第二章导电性高分子材料

合集下载

导电高分子材料的研究和应用

导电高分子材料的研究和应用

导电高分子材料的研究和应用近年来,导电高分子材料得到了越来越多的关注。

这种材料能够将电能转化为热能,具有较高的电导率和良好的机械性能,因此在可穿戴电子设备、柔性电子、智能材料等领域具有广泛的应用前景。

本文将就导电高分子材料的研究进展和应用领域进行探讨。

一、导电高分子材料的分类和制备方法导电高分子材料的分类多种多样,包括导电聚合物和导电复合材料等。

其中导电聚合物主要包括导电聚苯胺、导电聚丙烯酰胺和聚电解质等。

这些聚合物具有较高的导电性能和良好的稳定性,可以在应力、温度和化学环境等多种条件下均能保持稳定的电导率。

导电复合材料是指将导电材料与聚合物基体复合而成的材料。

导电材料可以是金属、碳纳米管、石墨烯等等,具有较高的导电性能。

而聚合物基体则可以提供良好的机械性能和稳定性。

导电复合材料的制备方法包括化学合成、物理混合和化学还原等。

二、导电高分子的应用领域1. 可穿戴设备随着移动互联网和物联网技术的不断发展,可穿戴设备逐渐得到人们的关注。

作为这一领域的重要材料之一,导电高分子可以用于制作柔性传感器、智能手表、智能眼镜等设备中的电子元件。

相比于传统的刚性电子元件,导电高分子材料可以更好地贴合皮肤,不影响使用者的日常生活。

2. 柔性电子柔性电子作为一种颠覆性的技术,将改变现有的电子产品设计理念。

导电高分子材料可以在这一领域中扮演重要的角色。

制备柔性电子的关键在于材料的柔软性和可弯折性。

而导电高分子材料具有较好的柔软性和可弯折性,因此可以作为柔性电子的重要材料之一。

3. 智能材料智能材料是指能够对外界刺激做出相应反应的材料。

导电高分子材料可以通过改变电流、温度等条件来实现形变、液滴运动等智能性能。

此外,导电高分子材料还可以应用于电磁屏蔽、光电和声音传感器等领域。

三、导电高分子材料未来的发展方向随着科技的不断发展和人们对高性能、高稳定性的需求不断增加,导电高分子材料未来的发展方向也越来越多样。

以下是未来导电高分子材料的几个发展趋势:1. 提高导电性目前导电高分子材料的电导率还有一定的提升空间。

导电高分子材料

导电高分子材料
11
什么是导电高分子的掺杂呢?
纯净的导电聚合物本身并不导电,必须经过掺 杂才具备导电性
掺杂是将部分电子从聚合物分子链中迁移出来 从而使得电导率由绝缘体级别跃迁至导体级别 的一种处理过程
导电聚合物的掺杂与无机半导体的掺杂完全不 同
导电高分子的掺杂与无机半导体的掺杂的对比
目前掺杂的方式主要有两种 :
氧化还原掺杂 :可通过化学或电化学手段来实现 。化学 掺杂会受到磁场的影响
遗憾的是目前为止还没有发现外加磁场对聚合物的室温电 导率有明显的影响
质子酸掺杂 :一般通过化学反应来完成,近年发现也可 通过光诱导施放质子的方法来完成
还有掺杂—脱掺杂—再掺杂的反复处理方法,这种掺杂方 法可以得到比一般方法更高的电导率和聚合物稳定性
6
导电机理与结构特征
④π价电子 两个成键原子中p电子相互重叠后产生 π键,构成π键的电子称为π价电子。当π电子孤立 存在时这种电子具有有限离域性,电子在两个原 子之间可以在较大范围内移动。当两个π键通过一 个σ键连接时,π电子可以在两个π键之间移动,这 种分子结构称为共轭π键。
7
导电机理与结构特征
利用导电高分子与金属线圈当电极,半导体高分子在中间,当两电 极接上电源时,半导体高分子将会开始发光。比传统的灯泡更节省能源 而且产生较少的热,具体应用包括平面电视机屏幕、交通信息标志等。
导电高分子材料的应用
半导体特性的应用-太阳能电池
导电高分子可制成太阳电池,结 构与发光二极管相近,但机制却相反 ,它是将光能转换成电能。 优势在于 廉价的制备成本,迅速的制备工艺, 具有塑料的拉伸性、弹性和柔韧性 。
导电高分子材料的应用
导体特性的应用
抗静电 理想的电磁屏蔽材料,可以应用在计算机、电视机、起搏器等 电磁波遮蔽涂布 能够吸收微波,因此可以做隐身飞机的涂料 防蚀涂料 能够防腐蚀,可以用在火箭、船舶、石油管道等

