两种物质同时检测的意义
气相色谱法测定混合醇实验报告

气相色谱法测定混合醇实验报告一、实验背景混合醇是指由两种或以上的醇混合而成的化合物。
在工业中,混合醇的分离效率对于生产和质量有着非常重要的影响。
因此,对混合醇的分析和检测具有很高的实际意义。
气相色谱法是目前应用最广泛的一种分析方法。
由于其分离速度快、分辨率高、适用范围广、灵敏度高等优点,在化学、材料学、医药、生物科学等领域得到广泛应用。
本实验通过气相色谱法分析混合醇的浓度,探究其分析的基本原理和方法。
二、实验原理气相色谱法利用气体作为载气相,通过将样品分子分离后进行检测,实现对混合醇的分析。
分析过程分为样品处理、分离与检测三个步骤。
(一)样品处理将样品混合物放在一定的条件下加温,使其中的醇物质蒸发并形成气态混合物。
此步骤旨在将样品中的醇分子转化为气态分子,便于后续进样和分析。
(二)分离与检测1、分离以石英毛细管作为分离柱,先将纯净氦气作为载气通过蒸气化装置,进入石英毛细管中。
随后将样品加入进样口,并通过高压注射器控制进样量。
样品物质与氦气混合物在石英毛细管中不断混合,在毛细管内壁上不断扩散,形成组分相对应的峰型。
2、检测样品物质在石英毛细管中的分离过程中,根据其蒸汽压的大小形成不同的时间峰。
为了测定这些峰的位置和大小,可以采用热导检测器、荧光检测器、质谱检测器等。
三、实验过程与结果分析实验中,首先进行标准物质的浓度分析。
首先测定纯乙醇和纯正丁醇的一级蒸汽压。
其测定结果如下表所示:| 原料 | 纯乙醇 | 纯正丁醇 | |------|--------|----------| | 压强/kPa | 5.23 | 0.93 |注:以上数据参考文献为《危险品安全技术标准》接着,用一定比例的乙醇、正丁醇混合而成三种不同混合比例的混合物,进行进样和检测。
测试过程中,将石英毛细管的温度设置为120℃,搭载荧光检测器进行检测。
结果如下表所示:| 混合物号 | 乙醇/正丁醇质量比 | 乙醇峰高/cm | 正丁醇峰高/cm | |---------|------------------|-------------|---------------| | 1 | 0.2 | 2.81 | 1.44 | | 2 | 0.5 | 6.54 | 4.89 | | 3 | 0.8 | 10.98 | 12.61 |从实验结果可以看出,混合物中的乙醇、正丁醇两种物质分别对应一个时间峰。
荧光免疫层析法

荧光免疫层析法
荧光免疫层析法是一种检测指标物质的新技术,它可以准确、灵敏、可重复地检测分
子量小于1000Da的蛋白质、神经递质以及其他少量或微量物质。
荧光免疫层析法可以同
时检测一个以上指标物质,从而大大提高了检测效率,是一种具有重要意义的廉价、高效、可重复的增强技术,在生物医学领域受到越来越多的关注。
荧光免疫层析法的原理是利用特定的抗体分子与指标物质结合,使用荧光染料指示物
灵敏地检测抗体的结合,在一定的光度下,抗体沉淀越多,发射的荧光越强,可用于检测
少量和极少量的电子发射物质。
其特点是,它可以迅速检测大量物质,而且在试样量小、
检测灵敏度高时,仍能有较好的特异性检测能力。
荧光免疫层析法应用 tableView 检测时,常需要经过亲和缓冲体的处理,这样可以
避免B#的重组,从而提高检测的准确性和灵敏度。
另外,还需要补充不同蛋白质的抗体,以提高检测的特异性和灵敏度。
在操作过程中,还可以采用模拟多元抗体反应,以提高检
测的准确度。
在荧光免疫层析法检测时,实验条件也影响最终结果,实验室应为每个指标物质选定
一组实验参数,以保证实验质量,以防止偏差。
此外,常规维护也是非常重要的,荧光免
疫层析仪需要定期维护,以确保其精确性、稳定性及准确性。
总之,荧光免疫层析法是一种准确且灵敏的检测技术,它可以准确、快速地检测指标
物质的含量,具有很多优势,已广泛应用于免疫检测和生物样品分析等技术中。
但同时,
它也需要精心调整实验条件,,再加上定期的维护,才能确保检测结果的准确性和可靠性,才能发挥最大的性能。
2024白细胞介素6 (IL-6)检测的临床意义

2024白细胞介素6 (IL-6) 检测的临床意义细胞因子是一类多肽细胞调节物质,它包括白细胞介素、生长因子、肿瘤坏死因子、干扰素等,主要由外周免疫细胞合成(如淋巴细胞、巨噬细胞、纤维母细胞)。
细胞因子能够促进细胞间的相互作用,具有较多生物功能,比如调节生长、分化、炎症反应、免疫应答、肿瘤消长等,在人体中形成了非常复杂的调节网络,对人体起着重要作用。
由于细胞因子的多效性和作用的复杂网络,没有任何疾病可以将细胞因子作为疾病特异性标志。
细胞因子的体内检测不适合以鉴定诊断为目的,只适合于对一些过程活动程度的检测,比如一些不应出现的免疫反应如移植排斥反应、自身免疫性疾病或与感染相关的发病机制。
白细胞介素-6(IL-6)主要由巨噬细胞、T 细胞、B 细胞和血管内皮细胞等多种细胞产生,几乎可由所有的基质细胞和免疫细胞产生。
IL-6 水平的检测可反映患者的病情变化,但其缺乏疾病特异性,通过对IL-6 水平的检测了解患者的病情和疗效。
检测方法IL-6的检测方法有流式荧光法、化学发光法、ELISA 双抗体夹心法等。
参考区间正常人血清中IL-6 浓度相对较低(1~5pg/ml), 各实验室应建立自己的参考区间如用文献或说明书提供的参考区间,使用前应加以验证。
临床意义1、IL-6与感染IL-6为来源广泛的正向调节因子,主要发挥促炎作用,正常机体血清IL-6 水平处于低应答状态,其表达既受机体稳态控制,又可在炎症刺激后发生上调。
IL-6 是炎症反应最早升高的标志物,是急性感染早期诊断的灵敏指标。
感染后1h 开始升高,2h 达峰值,升高水平与感染严重程度呈正相关。
IL-6 可以介导肝脏的急性期反应,诱导CRP 和PCT 分别在感染后2h 和6h 升高,填补PCT和CRP未升高前的空窗期口是体循环中半衰期最长的前炎症介质。
图片IL6 鉴别感染与非感染的敏感性比PCT和CRP高动态观察可用于感染严重程度、抗生素疗效及预后判断。
2型糖尿病检测中糖化血红蛋白与血脂检测的临床意义分析

DOI:10.16658/ki.1672-4062.2021.08.0502型糖尿病检测屮糖化血红蛋白与血脂检测的临床意义分析周以华盐城市大丰人民医院检验科,江苏大丰224100[摘要]目的分析2型糖尿病检测中糖化血红蛋白与血脂检测的临床意义。
方法从2019年8月一2020年9月该院收治的患者中选出自愿参与研究的120例2型糖尿病患者,并作为该研究的观察组,同时选择自愿加入研究的同一时期内进入该院进行健康体检的120名健康者,作为对照组,所有对象都需实施糖化血红蛋白与血脂检测,比较两组患者的血糖与血脂指标检查结果。
结果观察组的糖化血红蛋白水平(8.27±1.04)%、空腹血糖水平(7.28±1.80)mmol/L、餐后2h血糖(12.35±1.96)mmol/L,明显较对照组数据(6.03±0.75)%、(5.19±0.93)mmol/L、(7.93±1.44)mmol/L高,差异有统计学意义(t=19.137、11.300、19.908,P<0.05);观察组TC、TG、LDL-C、HDL-C血脂水平分别为(7.85±2.03)、(3.78士0.62)、(5.29±1.30)、(0.94±0.25)mmol/L,对照组为(5.70±0.88)、(1.17±0.46)、(3.40±0.58)、(1.85±0.61)mmo l/L,差异有统计学意义(t=10.645、37.035、14.544、15.121,P<0.05)。
结论糖化血红蛋白与血脂检测在2型糖尿病检测中的临床意义重大,临床医师可以根据机体血脂与糖化血红蛋白水平对2型糖尿病进行准确性判断,及时分析患病程度,制定最佳的血糖控制方案,促进患者病情好转。
[关键词]2型糖尿病;糖化血红蛋白;血脂;临床效果[中图分类号]R446.1[文献标识码]A[文章编号]1672-4062(2021)04(b)-0050-04Analysis of the Clinical Significance of Glycosylated Hemoglobin and Blood Lipids in the Detection of Type2DiabetesZHOU YihuaDepartment of Laboratory Medicine,Dafeng People's Hospital,Yancheng City,Dafeng,Jiangsu Province,224100China [Abstract]Objective To analyze the clinical significance of glycosylated hemoglobin and blood lipids in the detection of type2diabetes.Methods From August2019to September2020,120patients with type2diabetes who voluntarily participated in the study were selected from the patients admitted to the hospital and served as the observation group of this study.At the same time,they chose to join the hospital during the same period of time when they voluntarily joined the study.The120healthy people undergoing physical examinations in the hospital served as a control group.All subjects were required to perform glycosylated hemoglobin and blood lipid tests to compare the blood glucose and blood lipid index test results of the two groups of patients.Results The glycated hemoglobin level(8.27±1.04)%,fasting blood glucose level(7.28±1.80)mmol/L,and2h postprandial blood glucose(12.35±1.96)mmol/L of the observation group were significantlyhigher than those of the control group(6.03±0.75)%,(5.19±0.93)mmol/L,(7.93±1.44)mmol/L were higher,respectively,and the difference was statistically significant(t=19.137,11.300,19.908,P<0.05);observation group patients of the blood lipid levels of TC,TG,LDL-C and HDL-C were(7.85±2.03)mmol/L,(3.78±0.62)mmol/L,(5.29±1.30)mmol/L,(0.94±0.25)mmol/L, respectively,the control group were(5.70±0.88)mmol/L,(1.17±0.46)mmol/L,(3.40±0.58)mmol/L,(1.85±0.61)mmol/L,and the difference was statistically significant(t=10.645,37.035,14.544,15.121,P<0.05).Conclusion The detection of glycosylated [作者简介]周以华(1970-),男,本科,主任技师,研究方向为临床检验技术方面。
