双循环设计,即通过两个独立的冷却回路进行冷却。

这样的设
计可以增加系统的安全性和可靠性,当一个回路出现故障时,另一个回路可以继续正常运行。

而传统的反应堆冷却剂系统一般只有单循环设计,一旦出现故障,整个系统都会停止
运行。

华龙一号的RCS还采用了新型的冷却剂。

传统的反应堆冷却剂通常采用轻水作为冷却剂,而华龙一号使用的是钠钾合金。

钠钾合金具有良好的热传导性和冷却性能,可以有效
地吸收和传递热量,提高系统的热效率。

钠钾合金还具有较低的腐蚀性,能够降低系统的
腐蚀问题。

华龙一号的RCS还采用了先进的自动化控制系统,可以实现对冷却剂系统的自动监控
和控制。

传统的冷却剂系统一般需要人工操作和监控,比较繁琐且容易出现误操作,而自
动化控制系统可以提高系统的运行效率和安全性。

华龙一号反应堆冷却剂系统相比传统的冷却剂系统具有更高的冷却效果和冷却能力,
更高的安全性和可靠性,以及更高的自动化水平。

这些差异化的特点使得华龙一号成为一
种更加先进和优越的核电站冷却剂系统。

“华龙一号”核一级管道的疲劳分析

“华龙一号”核一级管道的疲劳分析

第41卷第1期核科学与工程Vol.41 No.1 2021年2月Nuclear Science and Engineering Feb.2021“华龙一号”核一级管道的疲劳分析宁庆坤,陈 丽,王艳苹(中国核电工程有限公司,北京 100840)摘要:核电厂整个服役期间,核一级管道承受复杂的温度和压力瞬态,因此需要进行管道的疲劳分析。

本文对“华龙一号”中核一级管道的疲劳分析这一关键技术展开研究,分别采用施加瞬态曲线和温度梯度的方法进行了管道疲劳分析,并对结果进行了优化,完成了“华龙一号”中核一级管道的疲劳分析。

本文可为核电厂中核一级管道的疲劳分析提供方法和参考。

关键词:管道;疲劳;分析中图分类号:TL48文章标志码:A文章编号:0258-0918(2021)01-0037-06Fatigue Analysis of Nuclear Class 1 piping ofHRR1000NING Qingkun,CHEN Li,WANG Yanping(China Nuclear Power Engineering Co.,Ltd.,Beijing 100840,China)Abstract:During the whole service period of nuclear power plant, the nuclear class 1 piping is subjected to complex temperature and pressure transients, so the fatigue of the piping is necessary. In this paper, the key technology of fatigue analysis of class 1 piping of HPR1000 is studied.The fatigue analysis is carried out by applying transient curve and temperature gradient respectively, and the results are optimized, the fatigue analysis of class 1 piping of HPR1000 has been completed. This paper can provide the method and reference for the fatigue analysis of class 1 piping in the nuclear power plant.Key words:Piping;Fatigue;Analysis疲劳作为一种非常重要的失效模式,在核电厂的安全运行中起着至关重要的作用,全球核电厂曾发生多起管道疲劳失效事件[1,2]。

华龙一号与M310核电机组反应堆保护系统结构差异性分析

华龙一号与M310核电机组反应堆保护系统结构差异性分析

华龙一号与M310核电机组反应堆保护系统结构差异性分析摘要:反应堆保护系统(RPS - Reactor Protection System)是核电站重要的安全系统,福清5、6号机组核电站数字化反应堆保护系统基于AREVA公司的TXS 平台实现,与以往不同,反应堆保护系统的逻辑功能也与以前有很大不同,本文将通过对比这些差异,发现华龙一号反应堆保护系统提高了系统的可靠性,完善了系统的调试和维护。

1 引言反应堆保护系统(RPS - Reactor Protection System)是核电站重要的安全系统,它监测与反应堆安全有关的重要参数,当这些参数达到安全分析确定的整定值时自动触发紧急停堆和/或启动专设安全设施,以限制事故的发展和减轻事故后果,保证反应堆及核电站设备和人员的安全,防止放射性物质向周围环境释放。

反应堆保护系统包括反应堆紧急停堆系统(RTS - Reactor Trip System)和专设安全设施驱动系统(ESFAS - Engineered Safety Features Actuation System)两部分,每个系统都是由仪表系统和逻辑系统组成。

