频率分布直方图-高中数学知识点讲解
高中数学总结归纳 帮你理解频率分布直方图

帮你理解频率分布直方图通过频率分布表,我们可以确切地知道数据分布在各个不同区间的频率,而通过频率分布直方图我们可以直观地看出数据分布的总体态势,两者相互补充,可以使我们对数据的频率分布情况了解的更加清楚,但在画频率分布直方图时,一定要注意其纵轴的意义.例给出如下样本数据:10,8,6,10,8,13,11,10,12,7,8,9,11,9,11,12,9,10,11,12,并分组如下:(1)完成上面的频率分布表;(2)根据上表,在坐标系中作出频率分布直方图.错解:(1)频率分布表如下:12(2)频率分布直方图如下:剖析:以上第(2)问的频率分布直方图画错了.原因在于纵轴单位是,而不是频率.例如当数据在[9.5,11.5)时,频率为0.4,而频率组距0.40.22==.故图中最高的这个矩形的高度应为0.2个单位,而不是0.4个单位,其他小矩形的高度可依此求出来. 正解:(1)同上.(2)频率分布直方图如下:[)11.513.5, 4 0.2 合计201.0点悟:频率分布直方图中,各个小长方形的面积等于相应各组的频率,因为各组频率之和为1,故所有长方形面积之和等于1.根据这一点,也可以判断你画出的频率分布直方图是否正确.练习:为了了解某校高三年级男生的身高情况,随机抽取40名高三男生的身高,所得数据如下(单位:cm):171,163,163,166,166,168,168,160,168,165,171,169,167,169,151,168,170,160,168,174,165,168,174,159,167,156,157,164,169,180,176,157,162,161,158,164,163,163,167,161.(1)列出频率分布表;(2)画出频率分布直方图.提示:确定组距和组数是解决该类问题的出发点.只有科学合理的确定组距和组数,才能准确的制表及绘图.3。
直方图有关知识点总结高中

直方图有关知识点总结高中一、直方图的定义直方图是一种用于展示数据分布的图形,通常用矩形条形表示不同类别的频数或频率。
在直方图中,横轴代表数据的类别或范围,纵轴代表频数或频率。
每个矩形条的高度代表相应类别的频数或频率,宽度表示类别的间距。
二、直方图的特点1. 表示数据分布:直方图常用来展示数据的分布情况,能够直观地显示数据的集中程度、偏态和离散程度。
2. 用于连续变量:直方图适合表示连续型数据的分布情况,比如身高、体重等数据。
3. 可以比较不同类别:直方图可以用来比较不同类别的数据分布情况,从而进行对比分析。
4. 易于理解:直方图是一种直观的图形表示方法,能够让人们快速理解数据的分布情况。
三、直方图的绘制步骤1. 确定类别:根据数据的特点,确定合适的类别范围。
2. 计算频数或频率:根据类别范围,统计每个类别内的数据个数或频率。
3. 绘制直方图:将每个类别的频数或频率用矩形条表示在坐标系中,横轴表示类别范围,纵轴表示频数或频率。
4. 添加标题和标签:为直方图添加标题和坐标标签,以说明图表的含义。
四、直方图的应用1. 数据分析:直方图是一种常用的数据分析工具,可以用来发现数据的分布特点,如集中程度、偏态和离散程度。
2. 决策支持:直方图能够直观地展示数据的分布情况,帮助决策者做出合理的决策。
3. 教学辅助:直方图可以用于教学中的数据可视化和统计学习,帮助学生更好地理解数据分布的特点。
五、直方图的注意事项1. 类别选择:类别的选择应适当,过多或过少的类别都会影响直方图的解读。
2. 纵轴标尺:纵轴的标尺必须清晰明了,避免模糊或不准确的标示。
3. 图形比例:直方图的比例必须合适,避免过大或过小的矩形条影响图形的解读。
4. 数据真实性:直方图所展示的数据必须真实可靠,不能出现造假或误导性的数据。
六、直方图的衍生类型1. 累积频数直方图:将每个类别的频数依次叠加得到的直方图,用于展示数据的累积分布情况。
2. 相对频率直方图:将每个类别的频数除以总频数得到的直方图,用于展示数据的相对分布情况。
高一数学必修3 频率分布直方图与折线图

)在横轴上标上表示的点;
在上面各点中,分别以连接相邻两点的线段为底作矩形,高等于该组的频率
频率分布直方图如图:
一般地,作频率分布直方图的方法为:
把横轴分成若干段,每一段对应一个组的组距,以此线段为底作矩形,高等于该组的频率/组距,这样得到一系列矩形,每一个矩形的面积恰好是该组上的频
.为了了解一大片经济林生长情况,随机测量其中的100株的底部周长,得到如下数据表(单位:cm)
98 102 110 99 121 110 96 100
97 117 113 110 92 102 109 104
124 87 131 97 102 123 104 104
(3)从频率分布表得,样本中小于100
+++=,样本中不小于120
0.010.020.040.140.21
++=,估计该片经济林中底部周长小于100
0.110.060.020.19
21%,周长不小于120cm的树木约占19%.