高效液相色谱法同时检测化妆品中两种亚硝基物质_闫俊秀

有致敏作用 , 对环境有危害 , 可对水体造成污染 。1 3 1 1-M e t h l 3 n i t r o 1 n i t r o s o - 甲基- - 硝基- - 亚硝基胍 ( - - - - - y g ) 对人体有致癌作用 , 易燃 、 有毒 、 有刺激性 , 在熔点 1 碰撞可产生爆炸 。 在化妆 品 u a n i d i n e 1 8℃ 时会分解 , 的生产过程中 , 由于原料问题而可能将这两种物质带入化妆品中 , 接触后对眼睛 、 皮肤等有刺激性 , 可发展
图 2 1 3 1 -甲基- -硝基- -亚硝基胍的紫外吸收光谱 F i . 2 T h e u l t r a v i o l e t a b s o r t i o n s e c t r u m o f g p p 1 e t h l 3 n i t r o 1 n i t r o s o u a n i d i n e -m - - - - y g 图 1 流动相 p H 的选择 H F i . 1 C h r o m a t o r a m s o b t a i n e d u n d e r d i f f e r e n t p g g h a s e v a l u e s o f m o b i l e p
7 8
第1期
分 析 科 学 学 报
第2 9卷
1. 3 色谱条件 ; ) ; 色谱柱 : 流动相 : 体积比 3 稀乙酸调 p 检 H 至4 F o r t i s C 2 5 0×4. 6mm, 5μ m) 0 ∶ 7 0 的乙腈∶水 ( - 1 8柱 ( / 流速 : 柱温 : 进样量 : 测波长 : 2 8 4n m; 1. 0m L m i n; 2 0℃ ; 5μ L。
产前诊断中CNV-seq与核型分析联合应用的意义

《中国产前诊断杂志(电子版)》 2020年第12卷第4期·论著· 产前诊断中CNV seq与核型分析联合应用的意义郭利丽 丁建林 王少帅 (华中科技大学同济医学院附属同济医院妇产科,湖北武汉 430000)【摘要】 目的 基于高通量测序的基因拷贝数变异技术与染色体核型分析技术联合应用检测孕妇的羊水细胞,探讨两种检测在产前诊断中联合应用的意义。
方法 高危孕妇行羊膜腔穿刺术后同时行染色体核型分析及基因组拷贝数变异测序(copynumbervariationsequencing,CNV seq),选取结果具有代表性的孕妇为研究对象,对检测结果分析讨论。
结果 选取的10例孕妇中,只有1例染色体数目异常的结果两种检测方法相同,核型分析检出1例正常、3例易位、1例倒位、1例非同源罗氏易位、1例额外小标记染色体(smallsupernumerarymarkerchromosomes,sSMC)核型,CNV seq检出2例正常核型、2例致病性、5例意义不明确性微缺失/重复改变。
结论 染色体核型分析在产前诊断中地位不可取代,CNV seq检测是产前诊断中强有力的补充,两项检测联合应用可以互补不足相互验证,提高产前诊断率。
同时CNV seq中非明确致病性缺失/重复的检测结果为产前遗传咨询提出了新的挑战,需要更多的基于人群的大数据和病例的积累才能更好地遗传咨询。
【关键词】 基因组拷贝数变异测序;产前诊断;羊水细胞;染色体核型分析;意义不明确改变【中图分类号】 R394.3 【文献标识码】 A犇犗犐:10.13470/j.cnki.cjpd.2020.04.006基金项目:国家重点研发计划项目(2016YFC1000405,2018YFC1002903) 通信作者:王少帅,E mail:colombo2008@sina.com犈犳犳犻犮犪犮狔狅犳犮狅狆狔 狀狌犿犫犲狉狏犪狉犻犪狋犻狅狀狊犲狇狌犲狀犮犻狀犵狋犲犮犺狀狅犾狅犵狔犼狅犻狀狋犪狆狆犾犻犮犪狋犻狅狀狑犻狋犺犽犪狉狔狅狋狔狆犻狀犵犻狀狋犺犲狆狉犲狀犪狋犪犾犱犻犪犵狀狅狊犻狊犌狌狅犔犻犾犻,犇犻狀犵犑犻犪狀犾犻狀,犠犪狀犵犛犺犪狅狊犺狌犪犻 犔犪犫狅狉犪狋狅狉狔狅犳犘狉犲狀犪狋犪犾犇犻犪犵狀狅狊犻狊,犇犲狆犪狉狋犿犲狀狋狅犳犗犫狊狋犲狋狉犻犮狊犪狀犱犌狔狀犲犮狅犾狅犵狔,犜狅狀犵犼犻犎狅狊狆犻狋犪犾,犜狅狀犵犼犻犕犲犱犻犮犪犾犆狅犾犾犲犵犲,犎狌犪狕犺狅狀犵犝狀犻狏犲狉狊犻狋狔狅犳犛犮犻犲狀犮犲犪狀犱犜犲犮犺狀狅犾狅犵狔,犠狌犺犪狀430030,犆犺犻狀犪 犆狅狉狉犲狊狆狅狀犱犻狀犵犪狌狋犺狅狉:犠犪狀犵犛犺犪狅狊犺狌犪犻,犈 犿犪犻犾:犮狅犾狅犿犫狅2008@狊犻狀犪.犮狅犿【犃犫狊狋狉犪犮狋】 犗犫犼犲犮狋犻狏犲 Toinvestigatetheefficacyofcopynumbervariationsequencing(CNV seq)versuskaryotypingintheprenataldiagnosisbyjointapplicationofhigh throughputsequencingbasedoncopynumbervariationwithkaryotypingtodetecttheamnioticfluidcellsinpregnantwomen.犕犲狋犺狅犱狊 AmongthehighriskpregnantwomenwhounderwentkaryotypingandCNV seqafteramniocentesis,weselectedtherepresentativeresultsasthestudysubjects,Analyzedanddiscussedtheirtestresults.犚犲狊狌犾狋狊 amongtheselected10cases,only1casehadthesameresultofthetwotestingtechnique.Karyotypingdetected1normalkaryotype,3casetranslocation,1caseinversion,1casenon homologousRobertsoniantranslocation,1casesmallsupernumerarymarkerchromosomes(sSMC);CNV seqdetected2normalkaryotype,2casespathogenicmicrodeletionor/andduplicationand5casesvariantofunknownsignificanceduplicationor/anddeletion.犆狅狀犮犾狌狊犻狅狀 KaryotypingstillplaysanirreplaceableroleinprenataldiagnosisofamniocentesisandCNV seqcanbeapowerfulsupplementforprenataldiagnosis.Thecombinationof72·论著·《中国产前诊断杂志(电子版)》 2020年第12卷第4期karyotypingandCNV seqcancomplementeachotherandmutualconfirmation.OtherwisegenetictestingisnowfacingnewchallengesduetoresultswithVOUS.InordertohaveabetterexplanationforVOUS,Morecasesandpopulation baseddatashouldbeaccumulated.【犓犲狔狑狅狉犱狊】 Copynumbervariationsequencing;Prenataldiagnosis;Amnioticfluidcells;Karyotypeanalysis;Variantofunknownsignificance 随着我国经济技术的发展,人们受教育水平的提高,大家对优生优育的概念日益重视。
肿瘤相关物质联合检测试验对肿瘤的筛查及监控意义
肿瘤相关物质联合检测试验对肿瘤的筛查及监控意义魏祥松,薛敏羲,谢鸿博(重庆市第九人民医院检验科,重庆400700)摘要:目的 探讨肿瘤相关物质(Tum or Supplied G roup of Factors;TSG F)检测在肿瘤诊断及疗效观察中的意义。
方法 用化学法测定163例恶性肿瘤患者(A组),120例健康体检者(B组)及22例良性肿瘤患者(C组)血清中的TSG F含量,并分析各观察组中TSG F的关系。
结果 血清TSG F含量A组为(6714±1816)U/m L;B组为(5117±613)U/m L;C组为(5416±715)U/m L,A组TSG F含量明显高于B组及C组(P<0101)。
TSG F肿瘤诊断的总阳性率为8417%,特异性为9613%;其中肺癌和大肠癌的阳性率分别为9017%、8916%;手术和化疗后随访的23例大肠癌患者中,一年后有1例TSG F持续阳性,后经确诊其为复发患者。
结论 TSG F是一种广谱、灵敏,简便的肿瘤筛查指标,对肿瘤诊断、疗效评估、肿瘤复发判断等有重要的临床意义。
关键词:肿瘤相关物质(TSG F);肿瘤诊断;肿瘤标志物中图分类号:R730.04;R730143 文献标识码:A 文章编号:1003-1464(2004)02-0102-03Significance of Detection Serum Tum or Supplied G roup of Factors inScreening and E ffect Evaluation with Cancer PatientsWei X iangs ong,Xue Minxi,X ie H ongbo(Department o f Laboratory Medicine,the Ninth People’s Hospital o f Chongqing,Chongqing400700,China)Abstract:Objective T o study significance of detection serum tum or supplied group of factors(TSG F)in screening and effect evaluation with cancer patients.Methods Determining of serum TSG F in163cases malignant tum or patients(A group),120cases healthy controls(B group)and22cases benign tum or patients(C group)by chemistry assay,and its application value evaluated.R esults The mean value of serum TSG F was(6714±1816) U/m L,(5117±613)U/m L and(5416±715)U/m L of A group,B group and C group,and the serum TSG F levels were significantly higher in A group than B and C group(P<0101),total positive rates and specific of malignant tum or were8916%and9017%of TSG F;The positive rates were 9017%and8916%in lung cancer and colorectal cancer patients,after a year had a case serum TSG F keeping on positive in23colorectal cancer patients by operation of surgery and chem otherapy,final diagnosis,it was relapsed.Conclusions TSG F was a kind of broad spectrum,simple labora2 tory screening marker in malignant tum or,it had the importance of clinical significance in diagnosis,effect and recurrent valuation with cancer pa2 tients.K ey w ords:tum or specific growth factors(TSG F);tum or diagnosis;tum or marker 随着诊疗技术的不断进步,肿瘤的诊断及监控手段已有很大改善,如影像学中CT、核磁共振等先进设备的应用对肿瘤定位判断有很大帮助;而肿瘤标志物(Tum or Markers:T M)更能反映肿瘤分子水平的改变,其在肿瘤的早期筛查及疗效监控、预后判断、复发转移评估等更具明显价值[1-2],肿瘤相关物质(Tum or Supplied G roup of Factors,TSG F)就是新近发现并应用于临床的T M之一,它是我国首个获得国家批准上市的第一类癌症体外标记物,国外还未见此类报道。
