蛋白质纯化实验步骤

蛋白质纯化实验步骤

引言:

蛋白质是生物体内重要的基本组成部分,对于深入了解蛋白质的结构和功能具有重要意义。蛋白质纯化是一个关键步骤,可以从复杂的混合物中分离出目标蛋白质,并去除杂质。下面将介绍一种常用的蛋白质纯化实验步骤。

一、样品制备

在开始蛋白质纯化实验之前,首先需要准备样品。样品可以是细胞提取物、培养基中的蛋白质等。样品制备的关键是要保证样品的完整性和纯度,避免蛋白质的降解和杂质的污染。

二、离心

将样品进行离心,以去除细胞碎片和细胞核等大颗粒物质。离心过程中,可以根据颗粒物质的大小和密度来选择合适的离心条件,如转速、离心时间等。

三、初步分离

将离心后的上清液取出,进行初步分离。可以采用一些常用的分离技术,如离子交换色谱、凝胶过滤等。这些技术可以根据蛋白质的电荷、大小等特性进行分离,从而使目标蛋白质得到部分纯化。

四、亲和层析

亲和层析是一种常用的蛋白质纯化技术,通过利用目标蛋白质与某种亲和剂之间的特异性相互作用来实现纯化。亲和剂可以是金属离子、抗体、配体等,可以根据目标蛋白质的性质和特点来选择合适的亲和剂。

五、凝胶电泳

凝胶电泳是一种常用的蛋白质分离和分析技术,通过电场作用使蛋白质在凝胶中迁移,根据蛋白质的大小和电荷来实现分离。凝胶电泳可以用于检测和鉴定目标蛋白质,同时也可以用于纯化蛋白质。

六、柱层析

柱层析是一种常用的蛋白质纯化技术,通过将样品溶液通过填充在柱子中的吸附剂层析,实现蛋白质的分离和纯化。柱层析可以根据蛋白质的性质和特点来选择合适的吸附剂,如离子交换柱、凝胶过滤柱等。

七、透析

透析是一种常用的蛋白质纯化技术,通过溶液之间的渗透压差来实现目标蛋白质的分离和杂质的去除。透析可以用于去除一些小分子杂质,如盐类、小分子药物等。

八、浓缩

浓缩是一种常用的蛋白质纯化技术,通过去除大量的水分来提高目标蛋白质的浓度。常用的浓缩技术有深度过滤、超滤等,可以根据

蛋白质的分子量和颗粒大小来选择合适的浓缩方法。

九、纯化验证

在蛋白质纯化实验结束之后,需要对纯化后的目标蛋白质进行验证。常用的验证方法有SDS-PAGE凝胶电泳、Western blotting等,可以检测目标蛋白质的分子量、纯度和特异性。

结论:

蛋白质纯化是一个复杂而关键的实验过程,可以通过一系列步骤将目标蛋白质从复杂的混合物中分离出来,并去除杂质。样品制备、离心、初步分离、亲和层析、凝胶电泳、柱层析、透析、浓缩和纯化验证是常用的蛋白质纯化实验步骤。在进行实验的过程中,需要注意实验条件的选择和控制,以及对纯化后的目标蛋白质进行验证。蛋白质纯化实验的成功与否,直接影响到后续的蛋白质研究和应用。

