正项级数敛散性判别

合集下载

8.2正项级数敛散性的判别

8.2正项级数敛散性的判别


证 : ≤1 级 发 ; >1 级 收 。 明 p 时 数 散 p 时 数 敛 ∞ 1 解: (1) p = 1时, 调和级数 ∑ 发散 . n =1 n ∞ ∞ 1 1 1 ( 2) p < 1时, ≤ p Q ∑ 发散,∴ ∑ 1 发散. 发散, p n n n =1 n n =1 n ( 3) p > 1时, 方向:证原级数 某一收敛级数 方向:证原级数<某一收敛级数 ∞ 1 1 1 1 1 1 1 ∑ np = 1 + 2p + 3p + 4p + 5p + 6p + 7p +L n =1 1 1 1 1 1 1 < 1 + ( p + p ) + ( p + p + p + p ) + L 几何级数 2 2 4 4 34 4 2 n ∞ 1 1 1 1 收敛! < 1 + p −1 + p−1 + p −1 + L = ∑ p−1 收敛! 2 n=0 2 2 2 +∞ 1 此 论 广 积 ∫ dx的 散 相 。 敛 性 同 ∴ 原级数收敛。 结 与 义 分 原级数收敛。 p 1 x
的敛散性。 例2.判定∑ 2 sin n的敛散性。 3 n =1 解: 由于当 x > 0时, < sin x < x 0 n π 2 n n π 故0 < 2 sin n < 2 n = π ( n = 1,2L) 3 3 n 3 ∞ 2 2 Q ∑ π 为公比是 的几何级数, 收敛 的几何级数, n =1 3 ∞3 π n ∴由比较判别法知 ∑ 2 sin n收敛。 收敛。 3 n =1

第2节正项级数敛散性的判别

第2节正项级数敛散性的判别

n1
2 3
n
,
由等比级数的敛散性可知:原级数收敛.
例3
1
讨论 P 级数 n1 n p
( p > 0 ) 的敛散性.

当 p=1时,
P
级数为调和级数:
1 n1 n
,
它是发散的.
当 0 < p < 1 时,

0
1 n
1 np
,
由比较判别法, P 级数此时是发散的.
故 p 1时, P 级数是发散的.
综上所述:
当 p > 1 时, P 级数收敛. 当 p 1 时, P 级数发散.
4.比较判别法的极限形式
设和为两个正项级数, 且 vn 0 (n 1, 2,;
或从某一项 N0 开始).

lim un n vn
,

(1) 0 时, un 与 vn 具有相同的敛散性.
n1
n1
(2) 0 时, vn 收敛 un 收敛.
综上所述,当 0 < x < a 时, 原级数收敛; 当 x a 时, 原级数发散.
n
an 1 a2n
lim a n n 1 a2n
a 1,
1 n
当a
1时,
lim n
n
an 1 a2n
lim
n
n
a
1
1 a
2n
1 a
1,
故 a 0 且 a 1时, 原级数收敛.
例8
判别
n1
x a
n
的敛散性.
(
x
>
0,
a
>
0
为常数)

关于正项级数敛散性判定方法的总结比较

关于正项级数敛散性判定方法的总结比较

关于正项级数敛散性判定方法的总结比较正项级数指的是所有项都是正数的级数。

求解正项级数的敛散性是数学分析、高等数学、物理等学科中经常使用的基本问题。

以下是关于正项级数敛散性判定方法的总结。

1. 通项公式法如果正项级数的通项公式可以明确地表示出来,那么可以通过解析判断级数的敛散性。

例如:$\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$,该级数的通项公式为$\frac{1}{n^2}$,由于是调和级数的平方,因此它是收敛的。

但如果通项公式不容易明确表示出来,就需要采用其他方法。

2. 比较判别法当正项级数与一个已知收敛或发散的级数的通项公式形式非常类似时,就可以使用比较判别法。

若存在一个收敛级数$\sum\limits_{n=1}^{\infty} a_n$,则当正项级数$\sum\limits_{n=1}^{\infty} b_n$满足$\lim\limits_{n\to\infty}\frac{b_n}{a_n}=c>0$时,$\sum\limits_{n=1}^{\infty}b_n$与$\sum\limits_{n=1}^{\infty} a_n$同时敛散。