2.练习:(1)第57页第1题.
(2)一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量。
高中数学复习概率统计题型归纳与讲解03 频率分布直方图

高中数学复习概率统计题型归纳与讲解专题3频率分布直方图例1.要调查某地区高中学生身体素质,从高中生中抽取100人进行跳高测试,根据测试成绩制作频率分布直方图如图,现从成绩在[120,140)之间的学生中用分层抽样的方法抽取5人,应从[120,130)间抽取人数为b,则()A.a=0.2,b=2B.a=0.025,b=3C.a=0.3,b=4D.a=0.030,b=3【解析】解:由题得10×(0.005+0.035+a+0.020+0.010)=1,所以a=0.030.在[120,130)之间的学生人数为:100×10×0.030=30人,在[130,140)之间的学生人数为:100×10×0.020=20人,在[120,140)之间的学生人数为:100×(10×0.030+0.020)=50人,又用分层抽样的方法在[120,140)之间的学生50人中抽取5人,即抽取比例为:110,所以成绩在[120,130)之间的学生中抽取的人数应,30×110=3,即b=3,故选:D.例2.从某企业生产的某种产品中随机抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[70,80) [80,90) [90,100) [100,110) 110,120)频数 14 20 36 18 12估计这种产品质量指标值的平均数为(同一组中的数据用该组区间的中点值作代表)( )A .100B .98.8C .96.6D .94.4【解析】解:平均数x →=0.14×75+0.20×85+0.36×95+0.18×105+0.12×115=94.4.故选:D .例3.“新冠肺炎”席卷全球,我国医务工作者为了打好这次疫情阻击战,充分发挥优势,很快抑制了病毒,据统计老年患者治愈率为71%,中年患者治愈率为85%,青年患者治愈率为91%.如果某医院有30名老年患者,40名中年患者,50名青年患者,则估计该医院的平均治愈率是( )A .86%B .83%C .90%D .84%【解析】解:利用求加权平均数的公式解得:30×71%+40×85%+50×91%30+40+50=0.84=84%,故选:D .例4.已知样本数据x 1,x 2,…,x n (n ∈N *)的平均数与方差分别是a 和b ,若y i =﹣2x i +3(i =1,2,…n ),且样本数据y 1,y 2,…,y n 的平均数与方差分别是b 和a ,则a ﹣b =( )A .1B .2C .3D .4【解析】解:由题意得:{−2a +3=b a =4b ,解得:{a =43b =13,故a ﹣b =1, 故选:A .例5.下面定义一个同学数学成绩优秀的标志为:“连续5次考试成绩均不低于120分”.现有甲、乙、丙三位同学连续5次数学考试成绩的记录数据(记录数据都是正整数):①甲同学:5个数据的中位数为127,众数为120;②乙同学:5个数据的中位数为125,总体均值为127;③丙同学:5个数据的中位数为135,总体均值为128,总体方差为19.8.则可以判定数学成绩优秀同学为( )A .甲、乙B .乙、丙C .甲、丙D .甲、乙、丙【解析】解:在①中,甲同学:5个数据的中位数为127,众数为120,所以前三个数为120,120,127,则后两个数肯定大于127,故甲同学数学成绩优秀,故①成立;在②中,5个数据的中位数为125,总体均值为127,可以找到很多反例,如:118,119,125,128,145,故乙同学数学成绩不优秀,故②不成立;在③中,5个数据的中位数为135,总体均值为128,总体方差为19.8设x 1<x 2<x 3<x 4,则丙的方差为15[(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2+(135﹣128)2]=19.8, ∴(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2=50,∴(x 1﹣128)2≤50,得|x 1﹣128|≤5,∴x 1≥128﹣5>120,∴丙同学数学成绩优秀,故③成立.∴数学成绩优秀有甲和丙2个同学.故选:C .例6.若数据x 1,x 2,…,x n 的平均数x =3,方差s 2=1,则数据2x 1+3,2x 2+3,…,2x n +3的平均数和方差分别为( )A.6,6B.9,2C.9,6D.9,4【解析】解:由题意若数据x1,x2,…,x n的平均数x=3,方差s2=1,可得x1+x2+…+x n=3n,则:2x1+3+x2+3+…+x n+3=2(x1+x2+…+x n)+3n=9n,所以数据2x1+3,2x2+3,…,2x n+3的平均数为9.又S2=1n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=1,所以[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=n,所以1n [(2x1+3﹣9)2+(2x2+3﹣9)2+…+(2x n+3﹣9)2]=4n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=4,则数据2x1+3,2x2+3,…,2x n+3的平均数和方差分别为9,4.故选:D.例7.随着城镇化的不断发展,老旧小区的改造及管理已经引起了某市政府的高度重视,为了了解本市甲,乙两个物业公司管理的小区住户对其服务的满意程度,现从他们所服务的小区中随机选择了40个住户,根据住户对其服务的满意度评分,得到A区住户满意度评分的频率分布直方图和B 区住户满意度评分的频率分布表.B区住户满意度评分的频率分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数4610128(Ⅰ)在图2中作出B区住户满意度评分的频率分布直方图,并通过频率分布直方图计算两区住户满意度评分的平均值及分散程度(其中分散程度不要求计算出具体值,给出结论即可);(Ⅱ)根据住户满意度评分,将住户和满意度分为三个等级:满意度评分低于70分,评定为不满意;满意度评分在70分到89分之间,评定为满意;满意度评分不低于90分,评定为非常满意.试估计哪个地区住户的满意度等级为不满意的概率大?若是要选择一个物业公司来管理老旧小区的物业,从满意度角度考虑,应该选择哪一个物业公司?