高中数学必修四学案:3.2简单的三角恒等变换(1)Word版

合集下载

人教a版必修4学案:3.2简单的三角恒等变换(含答案)

人教a版必修4学案:3.2简单的三角恒等变换(含答案)

3.2 简单的三角恒等变换自主学习知识梳理1.半角公式(1)S α2:sin α2=__________;(2)C α2:cos α2=________; (3)T α2:tan α2=________________=________________=__________(有理形式). 2.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),cos φ=__________,sin φ=______________其中φ称为辅助角,它的终边所在象限由________决定.自主探究1.试用cos α表示sin 2α2、cos 2α2、tan 2α2.2.证明:tan α2=sin α1+cos α=1-cos αsin α.对点讲练知识点一 半角公式的应用例1 已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2的值.回顾归纳 在运用半角公式时,要注意根号前符号的选取,不能确定时,根号前应保持正、负两个符号.变式训练1 已知α为钝角,β为锐角,且sin α=45,sin β=1213,求cos α-β2.知识点二 利用辅助角公式研究函数性质例2 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合.回顾归纳 研究形如f (x )=a sin 2ωx +b sin ωx cos ωx +c cos 2ωx 的性质时,先化成f (x )=A sin(ω′x +φ)+B 的形式后,再解答.这是一个基本题型,许多题目化简后都化归为该题型.变式训练2 已知函数f (x )=sin(x +π6)+sin ⎝⎛⎭⎫x -π6+cos x +a (a ∈R ). (1)求函数y =f (x )的单调增区间;(2)若函数f (x )在⎣⎡⎦⎤-π2,π2上的最大值与最小值的和为3,求实数a 的值.知识点三 三角函数在实际问题中的应用例3 如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.回顾归纳 利用三角函数知识解决实际问题,关键是目标函数的构建,自变量常常选取一个恰当的角度,要注意结合实际问题确定自变量的范围.变式训练3 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图所示).1.学习三角恒等变换,不要只顾死记硬背公式,而忽视对思想方法的理解,要立足于在推导过程中记忆和运用公式.2.形如f (x )=a sin x +b cos x ,运用辅助角公式熟练化为一个角的一个三角函数的形式,即f (x )=a 2+b 2sin(x +φ) (φ由sin φ=b a 2+b 2,cos φ=a a 2+b2确定)进而研究函数f (x )性质. 如f (x )=sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4, f (x )=sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.课时作业一、选择题1.已知180°<α<360°,则cos α2的值等于( ) A .-1-cos α2 B. 1-cos α2C .-1+cos α2 D. 1+cos α22.如果|cos θ|=15,5π2<θ<3π,那么sin θ2的值为( ) A .-105 B.105C .-155 D.1553.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .a >b >c B .a <b <cC .a <c <bD .b <c <a4.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A.⎣⎡⎦⎤-π,-5π6B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0 D.⎣⎡⎦⎤-π6,0 5.函数f (x )=cos x (sin x +cos x )的最小正周期为( )A .2πB .π C.π2 D.π4二、填空题6.函数y =cos x +cos ⎝⎛⎭⎫x +π3的最大值是________. 7.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ的值是________.8.已知函数f (x )=a sin[(1-a )x ]+cos[(1-a )x ]的最大值为2,则f (x )的最小正周期为________.三、解答题9.已知向量a =(sin(π2+x ),3cos x ),b =(sin x ,cos x ),f (x )=a ·b . (1)求f (x )的最小正周期和单调增区间;(2)如果三角形ABC 中,满足f (A )=32,求角A 的值.10.已知函数f (x )=2a sin 2x -23a sin x cos x +b (a >0)的定义域为⎣⎡⎦⎤0,π2,值域为[-5,4],求常数a ,b 的值.§3.2 简单的三角恒等变换答案知识梳理1.(1)±1-cos α2 (2)± 1+cos α2 (3)± 1-cos α1+cos α sin α1+cos α 1-cos αsin α 2.a a 2+b 2 b a 2+b 2点(a ,b ) 自主探究1.解 ∵cos α=cos 2α2-sin 2α2=1-2sin 2α2∴2sin 2α2=1-cos α,sin 2α2=1-cos α2. ① ∵cos α=2cos 2α2-1,∴cos 2α2=1+cos α2② 由①②得:tan 2α2=1-cos α1+cos α. 2.证明 ∵sin α1+cos α=2sin α2cos α22cos 2α2=tan α2. ∴tan α2=sin α1+cos α,同理可证:tan α2=1-cos αsin α. ∴tan α2=sin α1+cos α=1-cos αsin α. 对点讲练例1 解 ∵sin θ=45,5π2<θ<3π. ∴cos θ=-1-sin 2θ=-35. 又5π4<θ2<3π2. ∴cos θ2=-1+cos θ2=-1-352=-55. tan θ2=1-cos θ1+cos θ=1-⎝⎛⎭⎫-351+⎝⎛⎭⎫-35=2.变式训练1 解 ∵α为钝角,β为锐角,sin α=45,sin β=1213. ∴cos α=-35,cos β=513. cos(α-β)=cos αcos β+sin αsin β=-35×513+45×1213=3365. 又∵π2<α<π,0<β<π2, ∴0<α-β<π.0<α-β2<π2. ∴cos α-β2=1+cos (α-β)2=1+33652=76565. 例2 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6 +2sin 2⎝⎛⎭⎫x -π12 =3sin2⎝⎛⎭⎫x -π12+1-cos2⎝⎛⎭⎫x -π12 =2⎣⎡⎦⎤32sin2⎝⎛⎭⎫x -π12-12cos2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1,∴T =2π2=π. (2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2, 即x =k π+5π12(k ∈Z ), ∴所求x 的集合为{x |x =k π+5π12,k ∈Z }. 变式训练2 解 (1)f (x )=sin ⎝⎛⎭⎫x +π6+ sin ⎝⎛⎭⎫x -π6+cos x +a =3sin x +cos x +a =2sin ⎝⎛⎭⎫x +π6+a , 解不等式2k π-π2≤x +π6≤2k π+π2(k ∈Z ), 得y =f (x )的单调增区间是 ⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ). (2)当x ∈⎣⎡⎦⎤-π2,π2时,-π3≤x +π6≤2π3,sin ⎝⎛⎭⎫x +π6∈⎣⎡⎦⎤-32,1, ∴f (x )的值域是[-3+a,2+a ].故(-3+a )+(2+a )=3,即a =3-1.例3 解 在直角三角形OBC 中,OB =cos α,BC =sin α. 在直角三角形OAD 中,DA OA=tan 60°= 3.∴OA =33DA =33BC =33sin α, ∴AB =OB -OA =cos α-33sin α 设矩形ABCD 的面积为S ,则S =AB ·BC =⎝⎛⎭⎫cos α-33sin αsin α =sin αcos α-33sin 2α =12sin 2α-36(1-cos 2α) =12sin 2α+36cos 2α-36=13⎝⎛⎭⎫32sin 2α+12cos 2α-36 =13sin ⎝⎛⎭⎫2α+π6-36. 由于0<α<π3,所以π6<2α+π6<5π6, 所以当2α+π6=π2, 即α=π6时,S 最大=13-36=36. 因此,当α=π6时,矩形ABCD 的面积最大,最大面积为36. 变式训练3 解如图所示,连OC , 设∠COB =θ,则0<θ<π4,OC =1. ∵AB =OB -OA =cos θ-AD=cos θ-sin θ,∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ =12(sin 2θ+cos 2θ)-12=22cos ⎝⎛⎭⎫2θ-π4-12 ∴当2θ-π4=0,即θ=π8时,S max =2-12(m 2), ∴割出的长方形桌面的最大面积为2-12(m 2). 课时作业1.C 2.C3.C [由题可得a =sin 24°,b =sin 26°,c =sin 25°,所以a <c <b .]4.D [f (x )=2sin ⎝⎛⎭⎫x -π3,f (x )的单调递增区间为 ⎣⎡⎦⎤2k π-π6,2k π+56π (k ∈Z ), 令k =0得增区间为⎣⎡⎦⎤-π6,5π6.] 5.B [f (x )=sin x cos x +cos 2x =12sin 2x +1+cos 2x 2=12sin 2x +12cos 2x +12=22sin ⎝⎛⎭⎫2x +π4+12.∴T =π.] 6. 3解析 (1)y =cos x +cos ⎝⎛⎭⎫x +π3 =cos x +cos x cos π3-sin x sin π3=32cos x -32sin x =3⎝⎛⎭⎫32cos x -12sin x =3cos ⎝⎛⎭⎫x +π6. 当cos ⎝⎛⎭⎫x +π6=1时,y 有最大值 3. 7.-π6解析 3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6.∴φ=-π6. 8.π解析 由a +1=2,∴a =3,∴f (x )=-3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +5π6,∴T =π. 9.解 (1)由题意知,f (x )=sin x cos x +32+32cos 2x =sin(2x +π3)+32 2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 即k π-5π12≤x ≤k π+π12,k ∈Z 最小正周期为π,单调增区间为[k π-5π12,k π+π12],k ∈Z . (2)由(1)知,f (x )=sin ⎝⎛⎭⎫2x +π3+32. ∵f (A )=32,∴sin(2A +π3)=0, 又∵A ∈(0,π),∴π3<2A +π3<7π3,∴2A +π3=π或2π, ∴A =π3或5π6. 10.解 f (x )=2a sin 2x -23a sin x cos x +b=2a ·1-cos 2x 2-3a sin 2x +b =-(3a sin 2x +a cos 2x )+a +b=-2a sin ⎝⎛⎭⎫2x +π6+a +b ∵0≤x ≤π2,∴π6≤2x +π6≤76π. ∴-12≤sin ⎝⎛⎭⎫2x +π6≤1. ∵a >0,∴f (x )max =2a +b =4,f (x )min =b -a =-5. 由⎩⎪⎨⎪⎧ 2a +b =4b -a =-5,得⎩⎪⎨⎪⎧a =3b =-2.。