它包括了用于保护参数测量的测量电路、信号调整、保护逻辑驱动控制接口单元以及辅助电源供给单元。

福清5、6号机组核电站数字化反应堆保护系统基于AREVA公司的TXS 平台实现。

整个系统由4 个保护组(IP、IIP、IIIP、IVP)和2个逻辑系列(A、B)组成。

单个通道保护参数的采集处理和阈值比较在保护组完成,停堆和专设逻辑符合在A,B 列完成。

福清1-4号机组核电站数字化反应堆保护系统基于INVENSYS公司的TRICON平台实现,整个系统也是由4 个保护组(IP、IIP、IIIP、IVP)和2个逻辑系列(A、B)组成。

单个通道保护参数的采集处理和阈值比较在保护组完成,但是停堆逻辑符合在四个保护组完成,专设逻辑符合在A,B 列完成。

2 反应堆保护系统结构差异性分析2.1 M310机组反应堆保护系统设计福清1-4核电站保护系统上游为4重冗余的保护组,4 个保护仪表组分布在4 个隔离的连接厂房内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华龙一号安全注入系统(RSI)差异分析
摘要:在设计基准事故工况下,必须确保堆芯的冷却和安全壳的完整性,限制
事故的发展和减轻事故的后果,为此核电站设置了专设安全设施。

安全注入系统(RSI)作为核电厂专设安全设施的重要组成部分,其承担着反应堆冷却剂系统(RCS)发生失水事故(LOCA)或主蒸汽系统(TSM)发生管道破裂事故时,堆
芯应急冷却的重要作用。

关键词:华龙一号;安注系统;差异;
1 华龙一号安注系统与M310机组的功能差异:
a)华龙一号取消浓硼注入回路,上充泵不再作为安注系统的高压安注泵使用,事故工况时,首先将浓硼注入堆芯是由应急硼酸注入系统完成的。

当一回路压力
低于中压安注泵压头时自动往一回路注入硼酸溶液。

b)在反应堆停堆期间,反应堆处于半管水位时,若失去RHR泵,一台MHSI
泵会自动地从换料水箱取水通过冷段向堆芯注水。

2 华龙一号安注系统与M310机组的设备差异:
a)高压安注泵改为中压安注泵。

M310机组上充泵兼作安注系统高压安注泵,华龙一号高压安注改为中压安注。

b)M310中反应堆换料水池和乏燃料水池冷却和处理系统的换料水箱划分给RSI,命名为内置换料水箱,内置换料水箱位于安全壳内的最低位置,兼做安全壳
地坑,收集LOCA事故工况下通过破口进入安全壳的反应堆冷却剂,并收集安喷
系统投入后的喷淋水;其容积为2403立方米,可用容积为2225-2310立方米,内部硼浓度为2400ppm,华龙一号RSI内置换料水箱容积、硼浓度比M310 PTR的
换料水箱都要大,内置换料水箱的水量保证换料期间使换料水池建立足够高的液位,并保证事故工况下内置换料水箱的液位满足安注泵和安喷泵有效运行所需的
汽蚀余量要求,内置换料水箱里的硼水浓度足以在换料冷停堆期间使反应堆保持
次临界状态;制硼过程其主要差异体现在硼浓度、容积变化,具体参数见表2,
需根据内置换料水箱的容积和硼浓度计算出所需的硼酸数量,制硼过程中给水箱
充水的临时管路径也将变化,此外因为内置换料水箱与大气对空口在零米附近,
还需注意做好防异物等措施,具体风险分析见换料水箱制硼风险分析。

c)华龙一号安注系统取消浓硼注入回路,即华龙一号不再有RIS021/022PO、RIS004BA、RIS021BA等主要设备和该回路的一系列阀门。

d)华龙一号中压安注泵RSI003/004PO和低压安注泵RSI001/002PO电机由设
备冷却水系统WCC冷却,并由电气厂房冷冻水系统WEC提供备用冷却水,所以
在电机冷却水的进出口增加了四个三通阀。

e)MHSI泵最小流量45m³/h、对应扬程963-1015m、最大流量270 m³/h、入
口压力≤0.56MPa.a,具体参数见表3,用于所有事故工况,在电站正常运行期间,泵用于备用状态;在事故工况下,安注信号启动中压安注泵。

