镁基复合材料-项目简析
南开大学科技成果——氢能源车用纳米结构镁基合金复合储氢材料

南开大学科技成果——氢能源车用纳米结构镁基合
金复合储氢材料
项目简介针对车载氢能源的难题,开展纳米结构镁基合金复合材料储氢研究,特别开展了Mg纳米线的储氢性能研究。
MgH2(7.6wt%H2)是理想的轻质储氢材料之一,但其缓慢的吸放氢动力学和相对高的操作温度,限制了它的发展。
为了改善镁基材料的储氢性能,通过气相传输的方法制备了不同形貌的Mg纳米线。
结果表明,改变载气流速、传输温度和沉积基底,可以控制Mg纳米线的长度和直径。
测试结果显示,Mg纳米线降低了脱附能垒,改善了热力学和动力学性能。
实验结果显示,直径为30-50nm的Mg纳米线具有良好的可逆储放氢性能。
理论计算:MgH2纳米线直径与放氢热力学性能
实验研究:Mg/MgH2纳米线直径与其吸/放氢活化能
部分实验样品 研究成果发表在J.Am.Chem.Soc.,J.Phys.Chem.C ,pds 等期刊上,授权发明专利2项。
镁基复合材料

展望
镁基复合材料拥有优异的力学性能和物理性能,已 经显示出广阔的应用前景。 制备工艺、回收技术以及材料内部结构性能的各个 领域进行更多的原理研究及应用探索。 空间应用及交通领域 人类社会的老龄化问题日益突出,发展各种超轻结 构材料对于老年人独立工作及日常生活十分必要。
参考文献
[1] 杜文博,严振杰,吴玉锋等. 镁基复合材料的制备方法与新工艺.稀有 金属材料与工程. 2009, 38(3) [2] T W 克莱因. 金属基复合材料导论 . 余永宁,房志刚译. 北京:冶金工业 出版社. 1996. [3] 董 群, 陈 礼,清赵明久等. 镁基复合材料制备技术、性能及应用发展概 况. 材料导报. 2004, 18(4) [4] 张修庆, 滕新营.镁基复合材料的制备工艺. 热加工工艺 2004, (3) [5]方信贤, 王 莹.原位合成颗粒增强镁基复合材料研究进展.南京工程学 院学报( 自然科学版). 2008, 6(2) [6 ]南宏强 ,袁 森 ,王武孝等. 颗粒增强镁基复合材料的制备工艺研究进 展. 2006, 27(4) [7] 孙志强,张 荻,丁 剑等。原位增强镁基复合材料研究进展与原位反 应体系热力学. 材料科学与工程. 2002, 20(4) [8]胡连喜,李小强.挤压变形对SiCw/ZK51A镁基复合材料组织和性能的 影响.中国有色金属学报,2000,10 (5)
应用
应用
镁基复合材料的研究及其展望
研究方向
研究中的问题
展望
研究方向
组成及界面反应
增强相选择要求与铝基复合材料大致相同,都要求物 理、化学相容性好,润湿性良好,载荷承受能力强,尽量 避免增强相与基体合金之间的界面反应等。
制备及合成工艺
反应物的选择和反应工艺的控制。
镁基复合材料优良的耐磨性详解

镁基复合材料优良的耐磨性
实验表明
镁基复合材料在磨粒磨损和有润滑的情况下优于基体耐磨性
本质
增强体的加入影响了磨损机制以影响材料的磨损特性
Company Logo
影响因素
增强体种类 增强体形状 增强体体积分数
因素
磨损特性
正载荷 滑动速度 滑动距离
Company Logo
增强体种类
至 70 ℃
静置
升温到730℃
5min
搅拌器搅拌30min
浇注
200℃退火
( SiCp+ B4 Cp ) / ZM5 镁基复合材料
固溶及时效处理
Company Logo
B4C和SiC颗粒增强镁基复合材料的磨损特性
Company Logo
B4C和SiC颗粒增强镁基复合材料的磨损特性
Company Logo
丝模等
❖ C纳米管
碳纳米管出 现团聚现象
Company Logo
多种增强体共用
1.Al2O3对基体加入 Al2O3短纤 维和石墨进 行混杂增强
效果并不好
将硬质颗粒与石墨混杂增强???