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

Protocol蛋白质纯化步骤

Protocol 蛋白质纯化方法(镍柱) 柱前操作 1.IPTG诱导后,收菌,8000rpm/min(r/m)离心10min; 2.用Binding Buffer(BB)溶解(每100ml原菌液加BB 20ml),超声裂解30min(工作:5s,停止:5s),1500r/m离心10min,去除杂质; 3.取上清,12000r/m离心20min, 得包涵体; 4.用含2M尿素的BB洗包涵体,12000r/m离心20min,(上清做电泳);??? 5.用含6M尿素的BB溶解包涵体,12000r/m离心20min,(上清做电泳); 6.对照电泳结果,将上清或包涵体溶解液上柱; 平衡柱子(柱体积:V) 7. 3V(3倍柱体积)ddH2O(洗乙醇); 8. 5V Charge Buffer(CB); ??? 9. 3V BB; 柱层析 10.上样; 11. 10V Washing Buffer(WB); 12. 6V Elute Buffer(EB); 13.分管收集,每管1~2ml. 各种缓冲液配方 1. 8×BB: 4M NaCl, 160mM Tris-HCl, 40mM imidazole(咪唑),pH=7.9 1000ml NaCl: 58.44×4=233.76g Tris-HCl: 121.14×160×10-3=19.3824g Imidazole: 68.08×40×10-3=2.7232g 2. 8×CB: 400mM NiSO4 1000ml NiSO4: 262.8×400×10-3=105.12g 3. 8×WB: 4M NaCl, 160mM Tris-HCl, 480mM imidazole, pH=7.9 1000ml NaCl: 233.76g, Tris-HCl:19.3824g, Imidazole: 32.6784g 4. 4×EB: 2M NaCl, 80mM Tris-HCl, 4M imidazole, pH=7.9 1000ml NaCl: 118.688g, Tris-HCl:9.6912g, Imidazole: 272.32g 5. 6M 尿素 1000ml 尿素:60.06×6=360.36g

蛋白纯化步骤

蛋白纯化步骤 引言: 蛋白质是生物体内重要的生物大分子,其结构和功能对于维持生命活动至关重要。为了研究蛋白质的性质和功能,科学家们需要将蛋白质从复杂的混合物中纯化出来。蛋白纯化是一项复杂而重要的实验步骤,本文将介绍常用的蛋白纯化步骤。 一、细胞裂解和收集 蛋白纯化的第一步是将含有目标蛋白质的细胞裂解,并将目标蛋白质收集起来。常用的细胞裂解方法包括机械破碎、超声波破碎和渗透破碎等。裂解后,通过离心等方法将蛋白质从其他细胞组分中分离出来。 二、沉淀和上清液分离 细胞裂解后蛋白质溶液中可能存在大量杂质,需要通过沉淀与上清液分离的方法去除。常用的方法包括盐析法、有机溶剂沉淀法和凝胶渗析法等。这些方法可以根据蛋白质的特性选择合适的杂质去除方法。 三、蛋白质分子量筛选 蛋白质纯化过程中,通常需要对蛋白质进行分子量筛选。这样可以去除低分子量的杂质和蛋白质降解产物。常用的方法包括凝胶过滤法、凝胶电泳法和离子交换色谱法等。

四、亲和纯化 亲和纯化是一种常用的蛋白纯化方法,该方法利用蛋白质与亲和基质之间的特异性相互作用进行纯化。亲和基质可以是抗体、金属离子、亲和标签等。通过将亲和基质与目标蛋白质结合,再通过洗脱等步骤将目标蛋白质从杂质中分离出来。 五、离子交换层析 离子交换层析是一种基于蛋白质与离子交换基质之间的静电作用力进行纯化的方法。根据蛋白质的电荷性质,可以选择合适的离子交换基质和缓冲液条件,使目标蛋白质与基质发生相互作用。通过调整离子浓度和pH值,可以实现目标蛋白质与基质的分离。 六、凝胶过滤层析 凝胶过滤层析是一种根据蛋白质的分子量进行纯化的方法。通过选择合适的凝胶基质和孔径,可以使目标蛋白质从较大分子量的杂质中分离出来。这种方法适用于蛋白质的富集和浓缩。 七、逆流层析 逆流层析是一种根据蛋白质的亲和性进行纯化的方法。该方法利用逆流层析柱中填充的亲和基质与目标蛋白质之间的特异性相互作用进行纯化。通过调整流动相的条件,可以实现蛋白质的吸附和洗脱,从而分离目标蛋白质。