其中,$a_n$和$b_n$都是正数。

3. 极限比值法极限比值法也叫作柯西-黎曼判别法。

该方法需要计算正项级数的项数无穷大时的比值$\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}$,如果该比值$<1$,则级数收敛;如果$>1$,则级数发散;如果$=1$,则判别不出敛散性。

此外,当无法计算极限时,也可以将比值的极限转化为自然对数的形式再进行计算。

将正项级数转化为积分形式,再判断积分的敛散性。

若存在一个$a>0$,使得函数$f(x)$在$[a,+\infty)$上单调递减且非负,则当正项级数$\sum\limits_{n=1}^{\infty} a_n$的通项公式为$a_n=f(n)$时,级数敛散与积分$\int_a^{+\infty} f(x)dx$的敛散性相同。

正项级数敛散性地判别

正项级数敛散性地判别

一、 正项级数敛散性的判别设∑∞=1n n u 是正项级数,假设 0lim ≠∞→n n u ,那么∑∞=1n n u 发散。

若0lim =∞→n n u ,那么∑∞=1n n u 可能收敛也可能发散。

可依照下面的思路判别其敛散性。

(1)若是通项n u 包括有n !之类的因子,或关于n 的假设干因子连乘形式,那么用比值判别法,即ρ=+→∞n n n u u 1lim ,那么当1<ρ时∑∞=1n n u 收敛,当1>ρ时∑∞=1n n u 发散。

若是nn n u u 1lim +∞→不易计算,或不存在,或存在为1,那么适当放大n u ,使得n n v u ≤,并对∑∞=1n nv 应用比值判别法,若是∑∞=1n n v 收敛,那么∑∞=1n n u 收敛;或适当缩小n u ,使得0>≥n n v u ,并对应用比值判别法,若是∑∞=1n n v 发散,则∑∞=1n n u 发散。

(2)若是通项n u 包括有n 或关于n 的函数为指数的因子,那么用根值判别法,即ρ=∞→n lim n n u ,那么当1<ρ时∑∞=1n nu收敛,当1>ρ时∑∞=1n n u 发散。

若是n lim n n u →∞不易计算,或不存在,或存在为1,那么适当放大n u ,使得n n v u ≤,并对∑∞=1n n v 应用根值判别法,若是∑∞=1n n v 收敛,那么∑∞=1n n u 收敛;或适当缩小n u ,使得0>≥n n v u ,并对应用根值判别法,若是∑∞=1n n v 发散,那么∑∞=1n n u 发散。

(3)当n u 不是以上情形时,寻觅∞→n 时n u 的等价无穷小,可利用等价无穷小的经常使用公式和麦克劳林展开式,取得)0(~>C nCu n α,第八讲 常数项级数敛散性的判别等价的通项,两级数应具有相同的敛散性。

因此当1>α时∑∞=1n n u 收敛;当1≤α时∑∞=1n nu发散。

数项级数敛散性判别法

数项级数敛散性判别法

数项级数敛散性判别法数项级数是由一系列数值相加而得到的无穷级数。

在数学中,我们经常需要判断一个数项级数的敛散性,即判断它是否会无限逼近一个有限值(收敛)或者永远无法收敛(发散)。

下面将介绍一些常见的判断数项级数敛散性的方法。

1.正项级数判别法(比较判别法):对于一个数项级数∑an,如果对于所有的n,都有an≥0,并且an+1≤an,那么我们可以使用正项级数判别法来判断敛散性。

即如果极限值lim(n→∞)an=0,则级数收敛;如果极限值lim(n→∞)an>0,则级数发散。

2.比值判别法:如果存在一个正数r,使得lim(n→∞)an+1/an=r,那么根据r的大小,可以判断原级数的敛散性。

具体判别如下:-如果r<1,那么级数收敛;-如果r>1,那么级数发散;-如果r=1,判别不出来,需要使用其他方法进行判断。

3.根值判别法:如果存在一个正数r,使得lim(n→∞)√(n)(an) = r,那么根据r 的大小,可以判断原级数的敛散性。

具体判别如下:-如果r<1,那么级数收敛;-如果r>1,那么级数发散;-如果r=1,判别不出来,需要使用其他方法进行判断。

4.绝对收敛与条件收敛:如果一个级数的各项都是正数,并且该级数收敛,那么称该级数是绝对收敛的。

如果一个级数是收敛的,但其对应的绝对值级数是发散的,则称该级数是条件收敛的。

5.莱布尼茨判别法:对于一个交替级数∑((-1)^(n+1)*bn),如果满足以下条件,那么该级数收敛:- bn>0,即各项都是正数;- bn≥bn+1(递减趋势);- lim(n→∞)bn=0。