甲胎蛋白和异常凝血酶原对肝细胞癌的鉴别诊断效果
甲胎蛋白和异常凝血酶原对肝细胞癌的鉴别诊断效果目的探究在肝脏肿瘤患者中血清甲胎蛋白(AFP)与异常凝血酶原(DCP)对肝细胞癌的鉴别诊断效果。
方法选取2014年10月~2016年9月运城市中心医院收治的301例肝脏肿瘤患者作为研究对象,分为肝细胞癌组(207例)和非肝细胞癌组(94例),检测患者的AFP及DCP浓度,以穿刺组织病理检查结果作为最后诊断标准,评价两种血清标志物对肝脏肿瘤的鉴别诊断价值。
结果肝细胞癌组患者的AFP水平显著高于非肝细胞癌组,肝细胞癌组患者的DCP水平显著高于非肝细胞癌组,差异均有统计学意义(P<0.05);AFP和DCP联合检测时可提高诊断特异度到97.6%;双阳性者156例,双阴性者44例,AFP(+)DCP(-)者10例,AFP(-)DCP(+)者101例,灵敏度为78.74%,特异度为81.91%。
结论DCP与血清AFP鉴别肝细胞癌的能力类似,联合两种物质检测有助于提高诊断灵敏度,降低漏诊率。
[关键字]异常凝血酶原;甲胎蛋白;肝脏肿瘤;肝细胞癌Differential diagnosis effect of alpha fetoprotein and abnormal prothrombin on hepatocellular carcinomaXUE Sha1 XUE Ting21.Immunity Room,Yuncheng Nursing V ocational College in Shanxi Province,Yuncheng 044000,China;2.Department of Oncology,Yuncheng Central Hospital in Shanxi Province,Yuncheng 044000,China[Abstract]Objective To explore the differential diagnosis effect of serum alpha fetoprotein (AFP)and abnormal prothrombin (DCP)on hepatocellular carcinoma in liver tumor patients.Methods A total of 301 patients with hepatic tumor treated in the Yuncheng Central Hospital from October 2014 to September 2016 were selected as the subject,and divided into hepatocellular carcinoma group (207 cases)and non-hepatocellular carcinoma group (94 cases).The concentrations of AFP and DCP were detected in these patients.The histopathological examination results by puncturing was considered as the final diagnostic criteria to evaluate the differential diagnostic values of two serum markers on liver tumors.Results The AFP level in the hepatocellular carcinoma group was significantly higher than that in the non-hepatocellular carcinoma groups.The abnormal prothrombin level was much higher than that of the non-hepatocellular carcinoma,the difference was statistically significant (P<0.05).The combination of AFP and DCP can rise the diagnostic specificity up to 97.6%.There were 156 cases in double positivity,44 cases in double negative,10 cases in AFP(+)DCP(-),and 101 cases in AFP(-)DCP(+).The sensitivity was 78.74%,and specificity accounted for 81.91%.Conclusion Abnormal prothrombin (DCP)is similar to serum AFP in the differential diagnosis of hepatocellular bined detection is beneficial to increasing thediagnostic sensitivity and reducing missed diagnosis.[Key words]Abnormal prothrombin;Alpha-fetoprotein;Liver tumor;Hepatocellular carcinoma肝細胞癌(hepatocellular carcinoma,HCC)作为全球第六大危害人体健康的消化道恶性肿瘤,是临床最常见的恶性肿瘤之一,其死亡率位居恶性肿瘤的第3位[1]。
什么是碰撞实验的目的?
什么是碰撞实验的目的?
一、探究物质之间的相互作用
碰撞实验的目的之一是通过实验的方式探究物质之间的相互作用。
在
碰撞实验中,研究人员可以模拟不同物质之间的碰撞过程,从而了解
在不同条件下物质之间的反应和变化。
这有助于科学家深入理解物质
的性质和特点。
二、研究物质结构和性质
另一个碰撞实验的目的是通过研究物质在碰撞过程中的结构和性质变化,探讨原子、分子等微观粒子的构成和运动规律。
通过碰撞实验,
科学家可以更深入地了解物质的本质,推动材料科学、物理学等领域
的发展。
三、验证理论模型和预测
碰撞实验还可以用来验证理论模型和预测。
科学家通常会根据现有的
理论模型提出猜想,然后通过实验来验证这些猜想是否符合实际情况。
通过对实验数据的分析,可以验证理论模型的准确性,进一步完善和
改进现有的理论框架。
四、拓展科学知识
碰撞实验还可以帮助科学家拓展科学知识,探索新的物理现象和规律。
通过碰撞实验,科学家可以发现一些以往未曾觉察到的现象,从而推
动科学领域的发展,开拓人类对自然世界的认知。
五、促进技术创新和应用
最后,碰撞实验可以促进技术创新和应用。
许多现代科技领域都与碰撞实验有着密切的关系,例如核能、医学影像等领域都受益于碰撞实验的成果。
通过不断进行碰撞实验,科学家可以探索新的技术应用,推动相关领域的进步和发展。
磺酸型高聚物色谱法同时检测葡萄糖酸钠和醋酸钠的研究
磺酸型高聚物色谱法同时检测葡萄糖酸钠和醋酸钠的研究摘要目的:优化同时检测葡萄糖酸钠和醋酸钠的高效液相色谱法,并用该方法对实际复方电解质注射液(勃脉力A)进行检测。
方法:采用麦科菲公司的聚苯乙烯-二乙烯基苯为基质的磺酸型高聚物色谱柱,流动相:0.025 mol/L硫酸溶液;流速:0.6 mL/min;检测波长:210 nm;柱温:25 ℃。
结果:在上述色谱条件下,葡萄糖酸钠和醋酸钠的分离度为4.7,理论塔板数分别为5148和4355,对称性因子分别为0.99和1.01,葡萄糖酸钠和醋酸钠分别在0.080 g/L~1.000 g/L、0.088 g/L~1.100 g/L范围内浓度与峰面积具有良好的线性关系,R2分别为0.9998和0.9991。
重复性实验中葡萄糖酸钠和醋酸钠峰面积的RSD分别为0.53%和1.57%。
葡萄糖酸钠和醋酸钠的最低检测限分别为0.010 g/L和0.011 g/L。
结论:该方法可同时检测葡萄糖酸钠和醋酸钠,且可同时达到并超过国家卫生部药品标准要求,操作简单,分析时间短,重复性好,精密度高。
关键词:葡萄糖酸钠,醋酸钠,高效液相色谱法,复方电解质注射液,磺酸型高聚物色谱柱,聚苯乙烯-二乙烯基苯葡萄糖酸钠和醋酸钠是复方电解质注射液(勃脉力A、乐加)的其中两个组分,具有调节人或动物体内水盐、电解质和酸碱平衡的作用。
同时能够有效地用于防止低钠综合症的发生。
但在现有文献中,缺少同时检测该复方电解质注射液中的葡萄糖酸钠和醋酸钠的报道,因此给药品的质量控制带来了影响。
目前,关于葡萄糖酸盐或醋酸钠的检测方法中,多为单一的,如王如伟[1]等人采用十八烷基键合硅胶(ODS)柱,流动相为乙腈:离子对溶液=(30:70;V/V),其离子对溶液为1000 mL纯化水中加四丁基氯化铵2 mL, 0.1 mol/L氢氧化钠溶液调pH值至7.5,室温条件下检测葡萄糖酸钠。
李艳[2]等人也采用ODS柱,流动相为甲醇:水:1%磷酸溶液=2:48:50(v/v/v),流速为1.0 mL/min,柱温为25 ℃,检测波长210 nm单个检测葡萄糖酸钠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