Company Logo
增强体纳米化 选择其他增强体 多种增强体共用
……
Company Logo
增强体纳米化
加入纳米SiC后,晶粒细化
加入纳米SiCp后,材料从轻 微磨损到严重磨损的转变温度提 高了50℃,复合材料表现出较 好的耐高温磨损性能
Company Logo
选用其他增强体
❖ ZrO2颗粒
部分稳定氧化锆(VK-R50Y3)具有高的硬度和耐磨性,所以氧化锆在磨介 和磨具领域中有着广泛的应用:如球磨球和球磨机内部衬里和耐磨部件,拉
镁基复合材料的研究进展

增 强体 的选 择 与镁 基 复 合 材 料 大体 相 同 , 要 求
物理 、 化 学 相容性 好 , 润湿 性 良好 , 载 荷 承载能 力强 ,
尽 量避 免 增 强 体 与 基 体 合 金 之 间 的 界 面 过 度 反 应 等, 增强 体一 般有 颗粒 增强 体 、 纤维 增强体 及 晶须增
镁及 镁合 金 具有 密度 低 、 比强度 与 比刚度 高 、 抗 冲击 、 阻 尼 性 能 好 等 优 点 1 1 . 但 是 作 为 结 构 材 料 其
刚度 、 硬 度及 耐磨 性不 够理 想 , 因此 应用受 到 很大 限
人 A l , z n , R e等元素 合金 化后 才 能 用作 基 体 . 常 用 的基 体合 金 主 要 有 A M系, A Z系 与 A E系 . 此外 还 有 处于 较 高 温 度 下 使 用 的 两 个 合 金 系 Mg—A g和 Mg—Y . 不 同 的基 体对 复合 材料 的抗 拉 强度 , 屈 服 强 度 与结 合强 度等 有 较 大 的影 响 . 并 不 是 所 有 的基 体 强 度越 高 , 复合材 料 的强度 就越 高 .
1 . 2 增 强体
制. 通 过 添加 在基 体 中的颗 粒 、 纳米碳 管 或某 些纤 维 ( 碳纤 维 , 氧化铝纤维等 ) 来制造镁基复合材料 , 可
以显 著提 高抗 拉 强 度 、 屈服强度、 抗 蠕 变性 能 、 耐 热
பைடு நூலகம்
性能 、 耐蚀 性 能 等 J . 镁 基 复 合 材 料 是 当 今 高 新 技 术领 域 内最有 希望 采 用 的复 合 材 料 之一 , 在 航 空航
金属基复合材料应用举例

金属基复合材料应用举例金属基复合材料是指以金属为基体,添加一种或多种增强相(如纤维、颗粒、片材等)来改善金属材料的性能和功能的一类材料。
金属基复合材料具有高强度、高韧性、高温稳定性等优点,因此在航空航天、汽车、船舶、电子等领域得到广泛应用。
以下是十个金属基复合材料的应用举例:1. 铝基复合材料:铝基复合材料由铝基体和增强相(如陶瓷颗粒、碳纤维等)构成,具有低密度、高强度、耐磨损等特点。
在航空航天领域,铝基复合材料被用于制造飞机机身、航天器传动系统等部件。
2. 镁基复合材料:镁基复合材料具有低密度、高比强度和良好的导热性能,广泛应用于航空航天、汽车、电子等领域。
例如,在汽车行业中,镁基复合材料被用于制造车身结构和发动机零部件,可以减轻车重,提高燃油效率。
3. 钛基复合材料:钛基复合材料由钛基体和增强相(如陶瓷颗粒、纤维等)构成,具有高强度、低密度和良好的耐腐蚀性能。
在航空航天领域,钛基复合材料被用于制造飞机发动机叶片、航天器外壳等高温部件。
4. 镍基复合材料:镍基复合材料由镍基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温强度和良好的耐腐蚀性能。
在航空航天领域,镍基复合材料被用于制造航空发动机涡轮叶片、燃烧室等高温部件。
5. 铜基复合材料:铜基复合材料由铜基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高导电性和高热导率。
在电子领域,铜基复合材料被用于制造高性能散热器、电子封装材料等。
6. 钨基复合材料:钨基复合材料由钨基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高密度、高熔点和高强度。
在核工业领域,钨基复合材料被用于制造核反应堆材料、高温组件等。