凝胶过滤层析纯化蛋白的步骤

凝胶过滤层析纯化蛋白的步骤 凝胶过滤层析是一种常用的蛋白纯化技术,可用于分离和富集目标蛋白。其原理是利用凝胶材料的孔隙大小和蛋白分子的大小差异,通过层析柱中的凝胶层对混合蛋白进行分离。这种方法操作简单,效果稳定,是许多实验室常用的蛋白纯化方法之一。 下面将详细介绍凝胶过滤层析纯化蛋白的步骤: 1. 准备工作 在开始实验之前,首先需要准备层析柱和凝胶。层析柱可以使用预填充的封闭柱,也可以自己制备。常用的凝胶材料有聚丙烯酰胺凝胶(PAA)和琼脂糖凝胶。根据实验需求和目标蛋白的分子量,选择合适的凝胶孔隙大小。 2. 样品的制备 将待纯化的蛋白样品制备好。通常需要将样品溶解于缓冲液中,并添加一定的抑制剂,以防止蛋白的降解和活性丢失。在制备样品时,可以根据需要对蛋白进行特定的标记或修饰。 3. 样品的加载 将制备好的蛋白样品加载到层析柱上。可以使用注射器或微量移液器将样品缓慢地滴加到层析柱顶部。为了保证样品的均匀加载,可以在样品前后添加一定量的缓冲液。

4. 蛋白的分离 一旦样品加载完毕,蛋白分子将开始在凝胶层中进行分离。较小的蛋白分子能够进入凝胶孔隙,而较大的蛋白分子则无法进入,从而实现了蛋白的分离。分离过程中,可以通过重力流动或离心力来推动样品通过层析柱。 5. 洗脱纯化蛋白 待纯化的蛋白通常会与凝胶层中的其他成分发生相互作用,如亲和作用或静电作用。为了洗脱纯化的蛋白,可以使用适当的洗脱缓冲液。洗脱缓冲液中的成分可以改变蛋白与凝胶层之间的相互作用,使蛋白从凝胶中解离出来。 6. 收集纯化蛋白 洗脱后的蛋白溶液即为纯化蛋白,可以通过收集溶液进行后续的实验或分析。为了保证蛋白的完整性和活性,收集的溶液应该尽快进行保存或下一步实验。 总结: 凝胶过滤层析是一种常用的蛋白纯化方法,通过凝胶层的孔隙大小与蛋白分子的大小来实现蛋白的分离。其步骤包括准备工作、样品制备、样品加载、蛋白分离、洗脱纯化蛋白和收集纯化蛋白。这种方法操作简单,适用于不同分子量的蛋白纯化,是许多实验室常用的技术之一。在实验过程中,需要注意样品的制备和加载,以及选择合适的凝胶材料和洗脱缓冲液。通过凝胶过滤层析,可以得到高

蛋白质纯化实验步骤

蛋白质纯化实验步骤 引言: 蛋白质是生物体内重要的基本组成部分,对于深入了解蛋白质的结构和功能具有重要意义。蛋白质纯化是一个关键步骤,可以从复杂的混合物中分离出目标蛋白质,并去除杂质。下面将介绍一种常用的蛋白质纯化实验步骤。 一、样品制备 在开始蛋白质纯化实验之前,首先需要准备样品。样品可以是细胞提取物、培养基中的蛋白质等。样品制备的关键是要保证样品的完整性和纯度,避免蛋白质的降解和杂质的污染。 二、离心 将样品进行离心,以去除细胞碎片和细胞核等大颗粒物质。离心过程中,可以根据颗粒物质的大小和密度来选择合适的离心条件,如转速、离心时间等。 三、初步分离 将离心后的上清液取出,进行初步分离。可以采用一些常用的分离技术,如离子交换色谱、凝胶过滤等。这些技术可以根据蛋白质的电荷、大小等特性进行分离,从而使目标蛋白质得到部分纯化。 四、亲和层析

亲和层析是一种常用的蛋白质纯化技术,通过利用目标蛋白质与某种亲和剂之间的特异性相互作用来实现纯化。亲和剂可以是金属离子、抗体、配体等,可以根据目标蛋白质的性质和特点来选择合适的亲和剂。 五、凝胶电泳 凝胶电泳是一种常用的蛋白质分离和分析技术,通过电场作用使蛋白质在凝胶中迁移,根据蛋白质的大小和电荷来实现分离。凝胶电泳可以用于检测和鉴定目标蛋白质,同时也可以用于纯化蛋白质。 六、柱层析 柱层析是一种常用的蛋白质纯化技术,通过将样品溶液通过填充在柱子中的吸附剂层析,实现蛋白质的分离和纯化。柱层析可以根据蛋白质的性质和特点来选择合适的吸附剂,如离子交换柱、凝胶过滤柱等。 七、透析 透析是一种常用的蛋白质纯化技术,通过溶液之间的渗透压差来实现目标蛋白质的分离和杂质的去除。透析可以用于去除一些小分子杂质,如盐类、小分子药物等。 八、浓缩 浓缩是一种常用的蛋白质纯化技术,通过去除大量的水分来提高目标蛋白质的浓度。常用的浓缩技术有深度过滤、超滤等,可以根据