2020-2021学年数学人教A版必修4学案:3.2 简单的三角恒等变换

2020-2021学年数学人教A版必修4学案:3.2 简单的三角恒等变换

3.2 简单的三角恒等变换[目标] 1.记住三角恒等变换常用公式. 2.能够利用三角函数公式进行简单的三角函数式的化简、求值和证明.[重点] 三角恒等变换常用公式. [难点] 三角恒等变换的化简与求值.知识点一 降幂公式与半角公式[填一填][答一答]1.半角公式中“±”号如何选取? 提示:符号由α2所在象限决定.2.已知sin θ=45,且5π2<θ<3π,则sin θ2=-255,cos θ2=-55,tan θ2=2.解析:∵sin θ=45,5π2<θ<3π, ∴cos θ=-1-sin 2θ=-35, ∵5π4<θ2<3π2, ∴sin θ2=-1-cos θ2=-1+352=-255. cos θ2=-1+cos θ2=-1-352=-55.tan θ2=sin θ2cos θ2=2(或tan θ2=sin θ1+cos θ=451-35=2).知识点二 常见的三角恒等变换[填一填]1.a sin α+b cos α =a 2+b 2(sin α·a a 2+b 2+cos α·ba 2+b2) =a 2+b 2sin(α+φ).(其中令cos φ=a a 2+b 2,sin φ=ba 2+b2)2.sin 2α=1-cos2α2,cos 2α=1+cos2α2,sin αcos α=12sin2α.[答一答]3.如何确定上述辅助角公式中的φ值?提示:可以由sin φ和cos φ的符号来确定φ所在的象限,由sin φ或cos φ的值确定角φ的大小.4.填空:(1)sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. (2)3sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π6. (3)sin α±3cos α=2sin ⎝ ⎛⎭⎪⎫α±π3.类型一 半角公式的应用[例1] (1)设5π<θ<6π,cos θ2=a ,则sin θ4等于( ) A.1+a 2 B .1-a 2 C .-1+a 2D .-1-a 2(2)若sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=________.[解析] (1)由题知,5π<θ<6π,cos θ2=a ,则54π<θ4<32π,则sin θ4=-1-cos θ22=-1-a2.故选D.(2)∵sin(π-α)=-53,α∈⎝ ⎛⎭⎪⎫π,32π, ∴sin α=-53,cos α=-23,又∵α2∈⎝ ⎛⎭⎪⎫π2,34π,∴sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-1+cos α2=-66.[★★答案★★](1)D(2)-66已知θ的某个三角函数值,求θ2的三角函数值的步骤是:(1)利用同角三角函数基本关系式求得θ的其他三角函数值;(2)代入半角公式计算即可.[变式训练1]已知α∈(-π2,0),cosα=45,则tanα2=(D) A.3B.-3C.13D.-13解析:因为α∈(-π2,0),且cosα=45,所以α2∈(-π4,0),tanα2=-1-cosα1+cosα=-1-451+45=-13,故选D.类型二三角恒等式的化简与证明[例2]已知π<α<3π2,化简:1+sinα1+cosα-1-cosα+1-sinα1+cosα+1-cosα.[解]原式=⎝⎛⎭⎪⎫sinα2+cosα222⎪⎪⎪⎪⎪⎪cosα2-2⎪⎪⎪⎪⎪⎪sinα2+⎝⎛⎭⎪⎫sinα2-cosα222⎪⎪⎪⎪⎪⎪cosα2+2⎪⎪⎪⎪⎪⎪sinα2,∵π<α<3π2,∴π2<α2<3π4. ∴cos α2<0,sin α2>0.∴原式=⎝ ⎛⎭⎪⎫sin α2+cos α22-2⎝ ⎛⎭⎪⎫sin α2+cos α2+⎝ ⎛⎭⎪⎫sin α2-cos α222⎝ ⎛⎭⎪⎫sin α2-cos α2 =-sin α2+cos α22+sin α2-cos α22=-2cos α2.三角恒等变换是指依据三角函数的有关公式、定理,对三角函数式进行某种变形的过程,凡三角问题几乎都要通过三角恒等变换来解决.具体步骤如下:(1)发现差异——观察角、名、形三方面的差异;(2)寻找联系——根据式子的结构特征,找出差异间的联系; (3)合理转化——选取恰当的公式,进行恒等变形,促使差异转化. [变式训练2] 化简sin4α4sin 2⎝ ⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α得( A )A .sin2αB .cos2αC .sin αD .cos α解析:∵4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α=4cos 2⎝⎛⎭⎪⎫π4-αtan ⎝ ⎛⎭⎪⎫π4-α=4cos ⎝ ⎛⎭⎪⎫π4-αsin ⎝ ⎛⎭⎪⎫π4-α =2sin ⎝ ⎛⎭⎪⎫π2-2α=2cos2α,∴原式=sin4α4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝⎛⎭⎪⎫π4-α=sin4α2cos2α=2sin2αcos2α2cos2α=sin2α. 类型三 三角恒等变换的应用命题视角1:三角恒等变换与三角函数性质的结合[例3] 函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.[解析] 由题意知,f (x )=12sin2x +12(1-cos2x )+1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π(k ∈Z ).[★★答案★★] π [3π8+k π,7π8+k π](k ∈Z )讨论三角函数的性质一般要把三角函数化为y =A sin (ωx +φ),y =A cos (ωx +φ),y =A tan (ωx +φ)的形式才能进行讨论.[变式训练3] 已知函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6,则函数的值域为[-1,1],对称轴方程为x =56π+k π(k ∈Z ).解析:f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6=sin x -32cos x -12sin x=12sin x -32cos x =sin ⎝ ⎛⎭⎪⎫x -π3则函数f (x )的值域是[-1,1].令x -π3=π2+k π,k ∈Z ,得x =56π+k π,k ∈Z . 