说明理由.【解析】解:(Ⅰ)作出如图所示的频率分布直方图,B区住户满意度评分的频率分布直方图如图所示A区住户满意度评分的平均值为45×0.1+55×0.2+65×0.3+75×0.2+85×0.15+95×0.05=67.5;B区住户满意度评分的平均值为55×0.1+65×0.15+75×0.25+85×0.3+95×0.2=78.5.通过比较两区住户满意度评分的频率分布直方图可以看出,B区住户满意度评分比较集中,而A 区住户满意度评分比较分散.(Ⅱ)记D表示事件:“A区住户的满意度等级为不满意”,记E表示事件:“B区住户的满意度等级为不满意”,则P(D)=(0.010+0.020+0.030)×10=0.6,P(E)=(0.010十0.015)×10=0.25,所以A区住户的满意度等级为不满意的概率较大.若是要选择一个物业公司来管理老旧小区的物业,从满意度等级为满意来考虑,应该选择乙物业公司来为小区服务,这样的话小区住户满意度会高一些.例8.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),……第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)求第七组的频率,并完成频率分布直方图;(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【解析】解:(1)由频率分布直方图得第七组的频率为:1﹣(0.004+0.012+0.016+0.030+0.020+0.006+0.004)×10=0.08.完成频率分布直方图如下:(2)用样本数据估计该校的2000名学生这次考试成绩的平均分为:70×0.004×10+80×0.012×10+90×0.016×10+100×0.030×10+110×0.020×10+120×0.006×10+130×0.008×10+140×0.004×10=102.(3)样本成绩属于第六组的有0.006×10×50=3人,样本成绩属于第八组的有0.004×10×50=2人,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件总数n=C52=10,他们的分差的绝对值小于10分包含的基本事件个数m=C32+C22=4,∴他们的分差的绝对值小于10分的概率p=mn=410=25.例9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准x,用水量不超过x的部分按平价收费,超出x的部分按议价收费.下面是居民月均用水量的抽样频率分布直方图.①求直方图中a的值;②试估计该市居民月均用水量的众数、平均数;③设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;④如果希望85%的居民月均用水量不超过标准x ,那么标准x 定为多少比较合理?【解析】解:①由概率统计相关知识,各组频率之和的值为1,∵频率=(频率/组距)*组距,∴0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a )=1,解得:a =0.3,∴a 的值为0.3;②由频率分布直方图估计该市居民月均用水量的众数为2+2.52=2.25(吨),估计该市居民月均用水量的平均数为:0.5(0.25×0.08+0.75×0.16+1.25×0.3+1.75×0.4+2.25×0.52+2.75×0.3+3.25×0.12+3.75×0.08+4.25×0.04)=2.035(吨).③由图,不低于3吨人数所占百分比为0.5×(0.12+0.08+0.04)=12%,∴全市月均用水量不低于3吨的人数为:30×12%=3.6(万);④由频率分布直方图得月均用水量低于2.5吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52)=0.73<85%,月均用水量低于3吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52+0.3)=0.88>85%,∴x=2.5+0.5×0.85−0.730.3×0.5=2.9(吨).例10.如图是某校高三(1)班的一次数学知识竞赛成绩的基叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求全班人数以及频率分布直方图中的x,y;(2)估计学生竞赛成绩的平均数和中位数(保留两位小数).【解析】解:(1)分数在[50,60)的频率为0.020×10=0.2,由茎叶图知,分数在[50,60)之间的频数为5,所以全班人数为50.2=25(人);分数在[90,100)之间的频数为2,由225=10y,解得y=0.008;又10x=1﹣10×(0.036+0.024+0.020+0.008),解得x=0.012.(2)由频率分布直方图,计算平均数为x=55×0.2+65×0.24+75×0.36+85×0.12+95×0.08=71.4,由0.2+0.24+0.36=0.80,所以中位数在[70,80)内,设中位数为m,则0.20+0.24+(m﹣70)×0.036=0.5,解得m≈71.67,所以中位数约为71.67.例11.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男学生中抽取了1000个样本,得到如下数据.数据一:身高在[170,180)(单位:cm)的体重频数统计体重(kg)[50,55)[55,60)[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)人数206010010080201010数据二:身高所在的区间含样本的个数及部分数据身高x(cm)[140,150)[150,160)[160﹣170)[170﹣180)[180﹣190)平均体重y(kg)4553.66075(Ⅰ)依据数据一将下面男高中生身高在[170﹣180)(单位:cm)体重的频率分布直方图补充完整,并利用频率分布直方图估计身高在[170﹣180)(单位:cm)的中学生的平均体重;(保留小数点后一位)(Ⅱ)依据数据一、二,计算身高(取值为区间中点)和体重的相关系数约为0.99,能否用线性回归直线来刻画中学生身高与体重的相关关系,请说明理由;若能,求出该回归直线方程;(Ⅲ)说明残差平方和或相关指数R2与线性回归模型拟合效果之间关系.