蛋白质分离纯化步骤

一、蛋白质分离纯化的一般原则 大多数蛋白质在组织细胞中都是和核酸等生物分子结合在一起,而且每种类型的细胞都含有成千上万种不同的蛋白质。许多蛋白质在结构、性质上有许多相似之处,所以蛋白质的分离提纯是一项复杂的工作。到目前为止,还没有一套现成的方法能把任何一种蛋白质从复杂的混合物中提取出来。但是对于任何一种蛋白质都有可能选择一种较合适的分离纯化程序以获得高纯度的制品。且分离的关键步骤、基本手段还是共同的。 蛋白质提纯的目的是增加产品的纯度和产量,同时又要保持和提高产品的生物活性。因此,要分离纯化某一种蛋白质,首先应选择一种含目的蛋白质较丰富的材料。其次,应设法避免蛋白质变性,以制备有活性的蛋白质。对于大多数蛋白质来说,纯化操作都是在0~4℃的低温下进行的。同时也应避免过酸、过碱的条件以及剧烈的搅拌和振荡。另外,还要设法除去变性的蛋白质和其它杂蛋白,从而达到增加纯度和提高产量的目的。 二、分离纯化蛋白质的一般程序 分离纯化蛋白质的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二) 蛋白质的抽提

蛋白质的表达、分离、纯化实验流程

蛋白质的表达、分离、纯化实验流程 蛋白质表达、分离、纯化可以:(1)探索和研究基因的功能以及基因表达调控的机理;(2)供作结构与功能的研究;(3)作为催化剂、营养剂等。 实验步骤 一:材料准备 1. 实验材料:大肠杆菌BL21、LB 液体培养基、氨苄青霉素、Washing Buffer、Elution Buffer、IPTG、蒸馏水、胰蛋白胨、酵母粉、氯化钠 2. 实验仪器:摇床、离心机、层析柱、离心管、移液枪、枪头盒、烧杯、玻璃棒 二:实验操作 1.试剂准备: 2. 2. 获得目的基因 ①PCR 方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR 循环获得所需基因片段。 ②通过RT-PCR 方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA 为模板,逆转录形成cDNA 第一链,以逆转录产物为模板进行PCR 循环获得产物。 3. 构建重组表达载体 ①载体酶切:将表达质粒用限制性内切酶(同引物的酶切位点)进行双酶切,酶切产物行琼脂糖电泳后,用胶回收Kit 或冻融法回收载体大片段。 ②PCR 产物双酶切后回收,在T4DNA 连接酶作用下连接入载体。 4. 获得含重组表达质粒的表达菌种 ①将连接产物转化大肠杆菌DH5α,根据重组载体的标志(抗Amp 或蓝白斑)作筛选,挑取单斑,碱裂解法小量抽提质粒,双酶切初步鉴定。 ②测序验证目的基因的插入方向及阅读框架均正确,进入下步操作。否则应筛选更多克隆,重复亚克隆或亚克隆至不同酶切位点。 ③以此重组质粒DNA 转化表达宿主菌的感受态细胞。 5. 氯霉素酰基转移酶重组蛋白的诱导 ①接种含有重组氯霉素酰基转移酶蛋白的大肠杆菌BL21 菌株于 5 mL LB 液体培养基中(含100 ug/mL 氨苄青霉素),37 ℃震荡培养过夜。 ②按1:50 或1:100 的比例稀释过夜菌,一般转接 1 mL 过夜培养物于100 mL(含100 ug/mL 氨苄青霉素)LB 液体培养基中,37 ℃震荡培养至OD600 = 0.6 - 0.8(最好0.6,大约需3 h)。取10 ul样品用于SDS-PAGE 分析。 ③对照组不加诱导剂,实验组加入IPTG 至终浓度0.5 mmol/l,37 ℃继续培养1~3 h。 ④12 000 rpm 离心10 min,弃上清,菌体沉淀保存于-20 ℃或-70 ℃冰箱中。