所以函数f (x )的对称轴方程为x =56π+k π(k ∈Z). 命题视角2:三角恒等变换与平面向量的结合[例4] 在平面直角坐标系xOy 中,点A (cos θ,2sin θ),B (sin θ,0),其中θ∈R .(1)当θ=2π3时,求向量AB →的坐标; (2)当θ∈⎣⎢⎡⎦⎥⎤0,π2时,求|AB →|的最大值.[解] (1)由题意得AB →=(sin θ-cos θ,-2sin θ),当θ=2π3时,sin θ-cos θ=sin 2π3-cos 2π3=1+32,-2sin θ=-2sin 2π3=-62,所以AB →=⎝ ⎛⎭⎪⎫1+32,-62. (2)因为AB →=(sin θ-cos θ,-2sin θ), 所以|AB →|2=(sin θ-cos θ)2+(-2sin θ)2 =1-sin2θ+2sin 2θ=1-sin2θ+1-cos2θ =2-2sin ⎝ ⎛⎭⎪⎫2θ+π4.因为0≤θ≤π2,所以π4≤2θ+π4≤5π4. 所以当2θ+π4=5π4时,|AB →|2取到最大值, |AB →|2=2-2×⎝⎛⎭⎪⎫-22=3,即当θ=π2时,|AB →|取到最大值 3.三角恒等变换与平面向量的坐标运算相结合是常见的题型,这种题型往往体现了三角恒等变换的工具性.[变式训练4] 已知A ,B ,C 是△ABC 三内角,向量m =(-1,3),n =(cos A ,sin A ),且m·n =1,则角A =( D )A.π2B.π6C.π4D.π3 解析:∵m·n =1,∴(-1,3)·(cos A ,sin A )=1,即3sin A -cos A =1,∴2⎝⎛⎭⎪⎫sin A ·32-cos A ·12=1,∴sin ⎝ ⎛⎭⎪⎫A -π6=12.∵0<A <π,∴-π6<A -π6<5π6, ∴A -π6=π6,∴A =π3.命题视角3:三角恒等变换的实际应用[例5] 有一块以O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另外两点B ,C 落在半圆的圆周上,已知半圆的半径长为a ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大?[分析] 在△AOB 中利用∠AOB 表示OA ,AB 的长→ 表示矩形面积:2OA ·AB →得到面积与角间的函数关系→ 通过求函数的最值得到面积的最值 [解]画图如图所示,设∠AOB =θ(θ∈(0,π2)),则AB =a sin θ,OA =a cos θ. 设矩形ABCD 的面积为S ,则S =2OA ·AB ,即S =2a cos θ·a sin θ=a 2·2sin θcos θ=a 2sin2θ.∵θ∈(0,π2),∴2θ∈(0,π),当2θ=π2,即θ=π4时,S max =a 2,此时,A ,D 距离O 点都为22a .解决实际问题应首先设定主变量角α以及相关的常量与变量,建立含有角α的三角函数关系式,再利用三角函数的变换、性质等进行求解.求三角函数最值的问题,一般需利用三角函数的有界性来解决.[变式训练5] 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解:如图,连接OC ,设∠COB =θ,则0°<θ<45°,OC =1.∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC =(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ=-12(1-cos2θ)+12sin2θ =12(sin2θ+cos2θ)-12=22cos ⎝ ⎛⎭⎪⎫2θ-π4-12.当2θ-π4=0,即θ=π8时,S max =2-12(m 2).∴割出的长方形桌面的最大面积为2-12m 2.1.已知cos α=-15,π2<α<π,则sin α2等于( D ) A .-105 B.105 C .-155 D .155 解析:∵π2<α<π,∴π4<α2<π2, ∵cos α=-15,∴sin α2=1-cos α2=155.2.下列各式中,值为12的是( B ) A .sin15°cos15°B .cos 2π6-sin 2π6C.tan30°1-tan 230° D .1+cos60°2解析:A 中,原式=12sin30°=14; B 中,原式=cos π3=12;C 中,原式=12×2tan30°1-tan 230°=12tan60°=32; D 中,原式=cos30°=32,故选B.3.函数y =12sin2x +sin 2x ,x ∈R 的值域是( C )A.⎣⎢⎡⎦⎥⎤-12,32 B .⎣⎢⎡⎦⎥⎤-32,12 C.⎣⎢⎡⎦⎥⎤-22+12,22+12 D .⎣⎢⎡⎦⎥⎤-22-12,22-12 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝ ⎛⎭⎪⎫2x -π4+12.故函数值域为⎣⎢⎡⎦⎥⎤-22+12,22+12. 4.若α∈(0,π),且cos α+sin α=-13,则cos2α=179.解析:∵(cos α+sin α)2=19,∴sin αcos α=-49, 而sin α>0,∴cos α<0.∴cos α-sin α=-(cos α+sin α)2-4sin αcos α=-173. ∴cos2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α)=-13×⎝⎛⎭⎪⎫-173=179. 5.证明:sin α+11+sin α+cos α=12tan α2+12.证明:∵左边=2tanα21+tan2α2+11+2tanα21+tan2α2+1-tan2α21+tan2α2=tan2α2+2tanα2+11+tan2α2+2tanα2+1-tan2α2=⎝⎛⎭⎪⎫tanα2+122tanα2+2=12⎝⎛⎭⎪⎫tanα2+1=12tanα2+12=右边.∴等式成立.——本课须掌握的三大问题1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x+b cos x=a2+b2sin(x+φ),其中φ满足:①φ与点(a,b)同象限;②tanφ=ba(或sinφ=ba2+b2,cosφ=aa2+b2).3.研究形如f(x)=a sin x+b cos x的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a,b应熟练掌握.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。