&G-QuadruplexesIon-Responsive Hemin–G-Quadruplexes for Switchable DNAzyme and Enzyme FunctionsMiguel Angel Aleman-Garcia,Ron Orbach,and Itamar Willner*[a]IntroductionThe discovery of the horseradish peroxidase (HRP)mimicking activities of hemin–G-quadruplex [1]enabled numerous applica-tions of the DNAzyme as amplifying label for sensing [2]and as a catalyst for various chemical transformations,such as the H 2O 2-mediated oxidation of aniline to polyaniline,[3]or thiols to disulfide,[4]or the aerobic oxidation of NADH.[5]Different hemin–G-quadruplex nanostructures have been examined over the years,including the parallel and antiparallel formation of hemin–G-quadruplexes,[6]the self-assembly of G-quadruplex subunits into a catalytically active hemin–G-quadruplex DNA-zyme wires,[7]and the formation of supramolecular complexes consisting of different numbers of G-quadruplex layers,for ex-ample,hemin–telomeric G-quadruplexes.[8]Although all of the hemin–G-quadruplexes revealed HRP-like catalytic functions,the degree of catalytic activity was controlled by the specific hemin–G-quadruplex configurations.Stimuli-responsive func-tions of DNAzymes,and particularly of hemin–G-quadruplexes,have been studied in recent years,and different applications of these systems were suggested.For example,the pH-pro-grammed or ion/ligand-induced assembly or disassembly of DNAzyme subunits were implemented to switch the catalytic functions of the Mg 2+-dependent DNAzyme.[9]Also,the switch-able formation and dissolution of catalytic hydrogels by cross-linking (or separation)of acrylamide chains modified with G-quadruplex subunits was reported.[10]In the latter system,the K +-induced formation of the hemin–G-quadruplex-cross-linked hydrogel led to a catalytic hydrogel matrix that was switched off by a crown ether-mediated elimination of K +ions and the separation of the G-quadruplex-stabilized hydrogel matrix.Here we report the K +–crown ether-or cryptand-induced switchable activation of the hemin–G-quadruplex DNAzyme structure.We demonstrate that this DNAzyme switch allows the ON/OFF functional control of two coupled DNAzymes or DNAzyme/enzyme nanostructures,as well as the DNAzyme transduction of a switchable DNA tweezers machine.Results and DiscussionFigure 1A outlines the design of the bi-DNAzyme switching system consisting of the hemin–G-quadruplex and Mg 2+-de-pendent DNAzymes.The switching system is based on K +-ion induced formation of the G-quadruplex structure (switch ON)and separation of the G-quadruplex by elimination of the K +ions through the formation of the energetically favored K +–crown ether complex (switch OFF).The subunits corre-sponding to the G-quadruplex and Mg 2+-dependent DNAzyme are encoded in the nucleic acid strands 1and 2.Domains I and I’in 1and 2represent subunits of the G-quadruplex with par-tial complementarity,and domains II and III represent the two parts of the Mg 2+-dependent DNAzyme.Also,the fluorophore-quencher-modified ribonucleobase-containing oligonucleotide 3that acts as substrate for the Mg 2+-dependent DNAzyme is included in the system.In the absence of K +ions,the G-quad-ruplex cannot be formed,and strands 1,2,and 3are separat-ed,thus the formation of neither the hemin–G-quadruplex nor the Mg 2+-dependent DNAzyme is induced,and the two DNA-[a]Dr.M.A.Aleman-Garcia,R.Orbach,Prof.I.WillnerInstitute of Chemistry,The Hebrew University of Jerusalem Jerusalem 91904(Israel)E-mail:willnea@vms.huji.ac.ilSupporting information for this article is available on the WWW under /10.1002/chem.201304702.5619Full PaperDOI:10.1002/chem.201304702zymes are switched OFF.Addition of K +ions stimulates theself-assembly of domains I and I’of 1and 2into a stable G-quadruplex structure,which brings together sequences II and III,corresponding to Mg 2+–DNAzyme (switch ON).The associa-tion of substrate 3with the respective domains of 1and 2yields the supramolecular DNA structure consisting of the G-quadruplex and the Mg 2+-dependent DNAzyme sequence.Theassociation of hemin with the G-quadruplex or the Mg 2+to the self-assembled loop structure yields the two DNAzyme units.The hemin–G-quadruplex catalyzes the H 2O 2oxidation of 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid),ABTS 2À,to the colored product ABTS C À,whereas the Mg 2+-dependent DNA-zyme cleaves substrate 3,and the fluorophore-labeled frag-mented product provides a readout signal for its activity.Itshould be noted that the bifunctional DNAzyme structure is formed by synergistic cooperative interactions.The K +-stimu-lated assembly of the hemin–G-quadruplex cooperatively sta-bilizes the binding of 3to the Mg 2+-dependent DNAzyme structure.Treatment of the bifunctional DNAzyme structure with crown ether (18-crown-6)extracts the K +ions from the G-quadruplex,resulting in the separation of the G-quadruplex,and the concomitant unstable duplex of subunits 1,2,and substrate 3.That is,the bifunctional DNAzyme structure is sep-arated into the units 1,2,and 3,and both DNAzymes are switched OFF.At point a (Figure 1B,curve I),K +is added to the system,whereas at point b the crown ether is added.Thecyclic ON/OFF switchable activa-tion of the Mg 2+-dependent DNAzyme is clearly demonstrat-ed.Figure 1B (curve II)shows the selectivity of the bifunctional DNAzyme system for K +ions.Accordingly,the addition of Na +does not induce the formation of the G-quadruplex structure,thus supporting