中压安注泵投运后,从内置换料水箱吸水,泵的小流量管线返回管线保证泵的正常运行。

如果RCS压
力高于泵的注入关闭压头,则通过小流量管线返回内置换料水箱,当RCS压力下
降到泵的注入关闭压头以下时,向反应堆冷却剂系统冷段注入含硼水。

在反应堆
停堆期间,反应堆处于半管水位时,若失去RHR泵,一台MHSI泵会自动地从内
置换料水箱取水通过冷管段向堆芯注水。

f)华龙一号安注箱001/002/003BA的形状为球形与M310的圆柱形安注箱有
较大差异,具体参数差异如下表:
表5 M310机组与华龙一号安注箱差异
3 统流程差异
M310机组上充泵兼作高压安注泵,在事故工况下,上充泵将取水口从容控
箱切换至换料水箱,将安注系统硼酸再循环回路中RIS004BA的浓硼酸通过反应堆冷却剂系统(RCP)冷段注入堆芯。

且在安注再循环阶段泵由安全壳地坑吸水,
经低压安注泵增压,进行再循环注入。

华龙一号将高压安注泵改为中压安注泵,并取消硼酸再循环回路。

中压安注
泵用于所有事故工况,在电站正常运行期间,泵处于备用状态。

事故工况下,安
注信号启动中压安注泵。

中压安注泵投运后,从内置换料水箱(IRWST)吸水。

泵的小流量返回管线保证泵的正常运行,并将泵的注入关闭压头控制在1000m以下。

如果反应堆冷却剂系统RCS压力高于泵的注入关闭压头,则通过小流量管线
返回IRWST,当RCS压力下降到泵的注入关闭压头以下时,向反应堆冷却剂系统(RCS)冷段注入含硼水。

4 总体设计差异
a)设计基准华龙一号以《ACP1000核岛主要系统设计准则》的为标准,而
M310主要是参考岭澳一期。

b)上充和安注完全分离。

M310机组化容系统的上充泵兼做安注系统高压安
注泵,华龙一号高压安注改为中压安注,且中压安注泵不需要低压安注泵增压。

c)取消浓硼注入回路。

M310机组安注系统有硼酸再循环回路,事故时首先
通过高压安注泵将7000-8000ppm的浓硼酸注入堆芯,华龙一号安注系统取消了
该回路。

d)换料水箱内置。

M310机组机组安注系统的直接注入阶段从换料水箱取水,再循环注入阶段低压安注泵的取水则从换料水箱切换到安全壳地坑。

而华龙一号
采用内置换料水箱位于安全壳内最低的位置,兼做安全壳地坑,安注系统无论直
接注入还是再循环注入阶段都从内置换料水箱取水。

e)内置换料水箱过滤器。

在内置换料水箱内每台安注泵、安喷泵的管道吸入
口处设置过滤器,用以过滤水中的悬浮颗粒。

f)厂房布置差异。

M310机组安注系统的低压安注泵分布在核燃料厂房-6.7m,高压安注泵分布在核辅助厂房0m,水压试验泵分布在核辅助厂房5m,安注箱分
布在反应堆厂房-6.7。

华龙一号安注系统的两个系列完全分开,分别布置在两个
安全厂房,厂房实现了完全的物理隔离,MHSI/LHSI泵布置在安全厂房-12.2m,
水压试验泵布置在燃料厂房-12.2m,安注箱和内置换料水箱布置在反应堆厂房-
6.7m。

g)华龙一号中压安注泵RSI003/004PO和低压安注泵RSI001/002PO电机由设
备冷却水系统WCC冷却,并由电气厂房冷冻水系统WEC提供备用冷却水。

h)华龙一号安全注入系统安注泵(001/002/003/004PO)入口隔离阀
(007/008/009/010VP)安装在过滤器后面,而M310安全注入系统安注泵
(001/002PO)入口隔离阀(075/085VB)安装在过滤器前面。

结语:
福清核电有限公司5、6号机组(华龙一号)是我国具有完全自主知识产权的三代压水堆示范项目,“华龙一号”作为民族核电“走出去”战略的主打品牌,对于
提高我国的自主创新能力有重要意义,它不仅标志着我国拥有了完全自主产权的
核电技术,更是我国从“核大国”向“核强国”迈出的重要一步。

参考文献:
[1]徐利根.华龙一号核电厂系统与设备.中国原子能出版社,2017年(1):55-60。

相关文档
最新文档