高中数学必修四教案-3.2 简单的三角恒等变换(1)-人教A版

高中数学必修四教案-3.2 简单的三角恒等变换(1)-人教A版
学科
数学
年级/册
高一年级(上)
教材版本
人教版A版必修四
课题名称
第三章 三角恒等变换
3.2简单的三角恒等变换
利用三角恒等变换求三角函数的最值(辅助角公式的推导及应用)
难点名称
辅助角公式的推导与辅助角的选取
难点分析
从知识角度分析为什么难
知识点本身内容比较抽象、复杂,推导过程要用到转化的数学思想,要实现将含有多个三角函数的函数解析式转化成只含有一个三角函数的形式,凸显了模型化思维方式。
知识讲解
(难点突破)
3、推导辅助角公式:把形如的三角函数解析式化成 的形式
分析:若a=0或b=0时, 已经是的形式,无需化简。
若ab≠0时
课堂练习
(难点巩固)
解:
小结
1、 辅助角公式: 2、
2、 辅助角公式的应用:
利用辅助角公式将形如
的三角函数式化成的形式,进而
求函数的最值、最小正周期以及单调区间等。
从学生角度分析为什么难
学生对两角和与差的正弦公式的逆向使用能力较弱,以至于在辅助角公式推导和辅助角的选取上存在困难。
难点教学方法
1、复习导入,做足准备。
2、给学生充足的时间思考、动手实践。
3、多媒体辅助教学。教学环节教学过程导入1、复习导入:
两角和与差的正弦公式:
2、练习:利用两角和与差的正弦公式化简下列式子

数学必修4教学案:3.2 简单的三角恒等变换(教学案)

数学必修4教学案:3.2 简单的三角恒等变换(教学案)

数学必修4教学案:3.2 简单的三角恒等变换(教学案)数学必修4教学案:3.2简单的三角恒等变换(教、学案)3.2简单三角恒等式变换【教学目标】能够用所学公式简化、评估和证明三角函数公式,引导学生推导半角公式、和差公式和和差积公式(公式不需要记忆),使学生进一步提高运用变换、变换、方程等数学思想解决问题的能力。

【教学重点、难点】教学重点:引导学生学习三角变换的内容、思想和方法,了解三角变换的特点,在现有公式的基础上提高其推理和计算能力,并以半角公式、和差公式和和差积公式的推导为基础训练。

教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。

【教学过程】回顾介绍:回顾角度倍增公式s2?、c2、t2?首先,让学生写下三倍角度的公式,注意等号两侧角度之间的关系,并特别注意C2?。

既然我们可以用单角度来表示双角度,我们可以用双角度来表示单角度吗?半角公式的推导和理解:例1、试以cos?表示sin2?2,cos2?2,tan22?2.分析:我们可以通过双角度cos??2cos角度公式?第二代?,21和cos??1?2sin2?2来做此题.(二倍(一代人?)22解决方案:cos??1.因为什么??2cos2?2.你能得到sin2吗?2.1.余弦?;2.2.1.你能得到Cos2吗?2.1.因为?。

2.你能用两个公式除以Tan 2吗?2.2.1.因为?。

?1.余弦?cos22sin2?Sin评论:⑴ 上述结果也可以表示为:21cos21cos2cos2tan21cos1cos并称之为半角公式(不要求记忆),符号由2角的象限决定。

⑵ 在三角函数公式的简化、求值和证明中,广泛使用了降幂和增幂公式以及降幂和增幂公式。

⑶ 代数变换通常侧重于公式的子结构形式的变换。

三角恒等式变换通常首先寻找公式中包含的角度之间的联系,并在此基础上选择合适的公式来联系它们,这是三角恒等式变换的一个重要特征。

新人教A版必修四3.2《简单的三角恒等变换》word学案

新人教A版必修四3.2《简单的三角恒等变换》word学案

【课题】 3.2简单的三角恒等变换(一)
【学习目标】: 理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用。