the fact that K +ions are required for the forma-tion of the structure.Further-more,curve (III)shows the effect of K +and crown ether on a system consisting of strands 4and 5,and substrate 3.Strands 4and 5include the Mg 2+-depen-dent DNAzyme sequences pres-ent in 1and 2but are conjugat-ed to tandem strands that cannot form the G-quadruplex.Evidently,addition of K +–crown ether does not activate the Mg 2+-dependent DNAzyme,thus sup-porting the fact that the K +-stimulated self-assembly of the hemin–G-quadruplex indeed sta-bilizes the formation of theactive Mg 2+-dependent DNA-zyme.Figure 1C shows the switchable hemin–G-quadruplexDNAzyme activities towards the oxidation of ABTS 2Àby H 2O 2upon subjecting the system consisting of 1,2and 3,in thepresence of hemin,to K +ions or crown ether,respectively.In the presence of K +ions,the effective hemin–G-quadruplex-cat-alyzed oxidation of ABTS 2Àby H 2O 2proceeds.Binding of theK +ions to the crown ether receptor dissociates the G-quadru-plex,leading to inefficient oxidation of ABTS 2À,switch OFF (the slow oxidation of ABTS 2Àis due to free-hemin-catalyzed oxida-tion by H 2O 2).In the next step we examined the possibility to switch theproteolytic activity of an enzyme ON and OFF.Many aptamersagainst proteins form G-quadruplex structures (e.g.,against thrombin or VEGF).It was found that binding of anti-thrombin aptamer to thrombin inhibits the proteolytic activity of the enzyme.[11]Accordingly,we designed an aptameric G-quadru-plex-stimulated switching of thrombin using K +/crown ether asON/OFF switching triggers (Figure 2A).In the presence of K +ions,formation of the thrombin aptamer G-quadruplex takes place,resulting in binding the aptamer to thrombin and the in-hibition of its proteolytic functions.In turn,the crown ether-in-duced elimination of K +from the aptamer weakens G-quadru-plex,and the aptamer dissociated from the protein.This results in activation of the enzyme toward hydrolysis of its substrate(SensoLyte 520thrombin activity assay kit).The peptide sub-strate is modified with a fluorophore/quencher pair,and fluo-rescence is quenched in the peptide structure.Cleavage ofthe Figure 1.A)Schematic switchable ON/OFF activation and deactivation of the Mg 2+-dependent DNAzyme.The DNAzyme is formed by the K +-ion-stimulated bridging of the DNAzyme subunits through the formation of a G-quadruplex.The Mg 2+-dependent DNAzyme is separated to its subunits by the crown ether-induced eliminationof the K +ions from the G-quadruplex.The switchable supramolecular system is followed by the Mg 2+-dependentDNAzyme cleavage of a fluorophore/quencher-functionalized substrate,and by the catalytic activity of the result-ing hemin–G-quadruplex DNAzyme.B)Time-dependent fluorescence changes:(I)the ON/OFF activation of the Mg 2+-dependent DNAzyme,(a)addition of K +ions,(b)crown ether-stimulated elimination of K +ions;(II)thetreatment of the system consisting of 1/2/3with Na +ions that substitute the K +ions;(III)treatment of subunits4and 5in the presence of 3with K +ions,where 4and 5cannot assemble into a G-quadruplex bridge.C)Follow-ing the K +-induced formation of the G-quadruplex bridged structure of subunits 1and 2by the incorporation ofhemin into the G-quadruplex bridge,resulting in the formation of the hemin–G-quadruplex DNAzyme that cata-lyzes the H 2O 2-mediated oxidation of ABTS 2Àto ABTS C À:(a)addition of K +ions and formation of the 1/2/3catalyti-cally active structure (switch ON);(b)the crown ether-induced separation of the catalytically active nanostructure.5620peptide triggers the fluorescence of the fluorophore,and thisprovides a readout signal for the thrombin-catalyzed hydrolytic reaction.Figure 2B depicts the K +/crown ether switchable ON/OFF activation of thrombin in the presence of aptamer 6.In the absence of K +,hydrolysis of the substrate proceeds,as evi-dent by the time-dependent increase in fluorescence.At point a K +is added to the system and this results in the forma-tion of the aptameric G-quadruplex that binds to thrombin,a process that inhibits the enzyme.This results in the switching OFF of the hydrolysis of the peptide.At point b the crown ether is added to the system,the elimination of K +from the quadruplex separates the aptameric G-quadruplex,resulting in the switching ON of the biocatalytic hydrolysis of the peptide.By elimination of K +from the quadruplex by addition of crownether and readdition of K +ions,the system is switched be-tween ON and OFF states.Control experiments indicate that in the presence of a foreign non-aptameric G-quadruplex con-taining sequence 7,the addition of K +or crown ether does not have any effect on thrombin activity,and the hydrolysis ofthe peptide proceeded continuously (Figure S1in the Support-ing Information).These results show that the switching of thethrombin activity is due to the specific interactions of K +/crown ether with the aptamer.The formation of the G-quadruplex,upon addition of K +to the peptide/thrombinsystem,and the separation of the G-quadruplex in