蛋白质提取纯化的基本流程

蛋白质是生物体内一类非常重要的大分子有机化合物,承担着多种生物学功能。为了进行蛋白质的研究、分析或应用,科学家们需要从复杂的生物体系中提取和纯化目标蛋白质。蛋白质提取纯化的基本流程通常包括样品制备、裂解、离心、层析、电泳等步骤。下面是关于蛋白质提取纯化的基本流程的详细解释: ### **1. 样品制备:** 蛋白质提取纯化的第一步是样品的制备。这涉及到从生物体(细胞、组织等)中获得样品。样品的制备过程中要注意避免蛋白质的降解和损失。常见的样品包括细胞总蛋白、细胞膜蛋白、细胞器蛋白等。制备好的样品需要储存在低温下以防止蛋白质的降解。 ### **2. 裂解(细胞破碎):** 样品制备完成后,下一步是裂解,也就是将生物体内的细胞或组织破碎,释放蛋白质。裂解可以通过机械破碎、超声波破碎、高压破碎等方法实现。同时,可以添加裂解缓冲液,其中可能包含蛋白酶抑制剂、还原剂等,以维持蛋白质的稳定性。 ### **3. 离心:** 裂解后的混合物通过离心可以分离成上清液和沉淀。离心是利用离心机产生的离心力,使样品中的颗粒沉降,从而实现液体和颗粒的分离。上清液中包含了可溶性的蛋白质,而沉淀中则包含了细胞核、细胞壁等。 ### **4. 层析(柱层析或凝胶层析):** 层析是蛋白质提取纯化中的关键步骤之一。这一步旨在根据蛋白质的性质,通过将混合物在柱上或凝胶中进行分离。常见的层析方法包括离子交换层析、凝胶过滤层析、亲和层析等。层析可以根据蛋白质的大小、电荷、亲和性等特性有选择性地分离目标蛋白质。 ### **5. 电泳:** 电泳是蛋白质分离和分析的重要手段。在电场作用下,蛋白质根据其电荷和大小在凝胶中迁移。蛋白质电泳分离可以用于检测样品的纯度、确定分子量等。常见的电泳方法包括聚丙烯酰胺凝胶电泳(PAGE)和聚丙烯酰胺凝胶电泳(SDS-PAGE)。 ### **6. 检测和分析:** 在蛋白质提取纯化的过程中,需要对提取得到的蛋白质样品进行检测和分析。常用的方法包括蛋白质定量、Western blotting等。这些方法可以用于确定提取得到的蛋白质是否符合预期,以及蛋白质的纯度和浓度等。 ### **7. 保存和存储:** 最后一步是保存和存储提取纯化得到的蛋白质样品。蛋白质样品应该以适当的方式存储,通常是在低温下。此外,还要考虑使用适当的缓冲液来保护蛋白质免受冻融等因素的影响。 ### **总结:** 蛋白质提取纯化是蛋白质学研究中至关重要的步骤之一。通过以上基本流程,科学家们可以从复杂的生物样品中高效、精确地提取和纯化目标蛋白质,为蛋白质研究提供了坚实的基础。在实际操作中,可以根据样品的来源、所需蛋白质的性质以及实验目的的不同,选择合适的方法和技术进行蛋白质提取纯化。