6.积分判别法:如果能够找到一个函数f(x),使得f(x)在[1,∞)上连续且单调递减,并且∑an与∫f(x)dx之间有关系,那么可以使用积分判别法来判断敛散性。

具体判别如下:- 如果∫f(x)dx收敛,那么∑an也收敛;- 如果∫f(x)dx发散,那么∑an也发散。

正项级数敛散性的判别方法

正项级数敛散性的判别方法

正项级数敛散性的判别方法正项级数是指级数的所有项都是非负数的级数。

判断正项级数的敛散性的方法主要有以下几种:比较判别法、根式判别法、积分判别法、极限判别法和对数判别法。

一、比较判别法:1. 比较判别法之比较大法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≤bn,那么若∑bn收敛,则∑an也收敛;若∑bn发散,则∑an也发散。

2. 比较判别法之比较小法:如果对于正项级数∑an和∑bn,当n趋向于无穷大时有an≥bn,那么若∑bn发散,则∑an也发散;若∑bn收敛,则∑an也收敛。

二、根式判别法:设an≥0,如果存在正常数p使得lim[(an)^1/n]=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,根式判别法无法确定级数的敛散性。

三、积分判别法:将正项级数∑an转化为函数f(x)的积分,即∫f(x)dx,如果对于函数f(x),当x趋向于无穷大时有f(x)递减且连续,则1. 若∫f(x)dx收敛,则级数∑an也收敛;2. 若∫f(x)dx发散,则级数∑an也发散。

四、极限判别法:如果存在常数L>0,使得lim(n→∞)n*an=L,则1. 若L<1,则级数∑an收敛;2. 若L>1,则级数∑an发散;3.若L=1,极限判别法无法确定级数的敛散性。

五、对数判别法:设an≥0,如果存在正常数p使得limln(an)/ln(n)=a,则1. 若a<1,则级数∑an收敛;2. 若a>1,则级数∑an发散;3.若a=1,对数判别法无法确定级数的敛散性。

这些判别方法在实际应用中都有其适用范围和局限性,需要根据具体情况选择合适的方法进行判断。

同时,在判断级数的敛散性时,还可以结合其他定理和方法,如柯西收敛准则、阿贝尔定理、绝对收敛等进行综合分析。

7.2-1 正项级数敛散性的判别

7.2-1 正项级数敛散性的判别
一般级数与正项级数收敛条件的区别:
n 1
n 1
Sn s 一般级数收敛 lim n
正项级数收敛 S n 有上界 单调有界数列有极限
1 p 在p >1 时收敛, p 1 时发散. 例1. 证明 n 1 n

证:p =1,原级数为调和级数,发散;
1 1 1 1 p < 1时 n p n , n p 的部分和大于 n 的部分和 n 1 n 1
2 n1 un1 [(n 1)! ] ( 2n)! lim 1 / 4 1 lim lim n 2( 2n 1) n u n ( n! ) 2 [ 2( n 1)]! n
x n 例5. 判别 n( ) ( x 0) 的敛散性 n 1 2 n n 1 x x 解: un n , un1 ( n 1) 2 2 un1 n 1 x lim lim x/2 n u n n 2 n 由0 x / 2 1 0 x 2, 此时原级数收敛

由 x / 2 1 x 2, 此时原级数发散 由 x / 2 1 x 2, 原级数为 n 发散
n 1
当 0< x< 2时,收敛 x n 综上 n( ) ( x 0) n 1 2 当 x 2 时,发散