the pres-ence of the crown ether were further confirmed by the addi-tion of hemin (Figure 2C).The addition of K +induces the for-mation of an active DNAzyme structure that catalyzes the oxi-dation of ABTS 2Àto the colored product ABTS C À,whereas treat-ment of the resulting complex with crown ether eliminates the K +ions from the G-quadruplex,resulting in its dissociation and the release of the G-quadruplex associated hemin.The low cata-lytic activity of the system toward the oxidation of ABTS 2Àby H 2O 2is due to the inefficient hemin-catalyzed oxidation of ABTS 2À,and/or to residues of the hemin–G-quadruplex that cata-lyze the oxidation of ABTS 2Àby H 2O 2.Finally,we implemented a switchable DNA tweezers ma-chine to reversibly activate and deactivate the hemin–G-quadru-plex DNAzyme.Different supra-molecular DNA nanostructures have been reported to mimic the functions of macroscopic machines,[12]such as structures mimicking the cyclic opening/closure of “tweezers”,[13]bidirec-tional “walkers”,[14]directionalmolecular rotors [15]or directional transitions of interlocked catenated rings.[16]Nucleic acid strands,[17]pH changes,[18]metal ion/ligands,[19]and light [20]have been used as fuel and antifuel components to drive these cyclic DNA machines.Here we im-plement the K +/2.2.2-cryptand system as cation and cation-binding ligand for the cyclic stimulated opening and closure ofDNA tweezers,and the concomitant formation of the hemin–G-quadruplex DNAzyme (switch ON)and its dissociation into a catalytically inactive structure (switch OFF;Figure 3).In this system 2.2.2-cryptand was used instead of 18-crown-6due itshigher affinity for K +ions (K a 105.3vs.102.05),[21]which is neces-sary since the concentration of K +is higher than in the previ-ous systems (40vs.20m m ).Note that cryptand cannot be used in the Mg 2+-dependent DNAzyme system because it also binds Mg 2+ions.The tweezers structure,T 1,consists of two nu-cleic acid “arms”,8and 9,bridged by two nucleic acids,10and 11,to form the closed tweezers structure.The bridgingunit 10is substituted at its ends with fluorophore/quencherunits.Domains I and II in the arms 8and 9include G-reach se-quences that are capable of forming the G-quadruplex-stabi-lized structure in the presence of K +ions.In the absence of K +,domains I and II are complementary to the respective bases as-sociated with the bridging element,and the tweezers exist inthe closed state,T 1.In the presence of K +ions,the stabilization of the G-quadruplexes opens the tweezers,to state T 2,withthe concomitant release of 11.Further addition of the cryptandligand eliminates K +ions from the G-quadruplex,resultinginFigure 2.A)Anti-thrombin aptameric G-quadruplex switchable activation and deactivation of the hydrolytic activi-ties of thrombin.The K +-ion-induced G-quadruplex aptamer binds to thrombin and inhibits the hydrolyticenzyme activity.The crown ether-stimulated elimination of K +ions dissociates the G-quadruplex,and therandom-coil aptamer detaches from thrombin,leading to the activation of the enzyme.The association of hemin to the K +-stabilized G-quadruplex bound to thrombin yields the active hemin–G-quadruplex DNAzyme that cata-lyzes the H 2O 2-mediated oxidation of ABTS 2Àto ABTS C À.B)Time-dependent fluorescence changes upon theswitchable activation/deactivation of thrombin in the presence of K +/crown ether:(a)addition of K +ions to thesystem,(b)addition of crown ether to the system.C)Time-dependent absorbance changes as a result of thehemin–aptamer G-quadruplex-catalyzed oxidation of ABTS 2Àby H 2O 2:(a)addition of K +ions to the system,(b)elimination of the K +ions from the G-quadruplex by the added crown ether.5621the K +–cryptand complex.This process dissociates the G-quad-ruplex,resulting in the rebinding of 11to the nucleic acid arms 8and 9,and the reclosure of the tweezers.Consequently,by cyclic treatment of tweezers T 1with K +,and subsequent treatment of the open K +-stabilized G-quadruplex tweezers T 2with cryptand,the DNA system reversibly switches between the open (T 2)and closed (T 1)states.The cyclic opening and closure of the tweezers was followed by the fluorescence in-tensities of the fluorophore label associated with 10(Fig-ure 4A).The close proximity between the fluorophore/quench-er pair in structure T 1leads to effective quenching of the fluo-rophore,while the spatial separation of the fluorophore/quencher pair in state T 2leads to less efficient quenching.Indeed,Figure 4A shows that in the presence of K +ions,open-ing of the tweezers yields a high fluorescence,whereas addi-tion of the cryptand and the formation of the closed state T 1,yields effective quenching of the fluorophore.The switchable opening and closure of the tweezers through the K +/ligand-stimulated formation of the G-quadruplex and its dissociation were implemented to incorporate the HRP-mimicking DNA-zyme functions into the tweezers device.Association of hemin with the K +-stabilized G-quadruplex is known to generate the HRP-mimicking DNAzyme that catalyzes the H 2O 2-mediated ox-idation of Amplex Red to the resofurin fluorescence product.