导电高分子材料

导电高分子材料

导电高分子材料引言导电高分子材料是一类具有导电性能的高分子材料,通常通过将一定量的导电剂与高分子基体进行混合来实现。

导电高分子材料具有许多独特的性能和应用,因此在电子学、能源技术、催化剂等领域有着广泛的应用和巨大的发展潜力。

1. 导电机制导电高分子材料的导电性能主要来源于导电剂的存在。

常见的导电剂包括金属粉末、碳纳米管、导电聚合物等。

这些导电剂在高分子基体中形成导电网络,使得材料能够传导电流。

导电高分子材料的导电性能与导电剂的种类、含量、分散性以及高分子基体的性质密切相关。

2. 特殊性能与应用导电高分子材料具有许多特殊的性能,使得其在多个领域具有广泛的应用。

2.1 电子学领域导电高分子材料在电子学领域有着重要的应用,例如导电高分子材料可以用于制备有机导电薄膜晶体管(OFET),用于构建柔性显示器、智能传感器和可穿戴设备等。

导电高分子材料不仅具有良好的导电性能,还具有优秀的可拉伸性和柔韧性,能够适应各种复杂的电子设备形状。

2.2 能源技术领域导电高分子材料在能源技术领域也有广泛的应用。

例如,导电高分子材料可以用于制备柔性太阳能电池,用于光电转换、能源收集和储存等。

导电高分子材料具有较高的导电性能和光吸收性能,可以有效提高太阳能电池的能量转换效率。

2.3 催化剂领域导电高分子材料还可以作为催化剂载体,用于催化剂的载体和固定。

导电高分子材料具有较大的比表面积和多孔结构,能够提供更多的活性位点和催化反应的接触面积,从而提高催化剂的反应效率和稳定性。

3. 导电高分子材料的制备方法导电高分子材料的制备方法多种多样,常见的制备方法包括物理共混法、化学共混法、原位聚合法等。

其中,物理共混法是将导电剂和高分子基体通过物理混合来制备导电高分子材料,适用于一些导电剂与高分子基体相容性较好的体系;化学共混法是通过化学反应将导电剂与高分子基体结合,适用于一些导电剂与高分子基体相容性较差的体系;原位聚合法是在高分子合成过程中引入导电剂,使导电剂与高分子基体同时合成。

导电高分子材料

导电高分子材料

导电高分子材料所谓导电高分子是具有共轭Π键的高分子经化学或电化学掺杂使其由绝缘体转变为导体的一类高分子材料。

它完全不同于金属或碳粉末与高分子共混而制成的导电塑料,通常导电高分子的结构特征是具有高分子链结构和与链非键合的一价阴离子或阳离子共同组成。

即在导电高分子结构中,除了具有高分子链外,还含有由“掺杂”而引入的一价对阴离子或对阳离子。

导电聚合物最引人注目的一个特点是其电导率可以在绝缘体-半导体-金属态较宽的范围里变化。

这是目前其他材料所无法比拟的。

分类,按照材料的结构与组成,可将导电高分子分成两大类。

一类是结构型导电高分子,另一类是复合型导电高分子。

结构型导电高分子的导电机理为物质的导电过程是载流子在电场作用下定向移动的过程。

高分子聚合物导电必须具备两个条件:一要能产生足够数量的载流子,二是大分子链内和链间要能够形成导电通道。

在离子型导电高分子材料中,聚醚,聚酯等的大分子呈螺旋体空间结构,与其配位络合的阳离子在大分子链段运动作用下,就能够在螺旋孔道内通过空位迁移;或被大分子溶剂化了的阴阳离子同时在大分子链的空隙间跃迁扩散。

对于电子型导电高分子材料,作为主体的高分子聚合物大多为共轭体系,长链中的Π键较为活泼,特别是与掺杂剂形成电荷转移络合物后,容易从轨道上逃逸出来形成自由电子。

大分子链内与链间Π电子轨道重叠交盖所形成的导电能带为载流子的转移和跃迁提供了通道。

在外加能量和大分子链振动的推动下,便可传导电流。

复合型导电高分子复合型导电高分子是在本身不具备导电性的高分子材料中掺混入大量导电物质,如炭黑,金属粉,箔等,通过分散复合,层级复合,表面复合等方法构成的复合材料,其中以分散复合最为常用。