【学习重点】:利用公式进行简单的恒等变形。

【学习难点】: 认识三角变换的特点,不断提高从整体上把握变换过程的能力.
【教学用具】: 直尺、三角板
【学法指导】:自主学习;合作探究;能力提升(启发、引导、讨论)
【课时】:
【教学过程】:
一、复习:
三角函数的和(差)公式,倍角公式
二、典例精析
例1、试以cos α表示
222sin ,cos ,tan 222α
αα. 例2.已知135sin =α,且α在第三象限,求2tan α的值。

例3、求证:
(1)、
()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sin cos 22θϕ
θϕ
θϕ+-+=.
三、课堂练习
P142页1、2、3题。

四、总结提升
要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.
五、课后作业
《习案》三十三
【板书设计】
【我的反思】。

3.2简单的三角恒等变换 导学案-2021-2022学年高一数学人教A版必修4

3.2简单的三角恒等变换 导学案-2021-2022学年高一数学人教A版必修4

3. 2简单的三角恒等变换学习目标、细解考纲1.引导学生以已有的公式为依据,以推导积化和差、和差化积、半角公式作为基本训练.2.学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.3.培养学生化归和整体转化思想,注重方程思想和消元思想的培养.4.通过简单的三角恒等变换的学习,提升学生逻辑推理和运算求解的核心素养.一、自主学习—————(素养催化剂)1.预习学习半角公式2.预习学习积化和差、和差化积公式二、探究应用,“三会培养”-------(素养生长剂)例1、已知,31cos =αα是第四象限角,求2tan ,2cos ,2sin ααα的值变式1:(教材改编)已知α是第四象限角,,51cos sin =+αα求2tan α的值例2、求证:()()[]βαβαβα-++=sin sin 21cos sin变式2:求证:2cos 2sin2sin sin βαβαβα-+=+变式3:求证:αααααsin cos 1cos 1sin 2tan -=+=例3、如图,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形,记α=∠COP ,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大值变式4:(教材改编)如图,已知OPQ 是半径为1,圆心角为2π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形,记α=∠COP ,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大值三、拓展延伸、智慧发展--------(素养强壮剂)例4、设(){}*,2|,cos sin N k k n n x x f x ∈=∈+=ααα,利用三角变换,估计()αf 在6,4,2=x 时的取值情况,进而对x 取一般值时()αf 的取值范围作出一个猜想.四、本课总结、感悟思考--------(素养升华剂)。

高中数学3.2简单的三角恒等变换导学案新人教版必修4

3. 2简单的三角恒等变换(导学案)课前预习学案一、 预习目标:回顾复习两角和与差的正弦、 的三角恒等变换。

二、 预习内容:1、回顾复习以下公式并填空:2、阅看课本 P139---141 例 1、2、3。

三、提出疑惑:课内探究学案一、 学习目标:会用已学公式进行三角函数式的化简、求值和证明,会推导半角公式, 积化和差、和差化积公式(公式不要求记忆) ,进一步提高运用转化、换元、方程等数学思想解决问题的能力。

学习重点:以已有公式为依据,以推导半角公式,积化和差、和差化积公式作为基本训 练,学习三角变换的内容、思路和方法,体会三角变换的特点,提高推理、运算能力。

学习难点:认识三角变换的特点, 并能运用数学思想方法指导变换过程的设计, 不断提高从整体上把握变换过程的能力。

二、 学习过程:探究一:半角公式的推导(例1)请同学们阅看例1,思考以下问题,并进行小组讨论。

1、 2a 与a 有什么关系? a 与a /2有什么关系?进一步体会二倍角公式和半角公式的 应用。

2、 半角公式中的符号如何确定? 3 、二倍角公式和半角公式有什么联系?4、代数变换与三角变换有什么不同?探究二:半角公式的推导(例 2)请同学们阅看例2,思考以下问题,并进行小组讨论。

COS ( a + 3 )=Cos( sin( t an(sin( tan( a + 3 )= a + 3 )=sin2a=ta n2cos2a =a - 3 )= a - 3 )= a - 3 )= a =余弦和正切公式及二倍角公式,预习简单1、两角和与差的正弦、 余弦公式两边有什么特点?它们与例2在结构形式上有什么联系?2 、在例2证明过程中,如果不用(1)的结果,如何证明(2)? 3、在例2证明过程中,体现了什么数学思想方法?探究三:三角函数式的变换(例 3)请同学们阅看例1,思考以下问题,并进行小组讨论。

1、 例3的过程中应用了哪些公式?2、 如何将形如y=asinx+bcosx 的函数转化为形如y=Asin ( w x+ $ )的函数?并求y=as in x+bcosx 的周期,最大值和最小值.课后练习与提高、选择题:1 .已知 cos ( a + 3 ) cos ( a —3)=-,则 cos2 a — Sin 2 卩的值为()3C2.在△ ABC 中,若 sin A sin B =cos 2 ,则△ ABC 是()C. 不等边三角形D.直角三角形V3口3. sin a +sin 3 =—— (cos 3 — cos a ), 且 a €( 0,n 3等于()三、反思、总结、归纳:sin a /2= cos a /2=tansina cos 3 =cos a sin 3 =cos a cos 3 = sin a sin 3 =sin0 +sin $ = sin 0 -sin $ =cos 0 +cos $ =cos0 -cos $ =四、当堂检测:课本 p143 习题3.2 A 组 1、 (3) (7) 2、(1) B 组a /2=A .B .C. D.A. 等边三角形B. 等腰三角形,3^( 0 ,n),贝U a — 3A. — 2 nB.—n c.上 D. 2 n3333二、填空题4. sin20 ° cos70° +sin10° sin50 ° =5.已知a —3 = 2 n,且cos a +cos卩:=1,则cos ( a+ 3 )等于33三、解答题.5 sin — x6.已知f ( X)=—1+ J , x€( 0,n).2 X2 2sin2(1)将f (x)表示成cosx的多项式;(2)求f (x)的最小值.谍后练习琴芳答案;—S选择题m 比E 3, D二、埴空題:4. 1 5. -I4 P三、解答题Sr r 3rsinsin—2 cos —smx * Y5. 解(1) fM =------ 2 ------ L = ----- 2------- =2cos —cos—YoarfooQjMosY——1.”勺.K * . s 222 sin—2511122⑵(r) -2(8Sl+£) 2—芝,且一1 £CCIS.\<L二当匚曲戶一—时!J'(A")取寻眾小值一2.寧EL;! 4F 客。