蛋白表达纯化实验步骤

蛋白表达纯化实验步骤(待改进) 1、取适当相应蛋白高表达的动物组织提total—RNA. 2、设计蛋白表达引物。引物要去除信号肽,要加上适当的酶切位点和保护碱基。 3、RT-PCR,KOD酶扩增获取目的基因c DNA。 4、双酶切,将cDNA.克隆入PET28/32等表达载体。 5、转化到DH5α感受态细菌中扩增,提质粒. 6、将质粒转化入表达菌株,挑菌检测并保种。表达菌株如Bl21(DE3)、Rosetta gami(DE3)、Bl21 codon(DE3)等。 7、蛋白的诱导表达。 1)将表达菌株在3ml LB培养基中摇至OD=0。6左右,加入IPTG,浓度梯度从25μM 到1m M。37度诱导过夜(一般3h以上即有大量表达)。 2)SDS—PAGE电泳检测目的蛋白的表达。注:目的蛋白包涵体表达量一般会达到菌体 蛋白的50%以上,在胶上可以看到明显的粗大的条带. 3)将有表达的菌株10%甘油保种,保存1ml左右就足够了,并记录IPTG浓度范围. 甘油是用0。22μm过滤除菌的,储存浓度一般是30%—60%,使用时自己计算用量. 4)用上述IPTG浓度范围的最低值诱导10ml表达菌,18度,低转速(140-180rpm), 诱导过夜作为包涵体检测样品。 注意:1.如果表达的蛋白对菌体有毒性,可以在加IPTG之前的培养基中加入1%的葡萄糖用来抑制本底表达。葡萄糖会随着细菌的繁殖消耗殆尽,不会影响后面的表达。2. 保种可以取一部分分成50μl一管,每次用一管,避免反复冻融. 8、包涵体检测。方案见附件2 9、如有上清表达,则扩大摇菌。 1)取保种的表达菌株先摇10ml,37度,300rpm摇至OD>=1。5,约5h左右,视菌种 的活性而异,也可过夜摇菌。 2)将上一步中的8ml加入300ml培养基中37度,250rpm摇至OD= 1.0左右(约 2。5h~3h),然后加IPTG(浓度同包涵体检测中使用的浓度。)注:菌液浓度要适当 的浓一些,否则第二天收集不到足够的菌体,因为低温低转速细菌生长非常缓慢。 拿起锥形瓶对光摇动,看到有大量云雾状菌体即可。另一方法是,将手指放在瓶底晃动,看不清手指为宜,不过此法宜受气泡影响。 3)过夜摇菌,使用包涵体检测的温度(18°左右),转速140rpm左右. 4)将菌液6000rpm,4min,4度离心收集菌体。加入20mM PBS,洗一遍后用平衡缓 冲液重悬。每250ml菌液用30 ml到50ml 平衡缓冲液,视菌液的浓度而定。可用4支50ml 的离心管同时离心,但是,离心管要重复使用,用完后洗净保存。 10、超声波裂解. 1)用6mm变幅杆,35%功率,3.5s工作,7s休息,50min即可. 注意:1.要冰浴。2.要随时观察裂解情况以防意外。3.要将探头探入到溶液中下部,尽量不要打出大量气泡。一般溶液量比较大的时候不会出现大量气泡. 4.正常声音为:孜孜声,尖锐刺耳的声音表明探头位置不对或者功率太大或者探头 松动等原因,要及时调整.溶液由浑浊变清透,由粘稠变不粘稠表明裂解完成(后面3000转离心时,如果沉淀少说明裂解的好)。5.超声波破碎仪工作30分min要休息5min(即关闭总电源开关)。 注意:1。如果纯化的蛋白较易被蛋白酶降解,在超声裂解之前要加蛋白酶抑制剂(PMSF),PMSF工作浓度为1%。2.如不能判断是否裂解完全,就按上述条件裂解 60分钟,60分钟足够裂解.

蛋白表达纯化试验步骤

1、取适当相应蛋白高表达的动物组织提total-RNA 。 2、设计蛋白表达引物。引物要去除信号肽, 要加上适当的酶切位点和保护碱基。 3、R T-PCR,KO[酶扩增获取目的基因c DNA. 4、双酶切,将cDNA.克隆入PET28/32等表达载体。 5、转化到DH5z感受态细菌中扩增,提质粒。 6、将质粒转化入表达菌株, 挑菌检测并保种。表达菌株如Bl21(DE3) 、Rosetta gami(DE3) 、Bl21 codon(DE3) 等。 7、蛋白的诱导表达。 1)将表达菌株在3ml LB培养基中摇至0。=左右,加入IPTG,浓度梯度从25卩M 到1m 37度诱导过夜(一般3h以上即有大量表达)。 2)SDS-PAGE电泳检测目的蛋白的表达。注:目的蛋白包涵体表达量一般会达到菌体 蛋白的50%以上,在胶上可以看到明显的粗大的条带。 3)将有表达的菌株10%甘油保种,保存1ml左右就足够了,并记录IPTG浓度范围。 甘油是用卩m过滤除菌的,储存浓度一般是30%-60%使用时自己计算用量。 4)用上述IPTG浓度范围的最低值诱导10ml表达菌,18度,低转速(140-180rpm), 诱导过夜作为包涵体检测样品。 注意:1.如果表达的蛋白对菌体有毒性,可以在加IPTG之前的培养基中加入1%的葡萄糖用来 抑制本底表达。葡萄糖会随着细菌的繁殖消耗殆尽, 不会影响后面的表达。2. 保种可以取一部分分成50卩l 一管,每次用一管,避免反复冻融。 8、包涵体检测。方案见附件 2 1)取保种的表达菌株先摇10ml,37度,300rpm摇至OD>=约5h左右,视菌种