(只需写出结论,不需要计算)参考公式:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2,a=y−b x.参考数据:(1)145×45+155×53.6+165×60+185×75=38608;(2)1452+1552+1652+1752+1852﹣5×1652=1000.(3)663×175=116025,664×175=116200,665×175=116375.(4)728×165=120120.【解析】解:(1)身高在[170,180)的总人数为:20+60+100+100+80+20+10+10=400,体重在[55﹣60)的频率为:60400=0.15,体重在[70﹣75)的频率为:80400=0.2,平均体重为:52.5×0.05+57.5×0.15+62.5×0.25+67.5×0.25+72.5×0.2+77.5×0.05+82.5×0.025+87.5×0.025≈66.4,(2)因为r=0.99→1,线性相关很强,故可以用线性回归直线来刻画中学生身高与体重的相关,x=145+155+165+175+1855=165,y=45+75+60+53.6+66.45=60,b=∑8i=1x i y i−8x⋅y∑8i=1x i2−8x2=38608+175×66.4−5×165×601000=0.728,a=y−b x=60−0.728×165=−60.12,所以回归直线方程为:y=0.728x−60.12,(3)残差平方和越小或相关指数R2越接近于1,线性回归模型拟合效果越好.例12.市政府为了节约用水,调查了100位居民某年的月均用水量(单位:t),频数分布如下:分组[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3)[3,3.5)[3.5,4)[4,4.5]频数4815222514642(1)根据所给数据将频率分布直方图补充完整(不必说明理由);(2)根据频率分布直方图估计本市居民月均用水量的中位数;(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).【解析】解:(1)频率分布直方图如图所示:(2)∵0.04+0.08+0.15+0.22=0.49<0.5,∴中位数为2+0.5−0.490.25×0.5=2.02,(3)由频率分布直方图得平均数为:0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.例13.某地区100居民的人均用水量(单位:t)的分组的频数如下:[0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的众数;(坐标轴单位自定)(3)当地政府制订了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?【解析】解:(1 )分组频数频率[0,0.5 )40.04[0.5,1 )80.08[1,1.5 )150.15[1.5,2 )220.22[2,2.5 )250.25[2.5,3 )140.14[3,3.5 )60.06[3.5,4 )40.04[4,4.5 )20.02(2):频率分布直方图如下图,由图知,这组数据的众数为2.25.(3)人均月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约是有12%的居民月均用水量在3t以上,88%的居民月均用水量在3t以下,因此,政府的解释是正确的.例14.某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分.【解析】解:(Ⅰ)众数是最高小矩形中点的横坐标,所以众数为m=75(分);(3分)前三个小矩形面积为0.01×10+0.015×10+0.015×10=0.4,∵中位数要平分直方图的面积,∴n=70+0.5−0.40.03=73.3(7分)(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)*10=0.75所以,抽样学生成绩的合格率是75% (11分)利用组中值估算抽样学生的平均分45•f1+55•f2+65•f3+75•f4+85•f5+95•f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71估计这次考试的平均分是71分.(14分)例15.为应对新冠疫情,重庆市于2020年1月24日启动重大突发公共卫生事件一级响应机制,要求市民少出门,少聚集,于是快递业务得到迅猛发展.为满足广大市民的日常生活所需,某快递公司以优厚的条件招聘派送员,现给出了两种日薪薪酬方案,甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪150元,每日前55单没有奖励,超过55单的部分每单奖励10元.(Ⅰ)请分别求出这两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;(Ⅱ)根据该公司所有派送员10天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:日均派送单数5054565860频数(天)23221回答下列问题:①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出这10天中甲、乙两种方案的日薪X的平均数及方差;②结合①中的数据,根据统计学的思想,若你去应聘派送员,选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:172=289,372=1369)【解析】解:(1)甲方案,y =100+n ;乙方案,y ={150,n ≤5510n −400,n >55.(2),①甲方案中,根据已知表格可计算出日平均派送单数为2×50+3×54+2×56+2×58+6010=55,方差为0.2×(50﹣55)2+0.3×(54﹣55)2+0.2×(56﹣55)2+0.2×(58﹣55)2+0.1×(60﹣55)2=9.8,所以,由(1)中变量之间的关系,可以指,甲方案的日薪X 的平均数为155,方差为9.8. 乙方案中,日薪X 的平均数为[5×150+160×2+180×2+200]×0.1=163,日薪方差为0.5×(150﹣163)2+0.2×(160﹣163)2+0.2×(180﹣163)2+0.1×(200﹣163)2=213.4.