人教版高中数学必修4第三章三角恒等变换-《3.2简单的三角恒等变换》教案(1)

简单的三角恒等变换课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.学法与教学用具学法:讲授式教学教学过程:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=.又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证:(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sin cos 22θϕθϕθϕ+-+=.证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos 22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想? 例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数sin y x x =的周期,最大值和最小值.解:sin y x x =这种形式我们在前面见过,1sin 2sin 2sin 23y x x x x x π⎛⎫⎛⎫=+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:157158P P - 14T T -。

人教A版高中数学必修4第三章 三角恒等变换3.2 简单的三角恒等变换教案(1)

3.2《简单的三角恒等变换》教学设计【教学目标】1会用已学公式进行三角函数式的化简、求值和证明,引导学生推导半角公式,积化和差、和差化积公式(公式不要求记忆),2使学生进一步提高运用转化、换元、方程等数学思想解决问题的能力. 【导入新课】 习引入:复习倍角公式2S α、2C α、2Tα先让学生默写三个倍角公式,注意等号两边角的关系,特别注意2C α.既然能用单角表示倍角,那么能否用倍角表示单角呢? 新授课阶段半角公式的推导及理解 : 例1、 试以cos α表示222sin,cos ,tan 222ααα.解析:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题.(二倍角公式中以α代2α,2α代α) 解:因为2cos 12sin2αα=-,可以得到21cos sin22αα-=;因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=. 两式相除可以得到222sin 1cos 2tan 21cos cos 2ααααα-==+.点评:⑴以上结果还可以表示为:1cos sin 221cos cos22αααα-=±+=±1cos tan 21cos ααα-=±+并称之为半角公式(不要求记忆),符号由2α角的象限决定.⑵降倍升幂公式和降幂升倍公式被广泛用于三角函数式的化简、求值、证明. ⑶代数式变换往往着眼于式子结构形式的变换,三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系他们的适当公式,这是三角式恒等变换的重要特点.例2 求证:(1)()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)sin sin 2sin cos22θϕθϕθϕ+-+=. 解析:回忆并写出两角和与两角差的正余弦公式,观察公式与所证式子的联系. 证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-.两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos22θϕθϕθϕ+-+=.点评:在例2证明中用到了换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3 求函数sin 3cos y x x =+的周期,最大值和最小值. 解析:利用三角恒等变换,先把函数式化简,再求相应的值. 解: 13sin 3cos 2sin cos 2sin 223y x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.课堂小结用和(差)角公式、倍角公式进行简单的恒等变换.我们要对三角恒等变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业课本p143 习题3.2 A 组1、(1)(5) 3 、5 拓展提升1.已知cos (α+β)cos (α-β)=31,则cos 2α-sin 2β的值为( )A .-32B .-31C .31D .32 2.在△ABC 中,若sin A sin B =cos 22C,则△ABC 是( )A .等边三角形B .等腰三角形C .不等边三角形D .直角三角形3.sin α+sin β=33(cos β-cos α),且α∈(0,π),β∈(0,π),则α-β等于( )A .-3π2 B .-3π C .3πD .3π2 4.已知cos (α+β)cos (α-β)=31,则cos 2α-sin 2β的值为( )A .-32B .-31C .31D .32 5.在△ABC 中,若sin A sin B =cos 22C,则△ABC 是( )A .等边三角形B .等腰三角形C .不等边三角形D .直角三角形6.sin α+sin β=33(cos β-cos α),且α∈(0,π),β∈(0,π),则α-β等于( )A .-3π2 B .-3πC .3πD .3π2 7.已知sin (α+β)sin (β-α)=m ,则cos 2α-cos 2β等于( ) A .-m B .m C .-4m D .4m二、填空题8.sin20°cos70°+sin10°sin50°=_________.9.已知α-β=3π2,且cos α+cos β=31,则cos (α+β)等于_________. 三、解答题10.已知f (x )=-21+2sin 225sinxx,x ∈(0,π). (1)将f (x )表示成cos x 的多项式; (2)求f (x )的最小值.12.已知△ABC 的三个内角A 、B 、C 满足:A +C =2B ,B C A cos 2cos 1cos 1-=+,求cos 2CA -的值.13. 已知sin A +sin3A +sin5A =a ,cos A +cos3A +cos5A =b , 求证:(2cos2A +1)2=a 2+b 2.14. 求证:cos 2x +cos 2(x +α)-2cos x cos αcos (x +α)=sin 2α.15. 求函数y =cos3x ·cos x 的最值.参考答案一、选择题:1.C 2. B 3. D 4.C 5. B 6. D 7. B 二、填空题:8.41 9.-97三、解答题10.解:(1)f (x )=2cos 23cos 22sin 2sin 23cos 22sin 22sin 25sinx x x xx x x x ==-=cos2x +cos x =2cos 2x +cos x-1.(2)∵f (x )=2(cos x +41)2-89,且-1≤cos x ≤1, ∴当cos x =-41时,f (x )取得最小值-89. 11 分析:本小题考查三角函数的基础知识,利用三角公式进行恒等变形和运算的能力. 解:由题设条件知B =60°,A +C =120°, ∵-︒60cos 2=-22,∴CA cos 1cos 1+=-22. 将上式化简为cos A +cos C =-22cos A cos C , 利用和差化积及积化和差公式,上式可化为 2cos2C A +cos 2CA -=-2[cos (A +C )+cos (A -C )], 将cos2C A +=cos60°=21,cos (A +C )=cos120°=-21代入上式得cos 2CA -=22-2cos (A -C ),将cos (A -C )=2cos 2(2C A -)-1代入上式并整理得42cos 2(2C A -)+2cos 2C A --32=0,即[2cos2C A --2][22cos 2CA -+3]=0. ∵22cos 2C A -+3≠0,∴2cos 2CA --2=0. ∴cos 2C A -=22.12.证明:由已知得 ⎩⎨⎧=+=+,,b A A A a A A A 3cos 2cos 3cos 23sin 2cos 3sin 2 ∴⎩⎨⎧=+=+.)12cos 2(3cos )12cos 2(3sin b A A a A A ,两式平方相加得(2cos2A +1)2=a 2+b 2. 13.证明:左边=21(1+cos2x )+21[1+cos (2x +2α)]-2cos x cos αcos (x +α) =1+21[cos2x +cos (2x +2α)]-2cos x cos αcos (x +α) =1+cos (2x +α)cos α-cos α[cos (2x +α)+cos α] =1+cos (2x +α)cos α-cos αcos (2x +α)-cos 2α =1-cos 2α=sin 2α =右边,∴原不等式成立. 14.解:y =cos3x ·cos x =21(cos4x +cos2x ) =21(2cos 22x -1+cos2x ) =cos 22x +21cos2x -21 =(cos2x +41)2-169. ∵cos2x ∈[-1,1], ∴当cos2x =-41时,y 取得最小值-169; 当cos2x =1时,y 取得最大值1.。