与结构型导电高分子不同,在复合型导电高分子中,高分子材料本身并不具备导电性,只充当了粘合剂的角色,导电性是通过混合在其中的导电性物质如炭黑,金属粉等获得的。

由于它们制备方便,有较强的实用性,因此在结构型导电高分子尚有许多技术问题没有解决的今天,人们对他们有着极大的兴趣。

导电高分子材料通用课件

导电高分子材料通用课件
性。
加工性能
要点一
总结词
加工性能是导电高分子材料的另一个重要性能参数,它决 定了材料在加工过程中的可加工性和加工效果。
要点二
详细描述
加工性能包括材料的熔融流动性、热稳定性、可塑性和延 展性等。良好的加工性能能够保证导电高分子材料在加工 过程中具有良好的可加工性和加工效果,从而提高材料的 实用性和生产效率。
导电高分子材料通用课件
目 录
• 导电高分子材料的导电机理 • 导电高分子材料的制备方法 • 导电高分子材料的性能参数 • 导电高分子材料的发展趋势与挑战
目 录
• 导电高分子材料在新能源领域的应 • 导电高分子材料在智能材料与器件
01
CATALOGUE
导电高分子材料简介
导电高分子材料的定义
总结词
详细描述
聚合物共混法是通过将导电高分子材料与非 导电高分子材料混合,制备成复合材料的方 法。这种方法可以充分利用各种高分子材料 的优点,制备出性能优异的复合材料,但需 要解决相容性问题,以保证良好的导电性能。
04
CATALOGUE
导电高分子材料的性能参数
电导 率
总结词
电导率是导电高分子材料最重要的性 能参数之一,它决定了材料的导电能 力和效率。
物理掺杂法
总结词
通过物理方式将导电物质掺入高分子材料中, 使其获得导电性能的方法。
详细描述
物理掺杂法是一种简单易行的方法,通过将 导电物质如碳黑、石墨烯、金属纳米颗粒等 掺入高分子材料中,使其获得导电性能。这 种方法工艺简单,成本低,但导电性能受掺 杂物质种类和含量影响较大。
聚合物共混法
总结词
将导电高分子材料与非导电高分子材料混合, 形成具有导电性能的复合材料的方法。

导电高分子材料的研究进展

导电高分子材料的研究进展

导电高分子材料的研究进展一、本文概述导电高分子材料作为一种新兴的功能材料,因其独特的导电性能和可加工性,在电子、能源、生物医学等领域展现出广阔的应用前景。

本文旨在综述导电高分子材料的研究进展,重点关注其导电机制、性能优化以及实际应用等方面。

我们将简要介绍导电高分子材料的基本概念、分类和导电原理,为后续讨论奠定基础。

接着,我们将重点回顾近年来导电高分子材料在合成方法、性能调控以及导电性能提升等方面的研究成果。

本文还将探讨导电高分子材料在电子器件、能源存储与转换、生物传感器等领域的应用进展,并展望未来的发展趋势和挑战。

通过本文的综述,希望能够为相关领域的研究人员提供有价值的参考信息,推动导电高分子材料的进一步发展。

二、导电高分子材料的分类导电高分子材料可以按照其导电机制、化学结构、应用方式等多种维度进行分类。

从导电机制来看,导电高分子材料主要分为电子导电高分子和离子导电高分子两大类。

电子导电高分子主要依靠其共轭结构中的π电子进行导电,如聚乙炔、聚吡咯、聚噻吩等;而离子导电高分子则通过离子在固态中移动实现导电,如聚电解质、离子液体等。

从化学结构上看,导电高分子材料主要包括共轭聚合物、金属络合物高分子、复合型导电高分子等。

共轭聚合物由于具有大的共轭体系和离域π电子,表现出优异的电子导电性;金属络合物高分子则通过金属离子与高分子链的配位作用,形成导电通道;复合型导电高分子则是通过在绝缘高分子基体中添加导电填料(如碳黑、金属粒子、导电聚合物等),实现导电性能的提升。

在应用方式上,导电高分子材料可以分为结构型导电高分子和复合型导电高分子。

结构型导电高分子本身即具有导电性,可以直接用于电子器件的制备;而复合型导电高分子则需要通过添加导电填料等方式实现导电性能的调控,其导电性能受填料种类、含量、分散状态等多种因素影响。