(3)若去应聘派送员,我会选择乙方案,从平均数的角度来看,乙方案的平均薪酬更高,同时更有激励作用.例16.2019年起,全国地级及以上城市全面启动生活垃圾分类工作,垃圾分类投放逐步成为居民的新时尚.为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了某市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱 “可回收垃圾”箱 “有害垃圾”箱“其他垃圾”箱厨余垃圾 300 70 30 80 可回收垃圾 30 210 30 30 有害垃圾 20 20 60 20 其他垃圾10201060(1)分别估计厨余垃圾和有害垃圾投放正确的概率;(2)假设厨余垃圾在“厨余垃圾”箱、“可回收垃圾”箱、“有害垃圾”箱、“其他垃圾”箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800.当数据a,b,c,d的方差s2最大时,写出a,b,c,d的值(结论不要求证明),并求此时s2的值.【解析】解:(1)根据题意,厨余垃圾共300+70+30+80=480吨,其中投放正确的有300吨,则厨余垃圾投放正确的概率P1=300480=58,有害垃圾共20+20+60+20=120吨,其中投放正确的有60吨,则害垃圾投放正确的概率P2=60120=12;(2)根据题意,厨余垃圾在四种垃圾箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800,则其平均数x=8004=200,则其方差S2=14[(a﹣200)2+(b﹣200)2+(c﹣200)2+(d﹣200)2],当a=600,b=c=d=0时,s2最大,而x=a+b+c+d4=200,此时s2=14[(600﹣200)2+(0﹣200)2+(0﹣200)2+(0﹣200)2]=120000例17.某市教育局为了解全市高中学生在素质教育过程中的幸福指数变化情况,对8名学生在高一,高二不同学习阶段的幸福指数进行了一次跟踪调研.结果如表:学生编号12345678高一阶段幸福指数9593969497989695学生编号12345678高二阶段幸福指数9497959695949396(1)根据统计表中的数据情况,分别计算出两组数据的平均值及方差;(2)请根据上述结果,就平均值和方差的角度分析,说明在高一,高二不同阶段的学生幸福指数状况,并发表自己观点.【解析】解:(1)8名学生在高一阶段的幸福指数的平均数为:x=18(95+93+96+94+97+98+96+95)=95.5,方差为:S12=18∑8i=1(x i−x1)2=2.25,8名学生在高二阶段的幸福指数的平均数为:y=18(94+97+95+96+95+94+93+96)=95,方差为:S22=18∑8i=1(y i−y)2=1.5;(2)①∵x>y,∴可以认为这8名学生在高一的平均幸福指数大于在高二的平均幸福指数,②∵S12>S22,∴可以认为这8名学生在高二的幸福指数的稳定性大于在高一的幸福指数的稳定性.例18.2020年1月,教育部《关于在部分高校开展基础学科招生改革试点工作的意见》印发,自2020年起,在部分高校开展基础学科招生改革试点(也称“强基计划”).强基计划聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.新材料产业是重要的战略性新兴产业,如图是我国2011﹣2019年中国新材料产业市场规模及增长趋势图.其中柱状图表示新材料产业市场规模(单位:万亿元),折线图表示新材料产业市场规模年增长率(%).(1)求从2012年至2019年,每年新材料产业市场规模年增长量的平均数(精确到0.1);(2)从2015年至2019年中随机挑选两年,求两年中至少有一﹣年新材料产业市场规模年增长率超过20%的概率;(3)由图判断,从哪年开始连续三年的新材料产业市场规模的方差最大.(结论不要求证明)【解析】解:(1)从2012年起,每年新材料产业市场规模的年增加值依次为:0.3,0.2,0.3,0.5,0.6,0.4,0.8,0.6,(单位:万亿元),∴年增加的平均数为:0.3+0.2+0.3+0.5+0.6+0.4+0.8+0.68=0.5万亿元.(2)设A表示事件“从2015年至2019年中随机挑选两个,两年中至少有一年新材料产业市场规模增长率超过20%”,依题意P(A)=1−C22C52=910.(3)从2017年开始连续三年的新材料产业市场规模的方差最大.。
2.2.1频率分布直方图

布直方图,则从图中可以看出被处罚的汽车大约有( )
A.30辆
B.40辆
C.60辆
D.80辆
数学 必修3(配人教版)
2.2.1用样本的频率分布估计总体分布
通过抽样,我们获得了100位居民某年的月平均用水量(单位:t) ,如下表: 3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6 3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4 3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8 3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6 4.1 3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3 3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0 2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3 2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4 2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4 2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2
x轴:数据单位
知识探究(二):频率分布直方图
频率/组距
0.5 0.4 0.3 0.2 0.1
宽度:组距 高度: 频率
组距
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
各组的频率在图中哪里显示出来?