简单的三角变换学案1

必修4 3.2.1 简单的三角恒等变换(1)【学习目标】1.会用倍角的变形推导半角的正弦、余弦、正切公式;2.会用半角公式与前面的公式联合进行三角变换及其运用于解决实际问题;3.通过实例的解答,引导同学们学会分析、对比、灵活选择与变形运用公式,并能体会数学思想在解题中的重要地位,提高思维、观察、分析能力和解决问题的能力.【学习重点】半角公式公式推证与运用、三角恒等式的证明;【难点提示】灵活半角公式公式解决实际问题,认识、归纳三角变换的特点.【学法提示】1.请同学们课前将学案与教材第139-147相结合进行自主学习、小组组织讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备;2.本节课型属于“公式法则课”,则需要同学们在学习过程中定要弄清公式的产生、推导、运用,并进一步挖掘拓展,弄清公式特征、联系、记忆方法、深度运用.前面我们学习了三角函数及相关知识,请对照上面知识网络,回顾其中知识内容,请对不熟悉的知识点进行复习,并填写在空白处,同时思考下列问题和做好学习新课的情感准备:(1)同角三角函数关系式为、,运用时需注意些什么?(2)两角和与差的正弦、余弦、正切公式记熟悉了吗?适用范围在哪里?(3)倍角的正弦、余弦、正切公式:sin2α=;tan2α=;cos2α== = .以上几组公式各有哪些特征?如何记忆?这些公式中各有几个量?有哪些运用方式?公式使用范围是什么?(4)你对“倍角”有怎样的理解?如:α与2α、2α与4α、4α与2α分别有何关系? 二、学习探究前面我们学习了两角和与差、倍角的正弦、余弦、正切公式.那么,同学们自然就要问由前面这些公式还能得到哪些公式呢?如:将22cos 212sin 2cos 1ααα=-=-中的α换成12α又有怎样结果呢?你能用cos α表示2sin2α,2cos2α,2tan2α吗?请同学们探究一下吧!1.半角公式的探究:归纳结论 cos_________;2α=sin__________;2α=tan_________2α=((21),k k Z απ≠-∈)快乐体验 (1)用半角公式求cos15︒、tan15︒的值.解:(2)已知135sin =α,且α在第二象限,求2tan α的值. 解;(3)求证:sin tan21cos ααα=+ .证明:解后反思 (1)以上三题的题型怎样?怎样求解的?各有几种解法?有易错点吗?(2)通过对正弦、余弦、正切的半角公式的探究、推导、体验,你有哪些感悟?你能对它们进行深度思考和挖掘拓展吗?挖掘拓展 (1)以上三个公式还有其它形式吗?若有,那么他们有区别吗?(链接1) (2)这些公式有何特征?如何记忆?有哪些运用方式?运用时有哪些易错点? (3)半角正切采用哪种表达式方式好些?(链接2) 2.积化和差与和差化积公式的探究请同学们再度观察两角和与差的正弦、余弦公式中角与角之间、函数名与函数名之间各有怎样的关系?各个公式间还有怎样的联系?你能将这几个公式运用一些变换手段与方法,如:角的代换、两个公式相加减的方法,变换出另外的公式呢?请探究一下吧!公式探究:归纳结论 和差化积:sin sin _________________;sin sin ________________;cos cos ________________;cos cos ________________;αβαβαβαβ+=-=+=-=积化和差:sin cos _________________;cos sin _________________;cos cos _________________;sin sin _________________;αβαβαβαβ====快乐体验 (1)把sin54sin 22+化成积的形式;(2)把2sin64cos10化成和(或差)的形式;解后反思 (1)以上两题的题型怎样?怎样求解的?有易错点吗?(2)通过对和差化积与积化和差公式的探究、推导、体验,你有哪些感悟?你能对它们进行深度思考和挖掘拓展吗?挖掘拓展 ①公式是如何推导出来的?有何限制条件?公式的作用在哪里? ②公式有何特点?如何记忆?公式如何变形?有哪些运用方式? ③什么叫“和”与“积”?你有怎样的理解?○4代数式变换与三角变换有什么不同?(请同学们仔细阅读教材P140 第一段,并用心感悟!)三.典例赏析例1. 教材P140页例3,请同学们审题后独立解答,再与书上对比,优化解题过程. 解:解后反思 该题题型怎样?怎样求解的?有易错点吗? 变式练习 设函数()22cos 2cos ,32xf x x x R π⎛⎫=++∈ ⎪⎝⎭.求()f x 的值域. 解:例2.求22sin 20cos 50+sin 20cos50+ 的值. 解:解后反思 该题题型怎样?关键点、易错点有吗?有几种解法?对你的解法归纳为一般的方法吗? 变式练习 求22sin 25sin 35sin 25sin35++的值 . 解:例3教材P141页例4,请同学们审题后独立解答,再与书上对比,优化解题过程. 解:解后反思 该题的题型怎样?解本题用了哪些知识与方法?求解的关键点、易错点在哪里? 变式练习 等腰三角形顶角的余弦值为725,求它的底角的正弦、余弦和正切. 解:四、学习反思1.本节课我们学习了哪些数学知识、数学思想方法,你的任务完成了吗?你讲的怎样?你提问了吗?我们的学习目标达到了吗?如:半角公式推导、特征都掌握了吗?如何选择三角变换公式来解决与三角函数相关的问题呢?解决三角问题有哪些规律与方法?(链接4)2.通过本节课的学习与课前的预习比较有哪些收获?有哪些要改进和加强的呢?3.本节课见到那些题型,都能求解了吗?你对本节课你还有独特的见解吗?本节课的数学知识与生活有怎样的联系?感受到本节课数学知识与课堂美在哪里吗?五、学习评价1. 对任意的实数α、β,下列等式恒成立的是( )A. ()()2sin cos sin sin αβαβαβ⋅=++-;B.()()2cos sin sin cos αβαβαβ⋅=++-;C. cos cos 2sin sin22αβαβαβ+-+=⋅; D.cos cos 2coscos22αβαβαβ+--=⋅ .2.将sin sin 33ππαα⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭化简的结果是( )A .2sinsin 3πα; B α ; C .2sin 3COSπα ; D .sin α.3.在⊿ABC 中,下列关系正确的是( )A.sin sin sin 4coscos cos 222A B C A B C ++=;B.cos cos cos 4cos cos cos 222A B CA B C ++=; C.sin sin sin 4sin sin sin 222A B C A B C ++=;D.cos cos cos 4sin sin sin 222A B CA B C ++=.4.化简三角函数式sin (1tan tan )2xx x -,其结果为:5.利用三角公式化简sin50(13tan10)+. 解:6.已知0<β<4π<α<34π,335cos(),sin()45413ππαβ-=+=,求sin()αβ+的值. 解:7.求证:sin sin cotcos cos 2αββααβ+-=- 证:8.教材P 习题3.2全做在作业本上.【学习链接】链接1. tan2α还有另外更为重要的两种形式,即:sin 1cos tan21cos sin ααααα-==+.这与原半角的正切公式本质上是一样的,请同学们思考为什么?链接2.有理表达式,符号由算式决定,无须先判断;第二个表达式分母为“单项式”更易使用. 链接3.三角变换的一些基本方法有:(1)从角入手,化异角为同角(以已知角的相互关系引入一个新 的角,特殊角是考虑的重点之一);(2)从幂入手,利用降幂公式(降次是主线);(3)从形入手,分析结构,减少函数名;(4)分子、分母添因式法;(5)“1”的巧变等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 tan 2 , cos
1 tan2 2
1 tan2 2 , tan
1 tan2 2
2tan 2
1 tan2 2
cos 1 , ( 0, ) ,求 sin
2.已知,
3
2
3. 求值: sin15 , cos15 , tan15
例 2、求证:(1) cos cos
1 [cos(
) cos(
)]
2
xy xy
(1)、 sin cos
1 sin 2
sin

