变频器CPU主板电路之二

变频器CPU主板电路之二
变频器CPU主板电路之二

变频器CPU主板电路之二

——CPU基本电路的检修

一、何谓CPU?

CPU,又称为中央处理器,内部一般由运算器、控制器、内存储器、输入/输入设备及接口电路及总线组成,但随技术的进步和更新,其功能和结构均在不断扩充中——将原来CPU外围的电路也集成于器件内部。将其硬件设备扩充到一定的规模,而使之能独立完成一个较复杂的控制功能,此器件即被称为微处理器了。在微处理器家庭中,为适用于某一应用领域,在硬件构成上——有别于通用型微处理器(如

80C51)——有一定的独特性,如本文特指的变频器经常采用的微处理器,具备六路PWM波输出功能,能实现特定的控制功能,又被称为微控制器,别名:单片机。因业内人士一般将变频器单片机的电路板之为CPU主板,从约定俗成和定义简洁的方面考虑,本书也将微控制器(单片机),称之为CPU了。

用于变频器控制的微控制器,又称之为“高性能微控制器”,应该是有针对性开发的专用的控制芯片。它起码要有六路PWM波形成和输出电路及端口,以输出驱动电路所需的六路逆变脉冲;应有A/D转换电路,有的还要有D/A转换电路,以适应对模拟输入、输出量的处理;要有高速脉冲信号的输入、输出口和串口发送、接收引脚,以处理各种数字信号和通讯指令;应内含程序存储器和数据存储器,以存放程序和原始数据及可改写的数据;当然还要有端口驱动器、各类缓冲器等其它电路,在此不予以赘述了。

出入各CPU引脚的,不外乎是一些“信号流”,有的只进不出,往而不返,如控制端子输入的开关量信号;有的只出不进,是去而不还,如控制端子上CPU输出的继电器信号等;有的是往返进入,有进有出的,如CPU与存储器,与操作显示面板之间传递的信号,此类信号是双向流通的。而所有信号,从信号性质上又可以分为两大类:数字的和模拟的。电压检测信号、调速指令信号往往是模拟的,变频器的起、停信号、键盘输入信号等,是数字(开关量)的。有些模拟信号,经过CPU

外部电路处理,如经过A/D转换,才送入CPU的,有的是直接进入CPU 引脚,由内部A/D电路进行处理的,采用的CPU硬件功能电路的不同,必然导致了外部电路的有异。

微控制器的集成度已经够高,它不可能无限制地将所有工作运行所需的电路元件集成进去,它需要外电路的积极配合才能开展工作。有三个工作条件是微控制器所必需的,所谓CPU工作的三要素:+5V电源、工作时钟、复位信号。工作时钟的产生是由微控制器内部电路和引脚外接晶振元件组成振荡电路来生成的;复位信号是由外部复位电路在上电时产生一个低电平(或高电平)的脉冲,送入微控制器的复位引脚,由内部电路控制程序复位,进入待机状态。微控制器内部的程序存储器和数据存储器(简称内存),其容量和用途是有限制的,常需要外接存储器——电可擦除存储器,来完成一些数据存储任务(尤其是用户程序存储任务),这应该构成了微控制器正常工作的四要素。微控制器要接受用户的指令或将变频器的工作状态报知用户,需要一个人机界面——操作显示面板,与用户交流,与操作显示面板的正常通讯,成为微控制器工作的五要素。此外,微控制器各个引脚外接电路的好坏均会影响到微控制器的运行,自此微控制器工作的七要素或八要素乃至几十要素,都紧随出现。其实,依笔者看来,从微控制器(或微处理器,CPU)本身来说,三要素则是工作所必需的,无它,则微控制器即不能满足最基本的工作条件。其它原因造成微控制器不工作,是外电路的事了,并不是微控制器本身没干活呀,对吧。

微控制器的外部电路、外部框架已经搭好,但仅仅一个“躯体”还不能干活,还需要一个指挥躯体运作的“灵魂”——软件控制程序。变频器的程序容量较大,一般长达数千行。微控制器的控制功能,集中于两个点上,一是对输出PWM波的控制,这一点,优质和劣质变频器可看出明显的不同,有的PMW波非常优化,有的则有些糟糕——输出力矩小运行噪声大,载波干扰也大;一是对逆变模块的状态检测和保护,这一任务是配合外电路共同完成的,也是变频器电路浓墨重彩的着笔之处。

微控制器——单片机技术成自动化控制技术的一个重要技术分支,

希望朋友们自己要多掌握一些相关的知识,在此不予赘述。

CPU主板的故障率相对较低,约占总故障率的20%左右。故障多发生在故障检测电路和控制端子电路上。对故障检测电路的检修成为CPU 主板的一个重要检修内容。故障检测电路(电压、电流检测的后续电路、温度检测电路)本身损坏时,就有点“谎报军情”故意捣乱的意思了,明明主电路是好的,却报出“输出短路”故障或输出缺相故障,明明风扇是好的,却报出过热故障等,使变频器不能投入正常运行。控制端子的故障多为用户误接入高电压,而将端子供电24V烧坏,端子输入电路开路损坏和光电耦合器的输入侧电路损坏等。