1、取适当相应蛋白高表达的动物组织提total-RNA 。 9、如有上清表达, 则扩大摇菌。 1)取保种的表达菌株先摇10ml,37度,300rpm摇至OD>=约5h左右,视菌种

蛋白质分离纯化步骤

蛋白质分离纯化步骤 一、蛋白质分离纯化的一般原则 大多数蛋白质在组织细胞中都是和核酸等生物分子结合在一起,而且每种类型的细胞都含有成千上万种不同的蛋白质。许多蛋白质在结构、性质上有许多相似之处,所以蛋白质的分离提纯是一项复杂的工作。到目前为止,还没有一套现成的方法能把任何一种蛋白质从复杂的混合物中提取出来。但是对于任何一种蛋白质都有可能选择一种较合适的分离纯化程序以获得高纯度的制品。且分离的关键步骤、基本手段还是共同的。 蛋白质提纯的目的是增加产品的纯度和产量,同时又要保持和提高产品的生物活性。因此,要分离纯化某一种蛋白质,首先应选择一种含目的蛋白质较丰富的材料。其次,应设法避免蛋白质变性,以制备有活性的蛋白质。对于大多数蛋白质来说,纯化操作都是在0~4℃的低温下进行的。同时也应避免过酸、过碱的条件以及剧烈的搅拌和振荡。另外,还要设法除去变性的蛋白质和其它杂蛋白,从而达到增加纯度和提高产量的目的。 二、分离纯化蛋白质的一般程序 分离纯化蛋白质的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法

简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二) 蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。 (三)蛋白质粗制品的获得 选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1. 等电点沉淀法 不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2. 盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3. 有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化 用等电点沉淀法、盐析法所得到的蛋白质一般含有其他蛋白质杂

蛋白纯化步骤

纤溶(溶栓)酶的分离及其性质研究 血栓是一种严重危害人类尤其是中老年人身体健康和生命的疾病,近年来发病率逐年增加,已成为常见病和多发病,是造成死亡和病残的首要原因。纤溶酶对纤维蛋白(原)具有专一水解活性,纤溶酶作为溶栓药物可以降解血栓骨架结构——纤维蛋白多聚体,从而达到溶解血栓栓子的目的,因此,药物溶栓是目前临床上治疗血栓性疾病的首选策略。 对“理想”溶栓药物的要求是:快速溶栓,对纤维蛋白特异,只作用于血栓而全身反应低,效力持久;出血危险性低;无全身性副反应,无抗原性,避免全身性纤溶、价廉等。目前对溶栓药物研究工作主要从两方面开展,一是应用基因工程和单克隆抗体技术对现有药物进行改造使之更理想;另一方面是开发新型天然来源的溶栓药物。 近几年,寻找天然来源的纤溶酶也成了一个研究热点。在动物、植物、海洋生物、微生物中都发现了天然的溶栓物质。在动物来源的纤溶酶中,人们研究较多的是从蚯蚓、蛇毒和蝙蝠的唾液及吸血动物中提取的纤溶酶;植物来源的纤溶酶主要是从丹参和蒲黄中提取;微生物更是纤溶酶的一种重要来源,如目前临床应用的溶栓药物链激酶、葡激酶、纳豆激酶等;在细菌、真菌、藻类中还发现了多种新型纤溶酶。 从作用机理上纤溶酶分成两类:一类是纤溶酶原激活剂,能将纤溶酶原激活为纤溶酶而降解纤维蛋白(原);另一类是纤溶酶类活性物质,直接可以降解纤维蛋白(原);都具有溶解血栓的作用(见下图)。 发现和筛选新型来源的纤溶酶是研发溶栓药物的基础,利用基因工程技术或蛋白质工程技术改造天然纤溶酶制成变异体、嵌合体或导向药物,是提高纤溶酶的选择性溶栓效果,延长半衰期,减少用药剂量和变态反应,降低成本的重要手段。制药工程研究室已从土壤中筛选出70多株纤溶酶产生菌,上学期的毕业生对其中9株菌进行了鉴定,并提取了外泌蛋白,检测后其中6(30—60) ,6(60—90) ,15(20—90) ,31(30—60) ,31(60—90) ,45(20—90) ,50(20—90) ,55(20—90) ,70(30—60) ,70(60—90) ,72(20—90)(菌号(硫酸铵沉淀浓度))具有纤溶活性。本学期主要工作有: 1. 纤溶酶活性测定:琼脂糖—纤维蛋白平板法 2. 蛋白含量测定:考马斯亮蓝法 →比活力测定 3. 分离和纯化:离子交换层析DEAE Sepharose 或CM-Sepharose 4. SDS-PAGE 电泳:硝酸银染色和考马斯亮蓝G-250染色, 检测分子量大小和分离效果。 5. 活性电泳:检测活性带位置, 6. 等电聚焦电泳:分离纤溶蛋白、测定等电点 7. 转膜、测序 纤溶酶原激活剂 纤溶酶原 纤溶酶 纤维蛋白原或纤维蛋白 (血栓栓子) 纤维蛋白原降解物(FgDP)或纤维蛋白降解物(FDP) (血栓溶解) 血栓的溶解过程