[22]Accordingly,the association of hemin to the G-quadruplexes connected with tweezers T 2is anticipated to form active DNA-zyme structures,whereas the closure of tweezers T 2is expect-ed to switch OFF the catalytic properties of the system.Fig-ure 4B depicts the cyclic and switchable activation and deacti-vation of the hemin–G-quadruplex DNAzyme upon the transi-tion of the tweezers system between the open and closed states.The time-dependent fluorescence changes at points a correspond to the DNAzyme-catalyzed oxidation of Amplex Red to resofurin,while in the closed tweezers,T 1,the G-quad-ruplex is “caged”in a catalytically inactive structure (points b).It should be noted that in the present system we used theDNAzyme-catalyzed oxidation of Amplex Red by H 2O 2to reso-furin as the chemical reaction that probes the activity of the hemin–G-quadruplex DNAzyme,rather than the DNAzyme-in-duced oxidation of ABTS 2Àby H 2O 2used in the previous system.This is because ABTS C Àreacts with cryptand and,there-fore,cannot be used to monitor the ON/OFF switch.ConclusionIn conclusion,the present study has demonstrated that the K +-induced formation of G-quadruplexes can be implemented to switch the catalytic activities of DNAzymes and enzymes and to trigger the opening/closure of a DNA machine (tweezers).The K +-induced formation of the G-quadruplex has enabled the association of hemin to the nanostructure while generat-ing the HRP-mimicking DNAzyme.The switching functions of the different systems were achieved by the K +-induced assem-bly of the G-quadruplex structures and their separation by the uptake of K +from the DNA structures using appropriate recep-tor ligands (crown ether or cryptand).Specifically,we have demonstrated that the K +-stimulated formation of the G-quad-ruplex structure consisting of the Mg 2+-dependent DNAzyme subunits led to the ON/OFF switchable DNAzyme.Similarly,theFigure 3.The K +ion/cryptand-triggered opening and closure of DNA tweez-ers.Opening of the tweezers by K +leads to the formation of K +-stabilized G-quadruplexes.The opening and closure of the tweezers is followed by the fluorescence changes of a fluorophore/quencher pair associated witha bridging unit linking the “arms”of the tweezers,and by the incorporation of hemin into the generated G-quadruplexes to yield the DNAzyme that cat-alyzes the H 2O 2-mediated oxidation of Amplex Red to the fluorescent reso-furinproduct.Figure 4.A)Fluorescence spectra corresponding to:(a)the closed tweezers,T 1;(b)the open tweezers,T 2.Inset:cyclic fluorescence changes of thesystem upon opening of the tweezers with K +ions to yield T 2and closure of the tweezers by the addition of the cryptand to yield T 1.B)Time-depen-dent fluorescence changes as a result of the hemin–G-quadruplex-catalyzed oxidation of Amplex Red to the fluorescent resofurin:(a)addition of K +ions to yield tweezers,T 2;(b)addition of cryptand to regenerate tweezers,T 1.5622K+-induced formation of the G-quadruplex consisting of the anti-thrombin aptamer complex enabled the switching-OFF of the activity of thrombin.The ON/OFF switching of the throm-bin functions were then demonstrated by the cyclic formation and dissociation of the aptamer G-quadruplex structure.Finally, the K+-stimulated formation of the G-quadruplex structure was implemented to open a predesigned DNA tweezers structure, leading to the generation of active HRP-mimicking DNAzyme units.By the formation of the K+-stabilized G-quadruplex struc-tures,and their separation by means of the receptor ligands, the tweezers were cycled between open and closed states, leading to ON/OFF catalytic functions.The switching paradigm presented in this study is general and introduces a new means to assemble and dissociate programmed nanostructures of nu-cleic acids.Experimental SectionMaterials2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic acid sodium salt (HEPES),ABTS2À,sodium chloride,magnesium chloride,potassium acetate,and potassium nitrate were purchased from Sigma–Aldrich.DNA oligonucleotides were purchased from Integrated DNA Technologies Inc.,(Coralville,IA).The products were HPLC pure and characterized by mass spectrometry.Hydrogen peroxide solution was purchased from Fluka.Hemin was purchased from Porphyrin Products(Logan,UT).SensoLyte 520thrombin activity assay kit was purchased from Anaspec(Fermont,CA).Ultrapure water from NANOpure Diamond(Barnstead)source was used in all of the experiments.Amplex UltraRed reagent was purchased from Invitrogen,Lifetechnologies.The sequences of the oligonucleotides used in this study are:1:5’-TGGGTTAATGCCACCCATGTTATCCTA-3’2:5’-AGTACTCAGCGATGCATTATGGGTAGGGCGGG-3’3:5’-FAM-TAGGATATrAGGAGTACT-BHQ-2-3’4:5’-CTCACTCACCTACTCATCTTCACCCATGTTATCCTA-3’5:5’-AGTACTCAGCGATAAGATCACTCACTCCACTCC-3’6:5’-GGTGGTGTGGTTGG-3’7:5’-TAAGGGTAAGGGTAAGGGTAAGGG-3’8:5’-GTTGGAGCGACATTAGAGACTGGGTAAGGGTAAGGGTAAGGG-3’9:5’-AGGGTAAGGGTAAGGGTAAGGGTGGCCTGTCCTATCTATG-ATGG-3’10:5’-Cy5.5-TCTCTAATGTCGCTCCAACAACCATCATAGATAGGA-CAGG-IowaBlack