CPU芯片本身的损坏率在2%以下,由于牵扯到技术封锁,内部程序不易破解。一般维修人员不具备修复芯片的相关条件,只有采购原厂家配件,或更换CPU主板,所谓“板级修理”。但对于CPU芯片的局部损坏,却可以用变通手段尝试修复。

二、CPU的基本电路的原理解析和检修:

图1 英威腾变频器G9/P9机型CPU主板电路之一:CPU的基本电路

由电源供电、晶振电路、复位电路、外存储器电路及操作面板显示电路,构成了变频器CPU主板电路——CPU工作的基本电路。复位电路由专用三端复位元件IMP809M、R188构成,上电瞬间为CPU的48脚提供一个低电平脉冲,犹如喊了一声“各就各位”的口号,实现系统清零,使程序开始运行。3、4、6、8脚外接U2(93C66)存储器,出厂时内部已经存放了用户控制程序,在调试和使用过程中,用户对某些参数要进行随时修改,以满足控制要求,修改后的参数值由U2完成存储任务。CPU 与存储器相连的四个引脚均由上拉电阻接+5V。

变频器的通用机型,操作显示面板,已经作为一个独立器件,与CPU 进行通讯联系。接受用户指令和传送相关监控数据。操作显示面板内含

CPU、解码驱动、LDE显示器等电路,能与CPU进行双向数据传输。操作显示面板与CPU之间,RS442/RS485收发器实现通讯中转,用户操作信号由A、B差动输入端输入,由R接收器输出端送入CPU;CPU输出的数据信号由D发送器输入端进入,由Y、Z驱动器输出端进入操作显示面板。

为适应新的控制要求,变频器的控制端子还设有RS485通讯口,图中U6(15176B)为RS485收发器,D,驱动器输入端,接CPU的TXD1串口发送脚;R,接收器输出端,接CPU的RXD1串口接收脚;A、B,为接收器输入、驱动器输出端;DE、DR,驱动器、接收器允许信号端,驱动器和接收器的工作状态受此二脚电平信号控制。

CPU基本电路的检修:

CPU(单片机芯片)本身的故障率是极低的,除遭遇异常情况如变频器引入雷击造成的损坏外,本身的电气故障较难碰到。CPU的损坏,因内含运行程序,厂家又出于技术保密的原因,尽最大能地采取了一些保密措施,要将程序解密重新对芯片进行重新拷贝是困难的,一般维修人员不具备此种技术手段,这其中是否也牵扯到知识产权的问题。因而损坏后,需购用厂家提供的已拷贝好程序的芯片,或从同型号线路板上拆换,或干脆换用CPU主板。

对CPU基本电路的检查,其主要内容是对其工作三要素等工作条件的检查,和故障修复。

CPU基本电路(三要素电路)的故障,其典型特征是:上电后在供电电源正常的情况下,操作面板无显示,或显示某一固定字符,变频器无初始化动作过程,操作显示面板所有操作失灵,类似电脑出现了不能开机和“死机”的现象。

故障实质:A、CPU工作三要素中,至少有一种要素不具备,CPU不能完成初始化操作,程序被“卡”住;B、CPU在自检过程中检测到危险故障信号存在,处于故障锁定状态中,所有操作被拒绝,这是一

种“CPU主板伪故障”现象,检查和排除故障原因,则CPU“罢工”的现象

也随即消失;C、由雷击或供电异常造成CPU芯片损坏。

注意:遇有程序“卡死”现象,务必先行排除“CPU主板伪故障”,再对CPU的三要素等电路进行检修。重点检测OC故障报警电路,详见第四、五章的相关内容。

对CPU是否已经工作或三要素电路是否正常,可先作一大致判断:

1、变频器上电期间,细听充电继电器或接触器有无“啪嗒”的吸合声,若有,说明三要素电路都正常,CPU已经正常工作。变频器处于故障锁定状态;

2、观察操作显示面板,一般有一个“开机字符”,呈闪烁状态,最后稳定为某一字符,有此过程,说明CPU也已进入工作状态;

3、若清楚该台变频器的上电自检流程,和各脚电位状态,可配合检测相关引脚的电压变化和电平状态,来判断CPU是否处于工作中。利用操作显示面板的按键信号输入,和检测电路关键点的电压变化,判断CPU是否处于工作状态。如按动面板复位键,变频器状态信号输出继电器,可能会发出“啪嗒”的开、断声,同时驱动电路的复位信号输入脚,有相应的电平变化。说明CPU能接受复位信号输入,能将故障复位信号输出到驱动电路。说明CPU工作正常。

4、判断CPU没有投入正常工作,即可对CPU的基本工作电路进行检查。

对三要素电路的故障检查:

1、+5V供电电源电路的检查。检查CPU的VDD、VSS、Vcc、GND等电源引脚,确认电源供电正常,+5V供电回路往往接有千微法级较大容量的滤波电容器,当其容量严重下降时,会使CPU程序运行紊乱,易进入程序“死循环”;

2、对复位电路的检查。复位电路为CPU的复位脚提供一个上电期间的脉冲电压,脉冲电压的持续时间为μs级。故需低脉冲进行的复位的,其CPU复位脚静态电压应为+5V,需高电平脉冲进行复位的,其CPU复位引脚静态电压应为0V低电平。对复位电路的检测手段:

a、根据CPU复位引脚需要高或低脉冲电压的要求,测量其静态电位是否正常。若静态电压异常,查CPU外接复位电路。可断开CPU的引脚,判断复位脚电压异常是复位电路故障,还是CPU复位脚内部电路损坏。

b、若静态电压正常,可用人工强制复位方法判断CPU是否能正常工作。方法是:对CPU复位脚静态电压为+5V的,则用金属导线快速将复位脚与供电地短接一下,人为形成一个低电平信号输入;若复位脚静态电压为0V的,则用导线快速将复位脚与供电+5V短接一下,人为形成一个高电平信号输入。

c、人为强制复位后,若CPU能正常工作——表现为操作显示面板的内容变化,可以修改参数等,说明外接复位电路故障,须更换损坏元件。对于采用专用三线端复位元件的,如无原型号元件代换,可搭接阻容元件电路应急修复;

d、强制复位无效,应进一步检查晶振电路。

3、对晶振电路的检查。晶振电路的外接元件较少,一般仅为两只电容和一只晶振。常见电路故障有以下几种:

a、因晶振元件内部为石英晶体,受剧烈震动后容易碎裂失效;

b、如晶振或电容漏电,会使信号传输损失加大,而引起停振;

c、CPU内部振荡电路损坏,须更换CPU。

测量方法:a振荡脉冲为矩形方波,其引脚电压约为0V和+5V的中间值,两引脚的电压值略有差异,相差0.3V左右。其中X2引脚为2V,X1则为2.3V,测量时请用数字万用表的电压档,如用指针表,因内阻偏低,有可能引起停振,使测量结果不准;b、若晶振微漏电或性能变差,当用电烙铁轻烫晶振引脚时,CPU主板恢复正常工作,可能为晶振低效,更换晶振;c、怀疑晶振不良时,最好是用优良晶振代换试验。摘下晶振进行检查时,可以晃动晶振,细看其内部有无细微的哗啦声,若有,说有晶振受振动而损坏。测量两引脚电阻值,应为无穷大,有电阻值说明漏电。若有电容表测量两引脚,好的晶振有PF级电容量,其容量值随标称频率的升高而减小。e、晶振的不良,还有一种极少见的情

形,因结构形变或机械老化原因,使电路振荡频率偏低于标称频率值,CPU时钟脉冲的频率降低,一是导致系统运行变缓,二是因时间基准值变化,使CPU对路输入电流、电压信号的采样出现误差,使运行电流、输出频率的显示值也出现相应偏差,严重时有可能使CPU出现误停机动作。此一故障的出现,则表现为疑难故障了。

对CPU外部存储器的故障检查。变频器能操作运行,参数也能被修改,但停电后,修改后的参数值不能被存储,说明机器有外部存储器故障。检测CPU外部存储器的供电和与CPU连接线的状态,因CPU与外部存储器之间传输的是“脉冲流信号”,很难从其引脚电压的高低判断其工作好坏,可以从同型号的线路板上拆下好的存储器,代换试验。注意:若换用新的空白存存储器芯片,机器将不能工作,存储器中出厂时已存有用户控制参数。有条件的,可将原存储内容拷贝到新的芯片中。或从制造厂家购得存储器芯片,进行更换。

操作显示面板的检修。1、操作显示面板上的按键及调速电位器,都属于易损件,又因工作现场粉尘、潮湿等因素,造成接触不良,造成输出频率不稳或按键不能写入参数等故障,可更换修复;2、LED显示笔划不全,因震动造成内部驱动电路引脚虚焊、铜箔条断裂等,焊接修复;3、供电正常,但无显示,或显示一固定字符,可有相同型号的操作面板代换试验,若属于操作显示面板故障,可从厂家购得整体更换。

4、代换操作显示面板无效,检查CPU与操作显示面板之间的数据通讯模块——RS442/RS485收发器等电路。

[故障实例1]:

一台7.5kW英威腾变频器,上电听不到充电继电器的吸合声,所有控制操作失灵。测量CPU的复位控制脚48脚的电压为2.3V,正常时应为

5V,判断三线端复位元件IMP809M不良,更换后故障排除。

[故障实例2]:

一台富士5000G9S 11kW变频器,操作面板显示一固定字符,不能操

作,出现“程序卡住”现象,判断为CPU主板故障,开机测量CPU复位控制脚静态电压正常,用人为强制复位法无效,用烙铁加热晶振焊脚时,故障消失,更换优良晶振元件和两只瓷片电容后,故障排除。

[故障实例3]:

一台富士5000G9S 47kW变频器,操作面板显示一固定字符,不能操作,出现“程序卡住”现象判断为CPU主板故障。开机检查,上电,测量CPU供电电源正常,但CPU芯片烫手,出现异常温升,判断CPU芯片本身存在短路故障,从一块相同型号的旧线路上拆下一块CPU芯片,更换后故障排除。

[故障实例4]:

一台英威腾INVT-G9-004T4 小功率机器,检查故障为逆变模块损坏。先给CPU主板和电源驱动板上电,准备修复驱动板故障后,再购逆变模块。上电后,操作显示面板显示H:00,面板所有按键操作失灵,判断为CPU基本电路的故障,先对CPU的工作三要素进行检查,无异常;又对CPU的其它外围电路进行检查,也无异常,一时间茫然无从下手,检修工作陷入僵局。

后来,在检查电流检测电路时,测电流信号输入放大U12D的的8、14脚电压为0V,正常;U13D的14脚为负8V,有误过流信号输出。但按道理,CPU应该报出OL或OC、SC故障,不应该程序不运行啊?试将该路故障信号切断,使之不能输入CPU,上电,操作面板竟然可以操作了!

英威腾G9/P9变频器的保护次序大概是这样的:上电检测功率逆变输出部分有故障时,即使未接收启/停信号,仍跳SC--输出端短路故障代码,所有操作均被拒绝;上电检测到由电流检测电路来的过流信号时,显示H.00,此时所有操作仍被拒绝;上电检测有热报警信号时,其它大部分操作可进行,但启动操作被拒绝,或许CPU认为输出模块仍在高温升状态下,等待其恢复常温后,才允许启动运行。而对模块短路故障和过流性故障,为保障运行安全,索性拒绝所有操作!但此一保护性措施,常被人误认为是程序进入了死循环,或是CPU外围电路故障,如复位电路、晶振电路异常等。

将电流检测电路修复,并检查驱动电路无异常后,更换功率模块后,故障排除。

电脑主板供电电路图分析

电脑主板供电电路图分 析 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

1、结合m s i-7144主板电路图分析主板四大供电的产生 一、四大供电的产生 1、CPU供电: 电源管理芯片: 场馆为6个N沟道的Mos管,型号为06N03LA,此管极性与一般N沟道Mos管不同,从左向右分别是SDG,两相供电,每相供电,一个上管,两个下管。 CPU供电核心电压在上管的S极或者电感上测量。 2、内存供电: DDR400内存供电的测量点: (1)、VCCDDR(7脚位):VDD25SUS MS-6控制两个场管Q17,Q18产生VDD25SUS电压,如图: VDD25SUS测量点在Q18的S极。 (2)、总线终结电压的产生 (3)参考电压的产生 VDD25SUS经电阻分压得到的。 3、总线供电:通过场管Q15产生VDD_12_A. 4、桥供电:VCC2_5通过LT1087S降压产生,LT1087S1脚输入,2脚输出,3脚调整,与常见的1117稳压管功能相同。 5、其他供电 (1)AGP供电:A1脚12V供电,A64脚:VDDQ 2、结合跑线分析intel865pcd主板电路 因找不到intel865pcd电路图,只能参考865pe电路图,结合跑线路完成分析主板的电路。 一、Cpu主供电(Vcore) cpu主供电为2相供电,一个电源管理芯片控制连个驱动芯片,共8个场管,每相4个场管,上管、下管各两个,cpu主供电在测量点在电感或者场管上管的S极测量。 二、内存供电 1、内存第7脚,场管Q6H1S脚测量2.5v电压 参考电路图: 在这个电路图中,Q42D极输出2.5V内存主供电,一个场管的分压基本上在 0.4-0.5V,两个场管分压0.8V,3.3-0.8=2.5V

变频器基本电路图

变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。 1)整流电路 如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。 2)滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。 通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 3)逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。 最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。 通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。如三菱公司生产的IPMPM50RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正电路、IGBT逆变模块及各种检测保护功能。模块的典型开关频率为20KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。 逆变电路中都设置有续流电路。续流电路的功能是当频率下降时,异步电动机的同步转速也随之下降。为异步电动机的再生电能反馈至直流电路提供通道。在逆变过程中,寄生电感释放能量提供通道。另外,当位于同一桥臂上的两个开关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生意外情况时,对换流器件进行保护 1、概述 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器,变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变? r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm.例如:4极电机 60Hz 1,800 [r/min],4极电机 50Hz 1,500 [r/min],电机的旋转速度同频率成比例。本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机