小长方形的面积= 组距×
频率 =
组距
各小长方体的面积之和是否为定值?
频率
各小长方形的面积之和为1.
频率:样本中某个组的频数和样本容量的比,
频数直方图 知识讲解

频数直方图——知识讲解责编:康红梅【学习目标】1. 理解组距、频数、频率、频数统计表的概念;2. 会制作频数统计表,理解频数统计表的意义和作用;3. 体会样本和总体的关系,会用样本的频数分布估计总体的频数分布;4. 掌握画频数直方图的一般步骤,会画频数直方图,理解频数分布直方图的意义和作用. 【要点梳理】要点一、组距、频数、频率与频数统计表1.组距:将数据按从小到大适当地分组,并绘制成统计表,其中每一组的后一个边界值与前一个边界值的差叫做组距.2. 频数:数据分组后落在各小组内的数据个数称为频数.3. 频率:每一组数据频数与数据总数的比叫做这一组数据的频率.4.频数统计表:把各个组别中相应的频数分布用表格的形式表示出来,这种反映数据分布情况的统计表叫做频数统计表,也称频数表.列频数统计表的一般步骤如下:1.选取组距,确定组数.组数通常取大于最大值-最小值组距的最小整数. 当数据在100个以内时,通常可按照数据的多少分成5~12组.2.确定各组的边界值.第一组的起始边界值通常取得比最小数据要小一些.为了使数据不落在边界上,边界值可以比实际数据多取一位小数.取定起始边界值后,就可以根据组距写出各组的边界值.3.列表,填写组别和统计各组频数.要点诠释:(1)各组频数总和等于样本容量,各组数据的频率之和等于1;(2)频数统计表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.要点二、频数直方图1.频数直方图由若干个宽等于组距,面积表示每一组频数的长方形组成的统计图,叫做频数直方图.简称直方图.它直观地呈现了频数的分布特征和变化规律.2.频数直方图的画法(1)列出频数表;(2)画具有相同原点,横、纵两条互相垂直的数轴,分别表示各组别和相应的频数.然后分别以横轴上每一组的两边界点为端点的线段为底边,作高为相应频数的长方形,就得到所求的频数直方图.3. 频数直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.要点诠释:(1)频数直方图是条形统计图的一种;(2)注意直方图与条形图、扇形图、折线图在表示数据方面的优缺点.【典型例题】类型一、组距、组数、频数、频率1. (1)对某班50名学生的数学成绩进行统计,90~99分的人数有10名,这一分数段的频数为_________.(2)有60个数据,其中最小值为140,最大值为186,若取组距为5,则应该分的组数是________.【答案】(1)10; (2)10.【解析】解:(1)利用频数的定义进行解答;(2)利用组数的计算方法求解.【总结升华】组数的确定方法:设数据总数目为n,一般地,当n≤50时,则分为5~8组;的整数部分+1.当50≤n<100.则分为8~12组较为合适,组数等于最大值-最小值组距举一反三:【变式】一个样本中有80个数据,最大值是141,最小值是50,取组距为10,则样本可分成()A.10组 B.9组 C.8组 D.7组【答案】A.2. 我校八年级学生在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的频率是0.2,则这50个数据在37~40之间的个数是()A.1 B.2 C.10 D.5【思路点拨】根据频率、频数的关系:频率=频数÷数据总和,可得频数=频率×数据总和.【答案】C.【解析】解:∵在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的频率是0.2,∴这50个数据在37~40之间的个数=50×0.2=10.故选C.【总结升华】本题考查频率、频数、总数的关系:频率=频数÷数据总和.举一反三:【变式】(2016•黄浦区三模)将样本容量为100的样本编制成组号①~⑧的八个组,简况如表所示:组号①②③④⑤⑥⑦⑧频数14 11 12 13 13 12 10那么第⑤组的频率为()A.14 B.15 C.0.14 D.0.15【答案】D.解:根据表格中的数据,得第⑤组的频数为100﹣(14+11+12+13+13+12+10)=15, 其频率为15:100=0.15. 类型二、频数统计表3.某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一类),并根据调查结果制作了尚不完整的频数统计表:(1)表中m=______,n=______;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多?最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普类读物的学生有多少人? 【思路点拨】(1)由频率统计表可看出艺术类的频数22,频率是0.11,由频率=频数÷数据总数计算,可得到总数;根据频数的总和为200,可求出m 的值; (2)频数统计表中可以直接看出答案;(3)用样本估计整体:用整体×样本的百分比即可. 【答案与解析】 解:(1)学生总数:22÷0.11=200,m=200-22-66-28=84, n=66÷200=0.33,(2)从频数统计表中可以看出:最喜爱阅读文学类读物的学生最多84人,最喜爱阅读艺术类读物的学生最少22人. (3)1200×0.33=396(人). 【总结升华】此题主要考查了读频数统计表的能力,利用图表得出正确的信息是解决问题的关键.类型三、频数直方图4.某地区对八年级的英语教学情况进行期末质量调查,从中抽出的20个班级的英语期末平均成绩如下(单位:分):80 81 83 79 64 76 80 66 70 72 71 68 69 78 67 80 68 72 70 65试列出频数统计表并绘出频数直方图.【思路点拨】按照画频数直方图的步骤进行解答.解答时,应注意每个步骤中需要注意的事项.【答案与解析】解:(1)计算最大值与最小值的差.类别 频数(人数) 频率 文学 m 0.42 艺术 22 0.11 科普 66 n 其它 28 合计 183-64=19.