2. 根值判别法 n u r lim n 定理:设 un 为正项级数,若 n 则 r <1 ,级数收敛;r > 1,级数发散;r =1,此法失效.
则当 p > 1时广义p-级数收敛; p 1 时广义p-级数发散.
上述结论的证明有待于下次课的比较判别法 例10. 下列级数的敛散性如何?
1 1) n1 n( n 1)

微积分第二版课件第二节数项级数敛散性判别法

微积分第二版课件第二节数项级数敛散性判别法

定理 正项级数 un 收敛的充分必要条件为:它的 n1
前n 项部分和所构成的数列 {Sn}有上界.
定理(比较判别法1) 设两个正项级数 un与 vn ,
n1
n1
如果满足 un vn ,(n 1,2,),那么
(1) 若 vn收敛, 则 un 收敛.(大的收敛小的必收敛)
n1
n1
(2) 若 un 发散, 则 vn 发散. (小的发散大的必发散)
kvn (k
0) ,则正项级数
un
也发散.
n1

判定级数
(1)
n1
1 2n
; 1
(2)
n1
n 2n
1
n
的敛散性.

(1)因为
un
1 1 0(n 1,2,) 2n 1 2n
而级数
1
发散,由比较法知
1
发散.
n12n
n12n 1
(2)对于正项级数
n1
n n 2n 1
因为
un
n
n
比值的极限 lim un1 ,则
n1
n un
(1)当 1时,级数收敛;
(2)当 1 时,级数发散;
(3)当 1时,级数可能收敛也可能发散.
说明:比值判别法比比较判别法使用方便,它主 要判别一般项由指数幂或阶乘等形式构成的正项级数
的敛散性.但当 1 时,判别法失效.

判定 (1)
综合上述有 n1n1p当p 1时收敛,0 p 1时发散.
例 判定 (1)
1
, (2)
1
的敛散性.
n1(n 1)(n 4) n1n n 2

(1)因为 0 un
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正项级数敛散性判别 Prepared on 22 November 2020
正项级数敛散性的判别
刘 兵 军
无穷级数是高等数学的重要内容,是表示函数、研究函数的性质以及进
行数值计算的一种工具。

正项级数在无穷级数中占据了较大的比重,其题型丰富且灵活。

本文给出了正项级数敛散性的各种判别方法,通过典型例题的讲解,使学员能以尽快掌握正项级数敛散性的判断问题。

一. 常数项级数的概念
所谓无穷级数就是把无穷多个数按照一定的顺序加起来,所得的和式。

对于数列 ,,,,21n u u u ,由此数列构成的表达式
+++++n u u u u 321
叫做无穷级数,简称级数,记为∑∞
=1
n n u ,即
+++++=∑∞
=n n n
u u u u u 3211

(1)
其中第n 项n u 叫做级数(1)的一般项。

级数(1)的前n 项的和构成的数列
n n u u u s +++= 21, ,3,2,1=n
(2)
称为级数(1)的部分和数列。

根据部分和数列可得级数敛散性及和的定义。

定义 如果级数(1)的部分和数列n s 有极限,即存在常数s ,使得=∞
→n n s lim s ,则称

数(1)收敛,极限s 称为级数(1)的和;否则称级数(1)发散。

级数收敛的必要条件 如果级数(1)收敛,则其一般项n u 趋于零。

二. 正项级数敛散性的判别
由正数和零构成的级数称为正项级数。

比较审敛法是判别正项级数敛散性的一种常用且非常有效的方法。

比较审敛法 如果正项级数∑∞
=1n n v 收敛,且满足),3,2,1( =≤n v u n n ,则
∑∞
=1
n n u 收敛;
如果正项级数∑∞=1
n n v 发散,且满足),3,2,1( =≥n v u n n ,则∑∞
=1
n n u 发散;
比较审敛法只适用于正项级数敛散性的判别,而寻求合适的级数∑∞
=1
n n v 是
解题的关键。

几何级数∑∞
=-11
n n aq 和p-级数∑∞
=11
n p n 常用来充当比较审敛法中的级数∑∞
=1
n n v 。

例1 证明级数∑∞
=+122
1
n n 是收敛的。

证 由于2
22n n >+,所以22121n n <+,而级数∑∞
=121n n
为p=2 的p-级数
且收敛,
故由比较审敛法,级数∑∞
=+1221
n n 是收敛的。