主板CPU供电电路原理图

CPU供电电路原理图 相信大家看主板导购文章的时候经常听到说这块主板是三相供电,那块是两相供电的说法,而且一般总是推荐三相供电的主板。那么两相三相到底代表什么,对于普通消费者来说应该怎么选择呢?本文将就这个问题展开,尽量让大家能够自己分辨出主板到底几相供电,并且提供一点购买建议。 ● CPU供电电路原理图 我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今天我们把注意力集中在这里。我们先简单介绍一下供电电路的原理,以便大家理解。 一般而言,有两种供电方式。 1. 线性电源供电方式:通过改变晶体管的导通程度来实现,晶体管相当于一个可变电阻,串接在供电回路中。 上图只要是学过初中物理的都懂,通过电阻分压使得负载(这里想像为CPU)上的电压降低。虽然方法简单,但由于可变电阻与负载流过相同的电流,要消耗掉大量的能量并导致升温,电压转换效率非常低,

一般主板不可能用这种方法。 2. 开关电源供电方式:我们平时用的主板基本都用这种方式,原理图如下。 其工作原理比刚刚的电路复杂很多,笔者只能简单说说:ATX供给的12V电通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的Vcore。 上图中的电路就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。强调这些元器件是为了后文辨认几相供电做准备。 由于场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。 多相供电的引入 单相供电一般能提供最大25A的电流,而现今常用的处理器早已超过了这个数字,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。

变频器电路原理详解经典

要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动! 变频器维修入门--电路分析图 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。 1)驱动电路 驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。 对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。有些品牌、型号的变频器直接采用专用驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。

科沃—工控维修的120 .gzkowo. 驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。 2)保护电路科沃—电梯维修的120 .gzkowo. 当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。 在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,部都具有保护功能。

主板供电电路图解说明

主板供电电路图解说明 主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰 cross talk 效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。 主板上的供电电路原理 图1 图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。 单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。 图2

主板电源接口详解(图解)

计算机的ATX电源脱离主板是需要短接一下20芯接头上的绿色(power on)和黑色(地)才能启动的。启动后把万用表拨到主流电压20V档位,把黑表笔插入4芯D型插头的黑色接线孔中,用红表笔分别测量各个端子的电压。楼上列的是20芯接头的端子电压,4芯D型插头的电压是黄色+12V,黑色地,红色+5V。 主板电源接口图解 20-PIN ATX主板电源接口 4-PIN“D”型电源接口

主板20针电源插口及电压: 在主板上看: 编号输出电压编号输出电压 1 3.3V 11 3.3V 2 3.3V 12 -12V 3地 13地 4 5V 14 PS-ON 5地 15地 6 5V 16地 7地 17地 8 PW+OK 18 -5V 9 5V-SB 19 5V 10 12V 20 5V

在电源上看 编号输出电压编号输出电压 20 5V 10 12V 19 5V 9 5V-SB 18 -5V 8 PW+OK 17地 7地 16地 6 5V 15地 5地 14 PS-ON 4 5V 13地 3地 12 -12V 2 3.3V 11 3.3V 1 3.3V 可用万用电表分别测量 另附:24 PIN ATX电源电压对照表

百度有人说CPU供电4P接口可以和20P接口一起接在24P主板接口上,本人没试过,但根据理论试不可以的,如果你相信的话可以试试,后果是很严重的…… ATX电源几组输出电压的用途 +3.3V:最早在ATX结构中提出,现在基本上所有的新款电源都设有这一路输出。而在AT/PSII电源上没有这一路输出。以前电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等,从第二代奔腾芯片开始,由于CPU的运算速度越来越快,INTEL公司为了降低能耗,把CPU 的电压降到了3.3V以下,为了减少主板产生热量和节省能源,现在的电源直接提供3.3V电压,经主板变换后用于驱动CPU、内存等电路。 +5V:目前用于驱动除磁盘、光盘驱动器马达以外的大部分电路,包括磁盘、光盘驱动器的控制电路。 +12V:用于驱动磁盘驱动器马达、冷却风扇,或通过主板的总线槽来驱动其它板卡。在最新的P4系统中,由于P4处理器能能源的需求很大,电源专门增加了一个4PIN的插头,提供+12V电压给主板,经主板变换后提供给CPU和其它电路。所以P4结构的电源+12V输出较大,P4结构电源也称为ATX12V。 -12V:主要用于某些串口电路,其放大电路需要用到+12V和-12V,通常输出小于1A.。 -5V:在较早的PC中用于软驱控制器及某些ISA总线板卡电路,通常输出电流小于1A.。在许多新系统中已经不再使用-5V电压,

变频器基本电路图

变频器基本电路图 目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。 1)整流电路 如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。 2)滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元

件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。 通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 3)逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。 最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。 通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。如三菱公司生产的IPMPM50 RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正电路、IGBT逆变模块及各种检测保护功能。模块的典型开关频率为2 0KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。 逆变电路中都设置有续流电路。续流电路的功能是当频率下降时,异步电动机的同步转速也随之下降。为异步电动机的再生电能反馈至直流电路提供通道。在逆变过程中,寄生电感释放能量提供通道。另外,当位于同一桥臂上的两个开关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生意外情况时,对换流器件进行保护