根据导电高分子材料的导电性能,还可以分为导电高分子、抗静电高分子和高分子电解质等。

导电高分子具有高的导电性,可以作为电极材料、电磁屏蔽材料等;抗静电高分子则主要用于防止静电积累,如抗静电包装材料、抗静电涂层等;高分子电解质则具有离子导电性,可应用于电池、传感器等领域。

导电高分子材料聚苯胺

导电高分子材料聚苯胺

苯胺简介及结构聚苯胺是一种具有金属光泽的粉末,因分子内具有大的线型共轭π电子体系,其自由电子可随意迁移和传递,而成为最具代表性的有机半导体材料。

与其他导电聚合物相比,聚苯胺具有结构多样化、耐氧化和耐热性好等特点,同时还具有特殊的掺杂机制。

MacDiarmid 重新开发聚苯胺后,在固体13C-NMR及IR研究的基础上提出聚苯胺是一种头尾连接的线性聚合物,由苯环-醌环交替结构所组成,但这种结构和后来出现的大量实验数据相矛盾。

1987年,MacDiarmid进一步提出了后来被广泛接受的苯式-醌式结构单元共存的模型,两种结构单元通过氧化还原反应相互转化。

即本征态聚苯胺由还原单元:和氧化单元:构成,其结构为:其中y值用于表征聚苯胺的氧化还原程度,不同的y值对应于不同的结构、组分和颜色及电导率,完全还原型(y=1)和完全氧化型(y=0)都为绝缘体。

在0<y<1的任一状态都能通过质子酸掺杂,从绝缘体变为导体,仅当y=0.5时,其电导率为最大。

聚苯胺的导电原理物质的导电过程是载流子(电子、离子等带电粒子) 在电场作用下定向移动的过程。

通常认为, 高分子聚合物导电必须具备两个条件:一是要能产生足够数量的载流子, 二是大分子链内和链间要能够形成导电通道。

纯的聚苯胺是绝缘体, 要使它变为导体需要掺杂, 就是掺入少量其他元素或化合物。

0<y<1的聚苯胺, 掺杂后能变为导体, y为0.5的中间氧化态聚苯胺(苯式-醌式交替结构) 掺杂后的导电性最好。

而y为1的完全还原态聚苯胺(全苯式结构) 和y为0的完全氧化态聚苯胺(全醌式结构) 即使掺杂也不能变为导体。

一种掺杂聚苯胺的结构式如图所示, x代表掺杂程度, A-是掺杂剂质子酸中的阴离子, y仍代表还原程度。

向聚苯胺中掺入质子酸是一种有效的掺杂方式, 但是使用普通有机酸及无机弱酸获得的掺杂产物电导率不高, 必须用酸性较强的质子酸(如H2SO4、H3PO4、HBr和HCl) 作掺杂剂才可得到电导率较高的掺杂态聚苯胺, 盐酸是最常用的无机掺杂酸。