7. 铁基复合材料:铁基复合材料由铁基体和增强相(如碳纤维、陶瓷颗粒等)构成,具有高强度和良好的耐磨性。
在机械制造领域,铁基复合材料被用于制造高性能齿轮、轴承等零部件。
8. 锆基复合材料:锆基复合材料由锆基体和增强相(如陶瓷颗粒、纤维等)构成,具有高温稳定性和良好的耐腐蚀性能。
(完整word版)镁基复合材料制备技术、性能及应用发展概况

镁基复合材料制备技术、性能及应用发展概况摘要:镁基复合材料因其轻量化和高性能而成为当今高新技术领域中最富竞争力和最有希望采用的复合材料之一。
大致笔述了常用镁基复合材料研究概况、制备技术、性能及应用前景。
关键词:镁基复合材料制备技术性能应用Fabrication,Properties and Application of M agnesium—matrix CompositesDONG Qun CHEN Liqing ZHAO Mingjiu BI Jing(Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China)Abstract Magnesium—matrix composites with lightweight and high performance are becoming one of themost competitive and promising candidates in the applications of high—tech fields.An overview is made on the fabri—ating techniques,mechanical properties and applications for the typical magnesium—matrix composites,and theresearch trend is proposedKey words magnesium matrix composite,fabrication,properties,application. 0引言:镁基复合材料是继铝基复合材料之后又一具有竞争力的轻金属基复合材料【E1】,主要特点是密度低、比强度和比刚度高,同时还具有良好的耐磨性、耐高温性、耐冲击性、优良的减震性能及良好的尺寸稳定性和铸造性能等;此外,还具有电磁屏蔽和储氢特性等,是一类优秀的结构与功能材料,也是当今高新技术领域中最有希望采用的复合材料之一;在航空航天、军工产品制造、汽车以及电子封装等领域中具有巨大的应用前景。
颗粒增强镁基复合材料概述

颗粒增强镁基复合材料颗粒增强金属基复合材料由于制备工艺简单、成本较低微观组织均匀、材料性能各向同性且可以采用传统的金属加工工艺进行二次加工等优点,已经成为金属基复合材料领域最重要的研究方向。
颗粒增强金属基复合材料的主要基体有铝、镁钛、铜和铁等,其中铝基复合材料发展最快;而镁的密度更低,有更高的比强度、比刚度,而且具有良好的阻尼性能和电磁屏蔽等性能,镁基复合材料正成为继铝基之后的又一具有竞争力的轻金属基复合材料。
镁基复合材料因其密度小,且比镁合金具有更高的比强度、比刚度、耐磨性和耐高温性能,受到航空航天、汽车、机械及电子等高技术领域的重视。
颗粒增强镁基复合材料与连续纤维增强、非连续(短纤维、晶须等)纤维增强镁基复合材料相比,具有力学性能呈各向同性、制备工艺简单、增强体价格低廉、易成型、易机械加工等特点,是目前最有可能实现低成本、规模化商业生产的镁基复合材料。
一、制备方法1、粉末冶金法粉末冶金法是把微细纯净的镁合金粉末和增颗粒均匀混合后在模具中冷压,然后在真空中将合体加热至合金两相区进行热压,最后加工成型得复合材料的方法。
粉末冶金的特点:可控制增颗粒的体积分数,增强体在基体中分布均匀;制备温度较低,一般不会发生过量的界面反应。
该法工艺设备较复杂,成本较高,不易制备形状复杂的零件。
2、熔体浸渗法熔体浸渗法包括压力浸渗、无压浸渗和负压浸渗。
压力浸渗是先将增强颗粒做成预制件,加入液态镁合金后加压使熔融的镁合金浸渗到预制件中,制成复合材料采用高压浸渗,可克服增强颗粒与基体的不润湿情况,气孔、疏松等铸造缺陷也可以得到很好的弥补。