变频器的内部结构

浅析交-直-交电压型变频器的内部结构 摘要:本文主要介绍了交-直-交电压型变频器的整流单元、滤波单元、逆变单元、制动单元、驱动单元、检测单元、控制单元的主要形式,以及主要的几种控制方法及PWM技术在变频器中的应用。 关键词:交-直-交电压型变频器 IGBT 栅极驱动电流检测霍尔传感器矢量控制 PMW 0、引言 交流变频调速技术发展至今已有几十年的历史。低压变频器构成的交流调速系统,因其技术上的不断创新,使系统在性能上不断地完善,并在电气传动领域挑战直流调速系统,已得到了广泛的应用。交-直-交电压型变频器是目前市场上低压变频器的主要形式,本文简要对该变频器内部结构进行剖析。 1、电路结构框图 交直交电压型变频器主要由整流单元(交流变直流)、滤波单元、逆变单元(直流变交流)、制动单元、驱动单元、检测单元、控制单元等部分组成的。 图1 变频器电路结构框图 3、各单元电路及原理 3.1 整流单元

整流单元用于电网的三相交流电变成直流。可分为可控整流和不可控整流两大类。可控整流由于存在输出电压含有较多的谐波、输入功率因数低、控制部分复杂、中间直流大电容造成的调压惯性大相应缓慢等缺点,随着PMW技术的出现可控整流在交直交变频器中已经被淘汰。不可控整流是目前交直交变频器的主流形式,它有2种构成形式,6支整流二极管或6支晶闸管组成三相整流桥。 图2 6支二极管构成的三相桥式整流电路 由6支二极管构成的三相桥式整流电路,交流侧有控制主回路通断的接触器。 图3 6支晶闸管构成的三相桥式整流电路 由6支晶闸管构成的三相桥式整流电路,晶闸管只用于控制通断不控制直流电压的大小。 3.2 滤波单元 滤波单元主要采用大电容滤波,直流电压波形比较平直,在理想情况下是一种内阻抗为零的恒压源,输出交流电压是矩形波或阶梯波,这是电压型变频器的一个主要特征。

变频器原理与维修

变频器原理与维修 一、变频器原理介绍 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装臵。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。 整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM 波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型; 如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。 对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装臵时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加 二、变频器常见故障的分析与处理 1 变频器参数设臵类故障 在使用过程中变频器能否满足用户系统的要求,其参数设臵非常重要,如果参数设臵不

正确,变频器便不能正常工作。 1.1 变频器的参数设臵 生产厂在进行变频器出厂调试时,对变频器的每一个参数都设有一个默认值,这些默认参数值一般被称作工厂值。当用户使用的变频器是在这些参数值下工作时,则用户能以面板操作方式使变频器正常运行。但是,实际情况往往是面板操作并不能完全满足大多数用户传动系统的要求。所以,用户在正确使用变频器之前,必须要对变频器参数的默认值进行如下几个方面的辨识和重新设臵: 1)确认电机的功率、电流、电压、转速、最大频率等参数(这些参数可以从电机铭牌中查得)是否与默认值相符,如果不符时则要对默认值进行重新设臵; 2)确认变频器采取的控制方式(即速度控制、转矩控制、PID 控制或其他控制方式)后,一般还需要根据控制精度进行静态或动态辨识; 3)设定变频器的启动方式,一般变频器在出厂调试时设定为面板启动,用户可以根据实际情况选择自己的启动方式,可以用面板、外部端子、通讯等方式; 4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定等,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式的综和。 当正确设臵以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。 1.2 变频器参数设臵类故障的处理 一旦发生了参数设臵类故障时,变频器都不能正常运行,这时可根据产品说明书对参数设臵进行修改。如果修改后仍不行,则最好是把所有参数恢复到出厂值,然后按上述步骤重新设臵,注意每一个公司的变频器其参数恢复方式也不尽相同。 2 过电压故障及处理

电脑电源接口详解(图解)

电脑主板电源接口图解 计算机的ATX电源脱离主板是需要短接一下20芯接头上的绿色(power on)和黑色(地)才能启动的。启动后把万用表拨到主流电压20V档位,把黑表笔插入4芯D型插头的黑色接线孔中,用红表笔分别测量各个端子的电压。上列的是20芯接头的端子电压,4芯D型插头的电压是黄色+12V,黑色地,红色+5V。 主板电源接口图解 20-PIN ATX主板电源接口 4-PIN“D”型电源接口

主板20针电源插口及电压:在主板上看: 编号输出电压编号输出电压 1 3.3V 11 3.3V 2 3.3V 12 -12V 3 地13 地 4 5V 14 PS-ON 5 地15 地 6 5V 16 地 7 地17 地 8 PW+OK 18 -5V 9 5V-SB 19 5V 10 12V 20 5V 在电源上看: 编号输出电压编号输出电压20 5V 10 12V