导电高分子材料的制备方法及性能研究

导电高分子材料的制备方法及性能研究

导电高分子材料的制备方法及性能研究近年来,随着电子技术的快速发展和应用需求的不断增加,导电高分子材料作为一种重要的功能材料受到了广泛的关注和研究。

导电高分子材料具有不同于传统导电材料的优点,如重量轻、柔韧性好、可塑性强等,逐渐在电子器件、能源存储和传感器等领域展示出巨大的应用潜力。

本文将介绍导电高分子材料的制备方法以及其在不同领域中的性能研究。

一、导电高分子材料的制备方法1. 化学合成法化学合成法是制备导电高分子材料的一种常用方法。

在这种方法中,通过对适当的单体(如嵌段共聚物单体)进行聚合反应,将非导电的高分子转化为导电高分子材料。

例如,聚苯乙炔是一种具有良好导电性能的高分子材料,可以通过嵌段共聚物合成法来合成。

具体来说,将含有苯乙炔和有机金属化合物的单体进行聚合反应,可得到导电性能良好的聚苯乙炔材料。

2. 界面聚合法界面聚合法是制备导电高分子材料的另一种重要方法。

在这种方法中,通过在高分子材料表面引入一定的功能单元,使其具有导电性能。

常用的界面聚合方法包括电化学聚合、化学修饰和物理吸附等。

例如,可以通过在高分子材料表面沉积一层导电性较高的金属薄层,从而赋予高分子材料导电性能。

此外,也可以通过在高分子材料表面吸附或修饰导电性高的纳米颗粒,实现导电性能的提升。

二、导电高分子材料的性能研究1. 导电性能导电性能是评价导电高分子材料性能的关键指标之一。

通过测量导电高分子材料的电阻率或电导率,可以评估其导电能力。

导电性能的研究一方面可以通过不同的制备方法来改变材料的导电性能,另一方面可以通过调控材料的结构或添加导电剂来提升材料的导电性能。

2. 机械性能导电高分子材料的机械性能是其在实际应用中的重要考虑因素之一。

由于导电高分子材料通常是柔性的,因此其柔韧性和可塑性是评价其机械性能的关键指标。

通过调控材料的分子结构或添加增塑剂,可以改善材料的柔性和可塑性。

3. 热稳定性导电高分子材料的热稳定性是其在高温环境中应用的重要性能之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章导电性高分子材料近年来,随着集成电路和大规模集成电路的迅速发展,电磁波及静电等问题给我们的生活带来了很大损失。

随着电子线路和元件越来越集成化、微型化、高速化,使用的电流为微弱电流,致使控制信号的功率与外部侵入的电磁波噪音功率相接近,因此容易造成误动作、图象障害和音响障害,妨碍警察通讯、防卫通讯、航空通讯,造成卫星总装调试障碍等等,其后果是可想而知的。

导电高分子材料就是为了解决这些实际应用中的问题而发展起来的。

第一节导电高分子材料概述我们通常所见到的聚合物通常是不导电的绝缘体,但自从美国科学家A.F.Heeger和Macdiarmid发现聚乙炔具有明显导电性质之后,有机聚合物不能导电的观念被打破了。

根据已有的制作水平,经加碘掺杂的聚乙炔的导电能力已经进入金属导电的范围,接近室温下铜的导电率。

有人称其为金属化聚合物,或称合金金属,有机聚合物的电学性质从绝缘体到导体的转变促进了分子导电理论和固态离子导电理论的发展,从而引起了众多科学家的关注,成为有机化学中的研究热点。

在抗静电、电磁波屏蔽以及显示材料、半导体器件等方面都取得了重大进展。

1.1高聚物的导电特点“导电”就是电可以通过。

这里所指的电不完全是我们常见的那种一按开关机器就能动作、电灯就能发光的那种电,它还包括弱电、静电、电磁波等日常生活中我们并不注意的一些现象。

材料的导电性通常是用电阻值来衡量的。

金属材料是人们最熟悉的导体,它的电阻值一般在105欧姆厘米以下。

对于导电高分子材料来说,根据以上所说的不同种类的电,很容易明白其电阻值应处于一个较宽的范围内。

通常的划分方法是:以电阻值1010欧姆厘米为界限,在此界限以上为绝缘高分子材料,在其以下统称为导电高分子材料。

材料的导电性是由于材料内部存在的带电粒子的移动引起的。

这些带电粒子可以是正、负离子,也可以是电子或空穴,通常称为载流子。

载流子在外加电场的作用下沿电场方向移动,就形成电流。

材料导电性的好坏与物质所含的载流子的数目及其运动速度有关,载流子的浓度和迁移率是表征材料导电的微观物理量。

大多数高聚物都存在离子电导,那些带有强极性基团的聚合物由于本征解离,可以产生导电离子,此外在合成、加工和使用过程中,加入的添加剂、填料以及水分和其它杂质的解离,都会提供导电离子,特别是在没有共轭双键的电导率较低的非极性聚合物中,外来离子是导电的主要载流子,其主要导电机理是离子电导。

在共轭聚合物、电荷转移络合物、聚合物的离子自由基盐络合物和金属有机聚合物材料中则含有很强的电子电导。

如在共轭聚合物中,分子内存在空间上一维或二维的共轭键,π电子轨道相互交迭使π电子具有许多类似于金属中自由电子的特征,π电子可以在共轭体系内自由运动,分子间的迁移则通过跳跃机理实现。