(2)决定组距与组数.若取组距为4,则有194≈5,所以组数为5.(3)列频数统计表.(4)画频数直方图.【总结升华】按步骤进行操作.因选取的组距不同,所列的频数统计表及所画的频数直方图也不一样.在统计时,数据不能出现重复或遗漏的现象.【高清课堂:数据的描述369923 例1】举一反三:【变式】如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图.已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%【答案】B.5. (2016•安徽模拟)我校为了迎接体育中考,了解学生的体育成绩,从全校500名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:成绩段频数频率160≤x<170 5 0.1170≤x<180 10 a180≤x<190 b 0.14190≤x<200 16 c200≤x<210 12 0.24表(1)根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表(1)中,a=,b=c=;(2)补全图(2),所抽取学生成绩中中位数在哪个分数段;(3)“跳绳”数在180以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?【思路点拨】(1)根据第一组的频数是5,对应的频率是0.1据此即可求得总人数;(2)根据中位数的定义即可求解;(3)利用总人数500乘以对应的比例即可求解.【答案与解析】解:(1)抽测的人数是:5÷0.1=50(人),a==0.2,b=50×0.14=7,c==0.32.故答案是:50,0.2,7,0.32.(2)所抽取学生成绩中中位数在190~200分数段;(3)全校九年级有多少学生在此项成绩中获满分的人数是×500=350(人).答:全校九年级有多少学生在此项成绩中获满分的人数是350人.【总结升华】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.举一反三:【变式】随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):(1)请你把表中的数据填写完整;(2)补全频数直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?【答案】解:(1)36÷200=0.18,200×0.39=78,200-10-36-78-20=56,56÷200=0.28;(2)如图所示:(3)违章车辆数:56+20=76(辆).答:违章车辆有76辆.。
数学知识点总结之频数分布直方图

1.频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。
2.频数分布表: 运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数某各组的频率=相应组的频数。
画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来。
3.频数分布直方图:(1)当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。
(2)绘制的频数分布直方图的一般步骤:①计算最大值与最小值的差(极差),确定统计量的范围;②决定组数和组距,数据越多,分的组数也应当越多;③确定分点;④列频数分布表;⑤画频数分布直方图。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为某轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做某轴或横轴,铅直的数轴叫做Y轴或纵轴,某轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
第18讲频率分布直方图估计数字特征讲义-高三艺考数学一轮复习

第18讲:用频率分布直方图估计数字特征【课型】复习课【教学目标】【预习清单】【基础知识梳理】1.频率分布直方图中数字特征的计算①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.④方差:各组区间中值与其平均数的差的平方乘以各组频率的和。
【引导清单】考向二:利用频率分布直方图估计数字特征例1:对参加某次数学竞赛的1 000名选手的初赛成绩(满分:100分)作统计,得到如图所示的频率分布直方图. (1)根据直方图完成以下表格; (2)求参赛选手初赛成绩的众数、中位数、平均数及方差(同一组中的数据用该组区间的中点值作代表);【解】(1)填表如下:(2)由频率分布直方图可知初赛成绩的众数为80分;记各组的频率分别为)5,4,3,2,1(=i f i ,易知)5,4,3,2,1(=i f i 由图可知,35.0,15.0,05.0321===f f f ,因为5.0,5.032121>++<+f f f f f ,所以中位数在区间[70,80)之间,设为x,由0.05+0.15+0.035(x -70)=0.5,解得x=78.57,所以参赛选手初赛成绩的中位数为78.57分;各区间中值与相应频率如右表:所以平均数为55×0.05+65×0.15+75×0.35+85×0.35+95×0.1=78(分),方差s 2=(-23)2×0.05+(-13)2×0.15+(-3)2×0.35+72×0.35+172×0.1=101.【训练清单】【变式训练】为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a 的值; 成绩 [50,60) [60,70) [70,80) [80,90) [90,100]频数成绩 [50,60) [60,70) [70,80) [80,90) [90,100) 频数50 150 350 350 100 区间中值 55 65 75 85 95 频率 0.15 0.35 0.35 0.1(2)估计这种植物果实重量的众数、中位数、平均数x -和方差s 2(同一组中的数据用该组区间的中点值作代表).