RQ/-3’11:5’-CTCTTATTCTTACTCATAACACTCTTATTCTTACTC-3’InstrumentationFluorescence measurements were performed using a Cary Eclipse Fluorometer(Varian Inc.).The excitation of resofurin,FAM,and Cy5.5were performed at490,480,and680nm,respectively.Ab-sorbance measurements of ABTS CÀwere performed using a Shimad-zu UV-2401PC UV/Vis spectrophotometer.DNAzyme assayThe K+-switchable bifunctional DNAzyme nanostructure was stud-ied in a solution consisting of1,2,and3at a final concentration of3m m in a10m m HEPES buffer(20m m MgCl2,50m m NaCl, pH7.2).DNA samples were heated to908C for5min and slowly cooled to room temperature before measurement.The switchable HRP-mimicking activities of the hemin–G-quadru-plex system were analyzed using hemin and ABTS2Àwith a final concentrations of15n m and2m m,respectively.The reaction was initialized by addition of hydrogen peroxide(final concentration of 200m m).The ON/OFF system was generated by the addition of K+ (20m m as KOAc)or18-crown-6(25m m),respectively.DNAzyme/enzyme assayThe thrombin assay was conducted in a10m m HEPES buffer (100m m NaCl,5m m MgCl2,pH7.2).The final concentration of the aptamers6and7was1m m.After1.5h of incubation,thrombin (20n m)was added and allowed to equilibrate for30min in order to form the aptamer–substrate complex.For the fluorescence measurements thrombin substrate5.8 10À6m was used(Senso-Lyte 520thrombin activity assay kit).DNA tweezers assayThe K+-triggered DNA tweezers system was studied in a solution consisting of8,9,10,and11at a final concentration of1m m in a10m m HEPES buffer(5m m MgCl2,pH7.2).Hemin and Amplex UltraRed were added to a final concentration of15and100n m, respectively.The peroxidase-mimicking reaction was initialized by addition of hydrogen peroxide(final concentration of200m m).The ON/OFF system was generated by adding K+(40m m as KNO3)or 2.2.2cryptand(25m m),respectively. AcknowledgementsParts of this study were supported by the Volkswagen Founda-tion,Germany,and by the Israel Science Foundation. Keywords:crown ether·cryptand·G-quadruplex·thrombin·tweezers[1]a)P.Travascio,Y.F.Li,D.Sen,Chem.Biol.1998,5,505–517;b)P.K.Wit-ting,P.Travascio,D.Sen,A.G.Mauk,Inorg.Chem.2001,40,5017–5023;c)D.Sen,L.C.H.Poon,Crit.Rev.Biochem.Mol.Biol.2011,46,478–492.[2]a)Y.Xiao,V.Pavlov,T.Niazov,A.Dishon,M.Kotler,I.Willner,J.Am.Chem.Soc.2004,126,7430–7431;b)C.Teller,S.Shimron,I.Willner, Anal.Chem.2009,81,9114–9119;c)T.Li,L.L.Shi, E.K.Wang,S.J.Dong,Chem.Eur.J.2009,15,3347–3350;d)D.M.Kong,J.Xu,H.X.Shen,Anal.Chem.2010,82,6148–6153;e)S.Bi,L.Li,S.S.Zhang,Anal.Chem.2010,82,9447–9454;f)X.Liu,R.Freeman,E.Golub,I.Willner, ACS Nano2011,5,7648–7655;g)T.Li,E.Wang,S.Dong,Anal.Chem.2010,82,1515–1520;h)S.Shimron,F.Wang,R.Orbach,I.Willner,Anal.Chem.2012,84,1042–1048;i)F.Wang,R.Orbach,I.Willner,Chem.Eur.J.2012,18,16030–16036.[3]Z.G.Wang,P.Zhan,B.Ding,ACS Nano2013,7,1591–1598.[4]E.Golub,R.Freeman,I.Willner,Anal.Chem.2013,85,12126–12133.[5]E.Golub,R.Freeman,I.Willner,Angew.Chem.2011,123,11914–11918;Angew.Chem.Int.Ed.2011,50,11710–11714.[6]a)H.-W.Lee, D.J.-F.Chinnapen, D.Sen,Pure Appl.Chem.2004,76,1537–1545;b)P.R.Majhi,R.H.Shafer,Biopolymers2006,82,558–569;c)D.M.Kong,W.Yang,J.Wu,C.X.Li,H.X.Shen,Analyst2010,34,321–326.[7]a)L.Zhu,C.Li,Z.Zhu,D.Liu,Y.Zou,C.Wang,H.Fu,C.Yang,Anal.Chem.2012,84,8383–8390;b)S.Nakayama,J.X.Wang,H.O.Sintim, Chem.Eur.J.2011,17,5691–5698.5623[8]R.Freeman,E.Sharon,C.Teller,A.Henning,Y.Tzfati,I.Willner,ChemBio-Chem2010,11,2362–2367.[9]a)S.Shimron,J.Elbaz,A.Henning,I.Willner,mun.2010,46,3250–3252;b)J.Elbaz,S.shimron,I.Willner,mun.2010,46, 1209–1211.[10]C.H.Lu,X.J.Qi,R.Orbach,I.Mironi-Harpaz,D.Seliktar,I.Willner,NanoLett.2013,13,1298–1302.[11]a)L.C.Bock,L.C.Griffin,tham,E.H.Vermaas,J.J.Toole,Nature1992,355,564–566;b)R.F.Macaya,J.A.Waldron,B.A.Beutel,H.T.Gao,M.E.Joesten,M.H.Yang,R.Patel,A.H.Bertelsen,A.F.Cook,Bio-chemistry1995,34,4478–4492.[12]a)Y.Krishnan, F.C.Simmel,Angew.Chem.2011,123,3180–3215;Angew.Chem.Int.Ed.2011,50,3124–3156;b)C.Teller,I.Willner,Curr.Opin.Biotechnol.2010,21,376–391;c)J.Bath,A.J.Turberfield,Nat.Nanotechnol.2007,2,275–284;d)M.K.Beissenhirtz,I.Willner,Org.Biomol.Chem.2006,4,3392–3401.[13]B.Yurke,A.J.Turberfield,ls,F.C.Simmel,J.L.Neumann,Nature2000,406,605–608.[14]a)W.B.Sherman,N.C.Seeman,Nano.Lett.2004,4,1203–1207;b)Z.G.Wang,J.Elbaz,I.Willner,Nano Lett.2011,11,304–309.[15]C.H.Lu,A.Cecconello,J.Elbaz,A.Credi,I.Willner,Nano Lett.2013,13,2303–2308.[16]J.Elbaz,Z.G.Wang,F.Wang,I.Willner,Angew.Chem.2012,124,2399–2403;Angew.Chem.Int.Ed.2012,51,2349–2353.[17]J.S.Shin,N.A.Pierce,J.Am.Chem.Soc.2004,126,10834–10835.[18]J.Elbaz,Z.G.Wang,R.Orbach,I.Willner,Nano Lett.2009,9,4510–4514.[19]Z.G.Wang,J.Elbaz,F.Remacle,R.D.Levine,I.Willner,Proc.Natl.Acad.A2010,107,21996–22001.[20]X.Liang,H.Nishioka,N.Takenaka,H.Asanuma,ChemBioChem2008,9,702–705.[21]R.M.Izatt,J.S.Bradshaw,S.A.Nielsen,mb,J.J.Christensen,D.Sen,Chem.Rev.1985,85,271–339.[22]S.Nakayama,H.O.Sintim,Mol.BioSyst.2010,6,95–97.Received:December1,2013Revised:January20,2014Published online on March28,20145624。