无压浸渗是指熔的镁合金在惰性气体的保护下,不施加任何压力对增强颗粒预制件进行浸渗。
该工艺设备简单、成本低,但预制件的制备费用较高,因此不利于大规模生产。
增强颗粒与基体的润湿性是无压浸渗技术的关键。
负压浸渗是通过预制件造成真空的负压环境使熔融的镁合金渗入到预制件中。
由负压浸渗制备的SiC/Mg颗粒在基体中分布均匀。
镁基复合材料的应用及发展

镁基复合材料的应用及发展镁基复合材料是一种由镁合金基体和其他增强材料组成的复合材料。
镁合金具有低密度、高比强度和良好的机械性能等优点,但其在高温和腐蚀环境下的性能较差。
通过将其他增强材料与镁合金基体结合,可以改善镁合金的性能,并拓展其应用领域。
以下将详细介绍镁基复合材料的应用及发展。
一、航空航天领域镁基复合材料在航空航天领域有着广泛的应用。
由于镁合金具有低密度和高比强度,可以减轻飞机和航天器的重量,提高其燃油效率和载荷能力。
同时,镁基复合材料还具有良好的耐腐蚀性能,可以在恶劣的环境下使用。
目前,镁基复合材料已经成功应用于飞机结构、发动机零部件、导弹和航天器等领域。
二、汽车工业镁基复合材料在汽车工业中也有着广泛的应用前景。
由于镁合金具有低密度和良好的机械性能,可以减轻汽车的重量,提高燃油效率和行驶性能。
此外,镁基复合材料还具有良好的吸能性能,可以提高汽车的碰撞安全性。
目前,一些汽车制造商已经开始使用镁基复合材料制造车身和零部件,以实现轻量化和节能减排的目标。
三、电子领域镁基复合材料在电子领域也有着广泛的应用。
由于镁合金具有良好的导电性能和热传导性能,可以用于制造电子器件和散热器等。
此外,镁基复合材料还具有良好的抗电磁干扰性能,可以提高电子设备的稳定性和可靠性。
目前,一些电子产品中已经开始使用镁基复合材料,如手机、平板电脑和电视等。
四、医疗领域镁基复合材料在医疗领域也有着潜在的应用价值。
由于镁合金具有良好的生物相容性和生物降解性,可以用于制造骨科植入物和修复器械等。
此外,镁基复合材料还具有良好的抗菌性能,可以预防感染和促进伤口愈合。
目前,一些医疗器械制造商已经开始研发和应用镁基复合材料,以提高医疗器械的性能和安全性。
随着科学技术的不断进步,镁基复合材料的应用领域还将不断拓展。
未来,随着材料制备技术的改进和材料性能的提高,镁基复合材料有望在更多领域发挥重要作用。
同时,还需要进一步研究镁基复合材料的制备工艺、性能测试和应用评价等方面的问题,以推动其在实际应用中的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镁基复合材料-项目简析
————————————————————————————————作者:————————————————————————————————日期:
商丹循环工业经济园区
年产5万吨镁基复合材料
项目简析
1、项目名称:
商丹园区年产5万吨镁基复合材料项目
2、产业政策:
复合材料是国家发改委大力倡导和积极支持的高科技产品,项目属于《产业结构调整指导目录》(2011)鼓励类项目。
3、产品及用途:
金属复合材料属于复合材料的一类,是一门相对较新的材料学科,仅有40余年的发展历史。
单一的金属、陶瓷、高分子等工程材料难以满足对材料的多方面性能要求,复合材料因此被积极研发。
金属复合材料是指利用复合技术将多种性能不同的金属、非金属在界面上实现冶金结合而形成的材料,能够极大地改善单一金属材料的热膨胀性、强度、断裂韧性、冲击韧性、耐磨损性、电性能、磁性能等诸多性能。
按基体类型分,主要有铝基、镁基、锌基、铜基、钛基、镍基、耐热金属基、金属间化合物基等复合材料。
目前铝基、镁基、钛基、镍基复合材料发展较为成熟。
镁基复合材料主要以镁铝合金为基体,以陶瓷颗粒、纤维或
晶须作为增强体。
制成的镁基复合材料,集超轻、高比刚度、高比强度于一身,该类材料比铝基复合材料更轻,具有更高的比强度和比刚度,成为航空航天等领域的优选材料。
4、市场分析:
镁基复合材料正成为继铝基之后的又一具有竞争力的轻金属基复合材料,因其密度小(1.74 g/cm3),仅为铝的2/3,且比镁合金具有更高的比强度、比刚度、良好的阻尼性能和电磁屏蔽等性能和耐高温性能,在航天、航空、电子、汽车、轮船、先进武器等方面均具有广泛的应用前景。
近年来,镁基复合材料下游行业需求增长带来镁基复合材料市场需求的扩张,行业销售增长明显,产品供不应求。
在国家“十二五”规划和产业结构调整的大方针下,镁基复合材料面临巨大的市场投资机遇,行业有望迎来新的发展契机。
5、生产工艺:
镁基复合材料的增强体主要有长纤维、短纤维、颗粒和晶须等,其中颗粒增强金属基复合材料制备工艺简单、成本较低微观组织均匀、材料性能各向同性且可以采用传统的金属加工工艺进行二次加工等优点,成为金属基复合材料领域最重要的研究方向,正在向工业规模化生产和应用发展。
5.1常用的基体镁合金
镁基复合材料要求基体组织细小、均匀,基体合金使用性能良好。
根据镁基复合材料的使用性能,对侧重铸造性能的镁基复
合材料可选择不含Zr的铸造镁合金为基体;侧重挤压性能的则一般选用变形镁合金。
这些基体镁合金主要有镁铝锌系(A731、AZ61、AZ91)、镁锌锆系、镁锂系、镁锌铜系(ZC71)镁锰系、镁稀土锆系、镁钍锆系和镁钕银系等。
纯镁的强度较低,不适合作为基体。
5.2常用的颗粒增强体
根据镁基复合材料的使用性能、基体镁合金的种类和成分来选择所需的颗粒增强体,要求增强体与基体物理、化学相容性好,应尽量避免增强体与基体合金之间的有害界面反应,并使其与基体润湿性良好,载荷承受能力强等。
选择所需的颗粒增强体包括:
①碳化物SiC颗粒
②硼化物TiB2颗粒
③氧化物MgO
④金属间化合物Mg2Si
制备方法可分为外加颗粒和原位内生颗粒法两种。
5.3工艺方法
5.3.1粉末冶金法
粉末冶金法是把微细纯净的镁合金粉末和增强体颗粒均匀混合后在模具中冷压,然后在真空中将合体加热至合金两相区进行热压,最后加工成型得复合材料的方法。
该法工艺设备较复杂,成本较高,不易制备形状复杂的零件。
5.3.2熔体浸渗法
包括压力浸渗、无压浸渗和负压浸渗。
压力浸渗是先将增强颗粒做成预制件,加入液态镁合金后加压使熔融的镁合金浸渗到预制件中,制成复合材料采用高压浸渗,可克服增强颗粒与基体的不润湿情况,气孔、疏松等铸造缺陷也可以得到很好的弥补。
无压浸渗是指熔的镁合金在惰性气体的保护下,不施加任何压力对增强颗粒预制件进行浸渗。
该工艺设备简单、成本低,但预制件的制备费用较高,因此不利于大规模生产。
5.3.3全液态搅拌法
在保护气氛下,将增强颗粒加入熔融的镁合金基体中,再进行机械搅拌,最后浇铸成型。
此方法设备以及工序简单,成本也较低,但在搅拌的过程中容易产生气孔,另外由于增强颗粒与基体的密度不同易发生颗粒沉积和团聚的现象。
5.3.4半固态搅熔铸造法
半固态搅熔铸造法是指将增强颗粒加入由机械搅拌的半固态基体中,待混合均匀后升至熔点温度浇铸,凝固后得到镁基复合材料的方法。
此方法可以避免全液态搅拌法易产生气孔和发生颗粒沉积及团聚的现象。
该工艺较有利于大规模工业生产。
5.3.5喷射沉积法
此工艺首先用高压的惰性气体流将液态镁合金雾化,形成熔融状态的镁合金喷射流,同时将增强颗粒喷入镁合金喷射流中,使颗粒和基体的混合体沉积到衬底上,凝固后得到镁基复合材
料。
该工艺所制备的复合材料颗粒在基体中分布均匀、凝固快,界面反应较少。
此方法技术要求高、成本大。
综合考虑,拟选用半固态搅熔铸造法。
6、原材料供应:
主要原料镁铝合金依托产业链前端的“商丹园区年产10万吨镁铝合金项目”;所需的颗粒增强体主要通过外购解决。
7、项目选址:
项目拟建于商丹循环工业经济园区内,以大企业引领、园区承载、集群化发展的模式,形成金属镁→镁合金→镁基复合材料循环发展产业链。
8、能耗状况:
产品生产过程中用电量较大。
9、环境影响:
本项目运用物理工艺将镁铝合金加工成镁基复合材料,生产过程无化工工艺,不使用有毒有害物质,所以企业无特别污染物排放。
一般污染物有:粉尘、废水和生产过程中产生的噪音。
10、经济及社会效益预测:
项目总投资约1.8亿元。
建成达产后,预计年销售收入可达13亿元,实现净利润0.5亿元,上缴各类税金0.6亿元。