蛋白质纯化方法

含组氨酸标签的蛋白的诱导表达及纯化 一.用IPTG诱导启动子在大肠杆菌中表达克隆化基因 所需特殊试剂:1M IPTG 1.将目的基因与IPTG诱导表达载体连接,构成重组质粒并转化相应的 表达用的大肠杆菌。将转化体铺于含相应抗生素的LB平板,37℃培 养过夜。通过酶切序列分析等筛选带有插入片段的转化体。 2.分别挑取对照菌和重组菌1个菌落,接种于1ml含有相应抗生素的LB 培养液中,37℃通气培养过夜。 3.取100微升过夜培养物接种于5ml含有相应抗生素的LB培养液中(各 10份),适当的温度(20-37℃)震荡培养4小时,至对数中期(A550 =0.1-1.0)。 4.对照菌和重组菌各取1ml未经诱导的培养物于离心管中,剩余培养物 中加入IPTG至终浓度分别为0.5,1.0,1.5,2.5,3.0,3.5,4.0,4.5, 5.0mM相同的温度继续通气培养。 5.在诱导的1,2,3,4,5个小时取1ml样品于Ep管中。 细菌的生长速率严重影响外源蛋白的表达,因此必须对接种菌量,诱 导前细菌生长时间和诱导后细菌密度进行控制。生长过度或过速会加 重细菌合成系统的负担,导致包涵体的形成。生长温度可能是影响大 肠杆菌高度表达目的蛋白的最重要因素。低温培养能在一定程度上抑 制包涵体的形成。IPTG的浓度对表达水平的影响也非常大。所以通过 试验确定最佳的培养条件是很必要的。 6.将所有样本室温最高速度离心1分钟,弃上清,沉淀重悬于100微升 1×SDS蛋白上样缓冲液中,100℃加热5分钟,室温最高速度离心1 分钟,取15微升样品上样于SDS聚丙烯酰胺凝胶,用SDS-PAGE 观察表达产物条带,从而确定优化的培养条件。 二.大量表达靶蛋白 1.取保存的重组大肠杆菌菌液150微升接种于30毫升含相应抗生素的 LB培养液中,在100毫升锥形瓶中,300rpm,37℃通气过夜培养。

蛋白质分离纯化的一般程序

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破 碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但 要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二) 蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子 强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,

抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。 (三)蛋白质粗制品的获得 选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1. 等电点沉淀法 不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2. 盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3. 有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化 用等电点沉淀法、盐析法所得到的蛋白质一般含有其他蛋白质杂质,须进一步分离提纯才能得到有一定纯度的样品。常用的纯化方法有:凝胶过滤层析、离子交

相关主题
相关文档
最新文档