(2)、 sin sin 2sin
cos

2
2
证明:(1)因为 sin
和 sin
是我们所学习过的知识,因此我们从等式右边
着手.
sin
sin cos cos sin ; sin
sin cos cos sin .
两式相加得 2sin cos sin
sin

即 sin cos
变式.求证: 2sin( π - x) ·sin( π +x) =cos2x.
4
4
例 6,已知 f (x) 3 sin 2x 2sin 2 x ,求最大值
变式 :求 y
1 sin 2x
sin 2 x, x
R 的值域,周期
2
学后反思:
解析:例 1、试以 cos 表示 sin2 ,cos2 , tan2 .
思考:代数式变换与三角变换有什么不同?
代数式变换往往着眼于式子结构形式的变换. 对于三角变换, 由于不同的三角函数式不
仅会有结构形式方面的差异, 而且还会有所包含的角, 以及这些角的三角函数种类方面的差
异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,
这是三角式恒等变换
的重要特点.
例2、 求证:
2
2
2
解: 我们可以通过二倍角 cos
2cos2 1和 cos 2
1 2sin 2 来做此题. 2
因为 cos
1 2sin 2 ,可以得到 sin2
1 cos

2
2
2
因为 cos
2cos2 1 ,可以得到 cos2
1 cos

2
2
2
又因为 tan2 2
sin2 2
cos2 2
1 cos . 1 cos
cos x cos y 2cos
cos
(2)
2
2
sin sin
变式: 1.
1 [cos(
) cos(
)]
2
cos x cos y
2.
xy xy
2sin
sin
2
2
例3 、求函数 y sin x 3 cos x 的周期,最大值和最小值.
求函数 y a sin x b cos x 的最大值、最小值和周期,其中 a, b 是不同时为零的实数。
解:由例 3 知 y a sin x b cos x
可写为
y a2 b2
a sin x
b cosx ,
a2 b2
a2 b2
其中 cos
a ,sin a 2 b2
b a2 b2
则,原式
a2 b2 cos sin x sin cos x a 2 b2 sin x
所以函数 y a sin x b cos x 的最大值是
1 sin 2
sin

(2)由(1)得 sin
sin
2sin cos ①;设
,

那么
,

2
2
把 , 的值代入①式中得 sin sin 2sin
cos

2
2
思考:在例2证明中用到哪些数学思想?
例2证明中用到换元思想, (1)式是积化和差的形式, (2)式是和差化积的形式,在后面 的练习当中还有六个关于积化和差、和差化积的公式.
2
2
a b ,最小值是
2
a
2
b ,周期是
2
注:此题结论可作为公式记住,可方便解题。
例 4、如图,已知 OPQ 是半径为 1,圆心角为 的扇形, C 是扇形弧上的点, 3
ABCD 是扇形的内接矩形。 记∠ COP= α,求当角 α取何值时, 矩形 ABCD的面积 最大?并求出这个最大面积。
例 5 化简 1 sin 2 cos 2 . 1 sin 2 cos 2
一、基础知识 1、和差角公式: S( ) =; C ( ) =; T( ) =.
2、倍角公式: S(2 ) ; T(2 ) ;
C(2 )
.
3、 a sin b cos .
注意: 公式 (S2 ) , (C2 ) , (C2 ) , (T2 ) 成立的条件是 :公式 (T2 ) 成立的
条件是 R, k
,k
, k Z .其中 R
2
4
二、学习过程: 例 1,求证: sin 2
2
1 cos , cos2
2
2
1 cos , tan 2
2
2
1 cos 1 cos
结论:半角公式
sin 2
1 cos
, cos
2
2
1 cos
, tan
2
2
1 cos 1 cos
sin tan
2 1 cos
1 cos sin
变式: 1.求证: sin
例3 、求函数 y sin x 3 cos x 的周期,最大值和最小值.
解: y sin x 3 cos x 这种形式我们x 2 sin x
cos x 2sin x

2
2
3
所以,所求的周期 T 2
2 ,最大值为2,最小值为
2.
相关文档
最新文档