【解】(1)组距d =5,由5×(0.02+0.04+0.075+a +0.015)=1得a =0.05.(2) 由频率分布直方图可知最高矩形区间中点为40,所以这种职务果实重量的众数约为40克;设中位数为x,则0.1+0.2+0.375(x-37.5)=0.5,解得x=38,所以果实重量的中位数约为38克;各组中点值和相应的频率依次为x -=30×0.1+35×0.2+40×0.375+45×0.25+50×0.075=40,所以这种植物果实重量的平均数约为40克;s 2=(-10)2×0.1+(-5)2×0.2+02×0.375+52×0.25+102×0.075=28.75.所以这种植物果实的方差约为28.75.【巩固清单】1.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如下表所示:用电量/度120 140 160 180 200 户数 2 3 6 7 2则这20户家庭该月用电量的众数和中位数分别是( )A .180,170B .160,180C .160,170 D .180,160【解析】选D.用电量为180度的家庭最多,有7户,故这20户家庭该月用电量的众数是180;将用电量按从小到大的顺序排列后,处于最中间位置的两个数是160,160,故这20户家庭该月用电量的中位数是160.故选D.2.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数在第 组.【解析】由题图可得,前四组的频率为(0.037 5+0.062 5+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40××2=8,故中位数落在第4组.3.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A ,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:中点值 30 35 40 45 50 频率记C为事件:“”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【解】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7××0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.4.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数.【解】(1)由(0.002+0.009 5+0.011+0.0125+x+0.005+0.002 5)×20=1得x=0.0075,所以直方图中x的值为0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002+0.009 5+0.011)×20=0.45<0.5,(0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,解得a=224,即中位数为224.5.随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.现从使用A和B两款订餐软件的商家中分别随机抽取50个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下.(1)试估计使用A款订餐软件的50个商家的“平均送达时间”的众数及平均数;(2)根据以上抽样调查数据,将频率视为概率,回答下列问题:①能否认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%?②如果你要从A和B两款订餐软件中选择一款订餐,你会选择哪款?说明理由.【解】(1)依题意可得,使用A款订餐软件的50个商家的“平均送达时间”的众数为55分钟.使用A款订餐软件的50个商家的“平均送达时间”的平均数为:15×0.06+25×0.34+35×0.12+45×0.04+55×0.4+65×0.04=40(分钟).(2)①使用B款订餐软件“平均送达时间”不超过40分钟的商家的比例估计值为0.04+0.20+0.56=0.80=80%>75%.故可以认为使用B款订餐软件“平均送达时间”不超过40分钟的商家达到75%.②使用B款订餐软件的50个商家的“平均送达时间”的平均数为15×0.04+25×0.2+35×0.56+45×0.14+55×0.04+65×0.02=35<40,所以选B款订餐软件.6.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标[75,85)[85,95)[95,105)[105,115)[115,125) 值分组频数62638228(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?【解】 (1)频率分布直方图如图.(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率分布直方图
1.频率分布直方图
【知识点的认识】
1.频率分布直方图:在直角坐标系中,横轴表示样本数据,纵轴表示频率与组距的比值,将频率分布表中的各组频率的大小用相应矩形面积的大小来表示,由此画成的统计图叫做频率分布直方图.
2.频率分布直方图的特征
①图中各个长方形的面积等于相应各组的频率的数值,所有小矩形面积和为 1.
②从频率分布直方图可以清楚地看出数据分布的总体趋势.
③从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息被抹掉.
3.频率分布直方图求数据
①众数:频率分布直方图中最高矩形的底边中点的横坐标.
②平均数:频率分布直方图各个小矩形的面积乘底边中点的横坐标之和.
③中位数:把频率分布直方图分成两个面积相等部分的平行于y 轴的直线横坐标.
【解题方法点拨】
绘制频率分布直方图的步骤:。