例2 判别下列级数∑∞
=+122
2n n n
的敛散性。

分析 这是一个典型的例题,通项2
22+n n
是关于n 的一个有理分式。

应注意
分母和分子中n 的最高幂次之差,通项为关于n 的一个有理分式的级数和相应
的p-级数有相同的敛散性。

本题中这一差数为1,故应和p=1的p-级数∑∞
=11
n n

比较。

解 n n n n n n n 1
322222222⋅=++≥+,而级数∑∞=⋅1)132(n n 与∑∞
=1
1n n 有相同的敛散性,即
同时发散,故由比较审敛法,级数∑∞
=+1
222n n n
是收敛的。

在例2中,由于级数的通项比较复杂,使得敛散性的判别过程较为复杂,为使比较审敛法的应用更为方便,给出其极限形式。

比较审敛法的极限形式 设∑∞=1
n n u 和∑∞
=1
n n v 为两个正项级数,如果
l v u n
n
n =∞→lim
(+∞<<l 0), 则级数∑∞
=1
n n u 和∑∞
=1
n n v 有相同的敛散性。

如果正项级数∑∞
=1
n n v 发散,且满足),3,2,1( =≥n v u n n ,则∑∞
=1
n n u 发散;
例3 判别级数∑∞
=1
1
sin
n n
的敛散性。

解 因为111
sin
lim
=∞
→n
n n ,故由比较审敛法的极限形式得知此级数收敛。

如果不用比较审敛法的极限形式,例3中的级数敛散性的判别较为困难。

例4 用比较审敛法的极限形式判别例3中的级数∑

=+12
2
2n n n
的敛散性。

解 因为21
22lim 2=+∞→n n n n ,故由比较审敛法得知此级数收敛。

比值审敛法 设正项级数∑∞
=1n n u 的后项与前项的比值的极限等于ρ:
ρ=+∞→n
n n u u 1
lim

(3)
则当1<ρ时级数收敛;1>ρ时级数发散。

例5 判别级数
+++⋅⋅+⋅+n
n 10!
10321102110132 的敛散性。

解 因为
n n n u 10!
=,故101!1010
)!1(11+=
⋅+=++n n n u u n n n n ,从而∞=+=∞→+∞→n n u u n n
n n 1
lim lim
1。

由比值审敛法可知级数发散。

由例5易知,当级数的通项含有阶乘或n 出现在指数位置时,一般可用
比值审敛法判别其敛散性。

例6 判别级数∑∞
=⋅1!
2n n n n
n 的敛散性。

分析 此级数的通项n
n n n
n u !2⋅=中既含有n 的阶乘,又含有n
2和n n ,所以可用比值审敛法判断其敛散性。

解 因为n n n n n u !
2⋅=,所以n n n n n n n n
n n n n u u )
11(2
!2)1()!1(2111+=⋅⋅++=+++ 从而12
lim
1<=+∞→e u u n
n n ,由比值审敛法可知,此级数收敛。

当(3)中ρ等于1时,用比值审敛法不能判别级数的敛散性。

可用其它方
法判别其敛散性。

根值审敛法 设正项级数∑∞
=1n n u 的通项n u 的n 次方根的极限等于ρ:
ρ=∞
→n n n u lim ,
(4)
则当1<ρ时级数收敛;1>ρ时级数发散。

例8 证明级数 +++++
n n
13121132收敛。

分析 当级数的通项中含有n n 或类似的表达式时,通常采用根值审敛法
判别级数的敛散性。

证 因为011→==n
n u n
n n n (∞→n ) 故由根值审敛法得知所给级数收敛。

以上给出了正项级数的各种判别法。

对于给定的正项级数,可以按照以
下顺序对其敛散性进行判别:
1.首先观察其通项是否趣于零,如果通项不趣于零,则级数发散。

2.如果通项趣于零,可根据级数通项的特点,考虑用比较审敛法、比值审敛法或根值审敛法。

3.极其特殊的情况下,也可以用级数的部分和数列来判断级数的敛散性。

(完)。

相关文档
最新文档