离子电导和电子电导各有自己的特点,但在大多数高聚物中的导电性很小,直接测定载流子的种类较为困难,一般用间接的方法区分。

用电导率的压力依赖性来区分比较简单可靠。

离子传导时,分子聚集越密,载流子的转移通道越窄,电导率的压力系数为负值,电子传导时,电子轨道的重叠加大,电导率加大,压力系数为正值。

大多数聚合物中离子电导和电子电导同时存在,视外界环境的不同,温度、压力、电场等外界条件中某一种处于支配地位。

1.2导电高分子材料的分类按照材料的结构与组成,导电高分子材料可以分为结构型导电高分子材料和复合型导电高分子材料两大类。

结构型(或称本征型)导电高分子材料是高分子材料本身所“固有”的导电性,由聚合物结构提供载流子。

这些聚合物经过掺杂之后,电导率大幅度提高,有些可以达到金属的导电水平。

复合型导电高分子材料是指高分子材料本身不具有导电性,但在加工成型时通过加入导电性填料,如炭黑、金属粉末、箔等,通过分散复合、层基复合、表面复合等方法,使制品具有导电性,其中分散复合最为常用。

结构型导电高分子材料主要有:(1)π共轭系高分子,如聚乙炔、线型聚苯、面型高聚物等。

(2)金属螯合物型高分子,如聚酮酞菁等。

(3)电荷移动型高分子络合物,如聚阳离子、CQ络合物。

复合型导电高分子材料,即是通常所见的导电橡胶、导电塑料、导电涂料、导电胶粘剂和导电性薄膜等。

结构型导电高分子材料,由于成本高,应用范围受到限制。

在复合型导电高分子中,高分子材料本身并不具备导电性,只充当了粘合剂的角色,导电性是通过混合在其中的物质,如炭黑等获得的。

复合型导电高分子材料,因加工成型与一般高分子材料基本相同,制备方便,有较强的实用性,故已较为广泛应用。

在结构型导电聚合物尚有许多技术问题的情况下,复合型导电高分子用作导电橡胶、导电涂料、电磁波屏蔽材料和抗静电材料等领域中发挥着重要作用。

除上述电子导电聚合物外,还有一类称为“快离子导体”的离子导电聚合物。

如聚环氧乙烷与高氯酸锂复合得到的快离子导体,导电率达10-4scm-1。

对含硫、氮和氰基的聚合物形成的离子导体的研究也有报导。

此外,不同聚合物的导电机理不同,其结构也有较大区别。

按照导电聚合物的导电机理进行的分类,可将导电聚合物分为3类:1离子导电聚合物:载流子是能在聚合物分子间迁移的正负离子的导电聚合物。

其分子的亲水性好,柔性好,在一定温度下有类似液体的特性,允许相对体积较大的正负离子在电场作用下在聚合物中迁移。

2 电子导电聚合物:载流子为自由电子。

其结构特征是分子内含有大量的共轭电子体系,为载流子-自由电子的离域提供迁移的条件。

3氧化还原型导电聚合物。

以氧化还原反应为电子转化机理的氧化还原型导电聚合物。

其导电能力是由于在可逆氧化还原反应中电子在分子间的转移产生的。

该类导电聚合物的高分子骨架上必须带有可以进行可逆氧化还原反应的活性中心。

第二节复合型导电高分子材料复合型导电高分子材料是采用各种复合技术将导电性物质与树脂复合而成的。

按照复合技术分类有:导电表面膜形成法、导电填料分散复合法、导电填料层压复合法三种。

导电表面膜形成法,就是在材料基体表面涂覆导电性物质,进行金属熔射或金属镀膜等处理。

分散复合法,是在材料基体内混入抗静电剂、炭黑、石墨、金属粉末、金属纤维等导电填料。

层压复合法,则是将高分子材料与碳纤维栅网、金属网等导电性编织材料一起层压,并使导电材料处于基体之内。

其中最常见的是分散复合型;层压复合型处于发展阶段;表面成膜型因工艺设备复杂昂贵,以及材料表面的导电膜一旦脱落便会影响其导电效果等原因,其应用和发展趋势不及前两者。

复合型导电高分子材料的分类方法有多种。

根据电阻值的不同,可划分为半导电体、除静电体、导电体、高导电体;根据导电填料的不同,可划分为抗静电剂系、碳系(炭黑、石墨等)、金属系(各种金属粉末、纤维、片等);根据树脂的形态不同,可划分为导电橡胶、导电塑料、导电薄膜、导电粘合剂等;还可根据其功能不同划分为防静电、除静电材料,电极材料,发热体材料,电磁波屏蔽材料。

复合型导电高分子材料是以普通的绝缘聚合物为主要成型物质制备的,其中添加了较为大量的导电填料,无论在外观形式和制备方法上,还是在导电机理上都与掺杂的结构型导电高分子完全不同。

选用基材时可以根据使用要求、制备工艺、材料性质和来源、价格等因素综合考虑后,选择合适的高分子材料。

从原则上来说,任何高分子材料都可以作复合型导电高分子材料的基质,较为常用的有聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、ABS、环氧树脂、丙烯酸酯树脂、酚醛树脂、不饱和聚酯、聚胺酯、聚酰亚胺、有机硅树脂以及丁基橡胶、丁苯橡胶、丁腈橡胶、天然橡胶等等。

高分子的作用是将导电颗粒牢牢地粘结在一起,使导电高分子具有稳定的导电性和可加工性。

基材的性能决定了导电材料的机械强度、耐热性、耐老化性。

导电填料在复合型导电高分子中充当载流子,其形态、性质和用量粘结决定材料的导电性。

常用的有金粉、银粉、铜粉、镍粉、钯粉、钼粉、钴粉、镀银二氧化硅粉、镀银玻璃微珠、炭黑、石墨、碳化钨、碳化镍等等。

银粉具有良好的导电性,应用最为广泛,炭黑电导率不高,但来源广泛,价格低廉,也广为应用。

依据使用的要求和目的不同,导电填料可制成多孔状、片状、箔片状、纤维状等形式。

通常用偶联剂、表面活性剂以及氧化还原剂等对填料表面进行处理,以改善填料与基质之间的相容性,使填料的分散均匀且与基质紧密结合。

复合型导电高分子材料,具有重量轻、易成型、导电性与制品可一次完成、电阻可调节(在1010欧姆厘米~10-3欧姆厘米间)、总成本低等优点,在能源、纺织、轻工、电子等领域应用广泛。

2.1复合型导电材料导电机理实验发现,将各种金属粉末或炭黑粒子混入聚合物材料中后,材料的导电性能随导电填料的浓度的变化规律大致相同。

导电填料浓度较低时,材料的电导率随浓度增加很少,而当导电填料的浓度达到一定值时,电导率急剧上升,变化值可达十个数量级以上。

超过这一临界值后,电导率随浓度的变化又趋于缓慢。

(见图2-1)。

用电镜观察材料的结果发现,当导电填料浓度较低时,填料颗粒分散在聚合物中,相互接触较少,导电性较低。

随着填料用量的增加,颗粒间接触的机会增多,电导率逐步上升。

当填料浓度增加到某一临界值时,体系内的颗粒相互接触,形成无限网链,这个无限网链就象一个金属网贯穿与聚合物中,形成导电通道,电导率急剧上升,使聚合物变成了导体。

再增加填料的用量,对聚合物的导电性就不会有多大贡献了,电导率趋于平缓。

导电填料浓度图2-1 电导率与导电填料用量的关系复合型导电材料的导电机理有两种说法,即链锁式导电通路和隧道效应,但这两者的最终结论都支持导电性的好坏决定于填料的种类及用量这一说法。

链锁式导电通路的机理认为,填料粒子必须在几A0以内的距离靠近(如图2-2),这样就可产生电压差,使填料粒子的π电子依靠链锁传递移动通过电流。

聚合物中填料粒子的分散状态如图2-2所示,其导电原理见图2-3。

从这个等价回路模型可以理解形成链锁必须有一定的填料用量,才能出现强的导电现象,因而支配高分子材料导电性的最主要因素是填料的用量。

这是最经典的一种解释。

图2-2链锁式导电通路的机理图2-3复合型导电高分子的导电原理链锁式导电通路是建立在填料必须形成链锁的前提下提出来的。

但是,用电子显微镜观察拉伸状态的橡胶并不存在炭黑链锁,却仍有导电现象,这就是隧道效应。

当导电颗粒间不互相接触时,颗粒间存在聚合物隔离层,使导电颗粒中自由电子的定向运动受到阻碍。

这种阻碍可以视为具有一定势能的势垒。

由量子力学可知,对一种微观粒子来说,其能量小于势垒的能量时,它有被反弹的可能性,也有穿过势垒的可能性。

微观粒子穿过势垒的现象称为贯穿效应,也称为隧道效应。

电子作为一种微观粒子,具有穿过导电颗粒之间隔离层阻碍的可能性。

这种可能性的大小与隔离层的厚度以及隔离层势垒的能量与电子能量之差值有关。

厚度与该差值越小,电子穿过隔离层的可能性就越大。

相关文档
最新文档