19 5V 9 5V-SB 18 -5V 8 PW+OK 17 地7 地 16 地 6 5V 15 地 5 地 14 PS-ON 4 5V 13 地 3 地 12 -12V 2 3.3V 11 3.3V 1 3.3V 可用万用电表分别测量。 另附:24 PIN ATX电源电压对照表 X电源几组输出电压的用途 +3.3V:最早在ATX结构中提出,现在基本上所有的新款电源都设有这一路输出。而在AT/PSII电源上没有这一路输出。以前电源供应的最低电压为+5V,提供给主板、CPU、内存、各种板卡等,从第二代奔腾芯片开始,由于CPU的运算速度越来越快,INTEL公司为了降低能耗,把CPU的电压降到了 3.3V

图解主板的供电原理(电脑维修必备)

现在的大多数主板的供电都使用PWM(Pulse Width Modul ati on 脉冲带宽调制)方法进行,主要是由MOSFET管、PWM芯片、扼流线圈和滤波电容等部分完成。 图1.浩鑫MN31主机板的电源部分,PWM芯片位于左边输入线圈的左部(见下图) 图2.电源管理芯片RT9241,可以精确的平衡各相电流,以维持功率组件的热均衡 PWM方法是通过开关和反馈控制环及滤波电路将输入电压调制为所设定之电压输出的,开关一般用MOSFET管,而滤波电路一般用LC电路,控制电路用的是PWM IC。

那么电源控制IC是如何控制CPU工作电压的?在主板启动时,主板BIOS将CPU所提供的VID0-VID3信号送到PWM芯片的D0-D3端,如果主板BIOS具有可设定CPU 电压的功能,主板会按时设定的电压与VID的对应关系产生新的VID信号并送到PWM芯片,PWM根据VID的设定并通过DAC电压将其转换为基准电压,再经过场效应管轮流导通和关闭,将能量通过电感线圈送到CPU,最后再经过调节电路使用输出电压与设定电压值相当。 目前绝大多数主板将5V或12V电压降到1.05~1.825V或1.30/1.80~3.5V都使用PWM方法,PWM方法是通过开关和反馈控制环及滤波电路将输入电压调制为所设定之电压输出的,开关一般用MOSFET管,而滤波电路一般用LC电路,控制电路都用PWM IC,下面对组成元件作一说明: 1.MOSFET管(Metallic Oxide Semiconductor Field Effect Tran sis tor 金属-氧化物-半导体场效应晶体管,简称为MOSFET管) 目前应用的较多的是以二氧化硅为绝缘层的栅型场效应管。MOSFET有增强型和耗尽型两种,每一种又有N沟道和P沟道之分。以N沟道增强型MOSFET为例,它是以P行硅为衬底,在衬底一侧(称为衬底表面)上用杂质扩散的方法形成两个高掺杂的N+区,分别作为源极(S)和漏极(D)。再在硅衬底表面生成一层很薄(几十纳米)的二氧化硅(SiO2)绝缘层,SiO2的上面则是一层金属铝,由此因出栅极(G)。显然,栅极与其他两个电极是相互绝缘的,故称为绝缘栅极。另外,在衬底的另一侧也引出一个电极,称为衬底电极(B),衬底电极一般与源极相连。这种绝缘栅FET具有从上到下的金属(铝)-氧化物(二氧化硅)-半导体(衬底)(Metal-Oxide-Semiconductor)三层结构,所以称之为MOSFET。从MOSFET的结构可以得知:那个黑色的小方块仅仅是个跟电阻,电容,电感等同级的电子元件,绝对不是集成块 绝对不是集成块! 绝对不是集成块 图3.N沟道MOSFET结构示意图

主板内存供电电路维修详解

主板内存供电电路维修 详解 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

主板内存供电电路维修详解 今天写的这例故障十分普遍,修理过程也比较简单,所以拍了一些照片上来简述一下!希望大家能够看明白!今天下午盱眙高达电脑维修公司接到了一块SOLTEK 845PE 主板,故障现象是不能点亮,伴随着蜂鸣器长鸣报警!从报警声得知故障是内存部分,但客户已经更换过其它内存试过,情况还是一样,就此可以判断故障原因是北桥与内存槽的连接线路零件或内存供电问题。 从下图中测试卡显示结果也证明了是不能正确检测到内存。主板测试显示内存部分有问题。 首先检查内存的第七脚供电电压是否是标准的DDR 供电,看下图:内存供电脚,内存左面左数第七脚。 从万用表的读书可以看出,内存供电电压只有左右。离DDR的标准电压相差甚大! 知道具体原因就好办了,顺着内存插槽的第7脚跟着线路找到了内存供电MOS 管,汗一下!!居然在AGP槽尾部下面,傍边还有两个小电解电容!这样就增加了更换难度!为了避免伤及傍边的零件及AGP槽,唯有先拆下电容再用风枪底部辅助加热,上面用电烙铁拆下!(拆下的经过因为双手进行,没有第三只手拍照了) 从该主板上拆下的MOS可以看到已经烧了一个白色的圈!准备装上一个代用的3055 MOS 管! 安装过程也是双手进行,也没有第三只手拍照!下图是装好并清理干净PCB后的效果!除了焊锡比较新外可以说和原装没有任何分别! 装好MOS管后可以试机了,装上内存等必要部件,通电!看下图测量结果:

重新测量内存供电电压,已经恢复到DDR需要的电压。 再装上显卡,可以点亮了~!测试卡的走数也跑到了下一步了!屏幕也出现了自检信息! 还以为全部问题解决了!谁知道还有问题,CMOS不 能保存(电子电压正常)!再经过检查,一直通电的 情况下没问题,拔下电源立刻清零了!从现象来看肯 定是备用电子切换电路问题,很容易就查到了是一只 三极管开路了!换上立刻正常!

主板各部件-零件详解(图解)

一、主板图解 一块主板主要由线路板和它上面的各种元器件组成 1.线路板 PCB印制电路板是所有电脑板卡所不可或缺的东东。它实际是由几层树脂材料粘合在一起的,内部采用铜箔走线。一般的PCB线路板分有四层,最上和最下的两层是信号层,中间两层是接地层和电源层,将接地和电源层放在中间,这样便可容易地对信号线作出修正。而一些要求较高的主板的线路板可达到6-8层或更多。 主板(线路板)是如何制造出来的呢?PCB的制造过程由玻璃环氧树脂(GlassEpoxy)或类似材质制成的PCB“基板”开始。制作的第一步是光绘出零件间联机的布线,其方法是采用负片转印(Subtractivetransfer)的方式将设计好的PCB线路板的线路底片“印刷”在金属导体上。 这项技巧是将整个表面铺上一层薄薄的铜箔,并且把多余的部份给消除。而如果制作的是双面板,那么PCB的基板两面都会铺上铜箔。而要做多层板可将做好的两块双面板用特制的粘合剂“压合”起来就行了。 接下来,便可在PCB板上进行接插元器件所需的钻孔与电镀了。在根据钻孔需求由机器设备钻孔之后,孔璧里头必须经过电镀(镀通孔技术,Plated-Through-Hole technology,PTH)。在孔璧内部作金属处理后,可以让内部的各层线路能够彼此连接。 在开始电镀之前,必须先清掉孔内的杂物。这是因为树脂环氧物在加热后会产生一些化学变化,而它会覆盖住内部PCB层,所以要先清掉。清除与电镀动作都会在化学过程中完成。接下来,需要将阻焊漆(阻焊油墨)覆盖在最外层的布线上,这样一来布线就不会接触到电镀部份了。

然后是将各种元器件标示网印在线路板上,以标示各零件的位置,它不能够覆盖在任何布线或是金手指上,不然可能会减低可焊性或是电流连接的稳定性。此外,如果有金属连接部位,这时“金手指”部份通常会镀上金,这样在插入扩充槽时,才能确保高品质的电流连接。 最后,就是测试了。测试PCB是否有短路或是断路的状况,可以使用光学或电子方式测试。光学方式采用扫描以找出各层的缺陷,电子测试则通常用飞针探测仪(Flying-Probe)来检查所有连接。电子测试在寻找短路或断路比较准确,不过光学测试可以更容易侦测到导体间不正确空隙的问题。 线路板基板做好后,一块成品的主板就是在PCB基板上根据需要装备上大大小小的各种元器件—先用SMT自动贴片机将IC芯片和贴片元件“焊接上去,再手工接插一些机器干不了的活,通过波峰/回流焊接工艺将这些插接元器件牢牢固定在PCB上,于是一块主板就生产出来了。 另外,线路板要想在电脑上做主板使用,还需制成不同的板型。其中AT板型是一种最基本板型,其特点是结构简单、价格低廉,其标准尺寸为33.2cmX30.48cm,AT主板需与AT机箱电源等相搭配使用,现已被淘汰。而A TX板型则像一块横置的大AT板,这样便于ATX 机箱的风扇对CPU进行散热,而且板上的很多外部端口都被集成在主板上,并不像AT板上的许多COM口、打印口都要依靠连线才能输出。另外ATX还有一种MicroATX小板型,它最多可支持4个扩充槽,减少了尺寸,降低了电耗与成本。

电脑主板各个电路检修方法

主板维修思路 首先主板的维修原则是先简后繁,先软后硬,先局部后具体到某元器件。 一.常用的维修方法: 1.询问法:询问用户主板在出现故障前的状况以及所工作的状态询问是由什么原因造成的故障询问故障主板工作在何种环境中等等。 2.目测法:接到用户的主板后,一定要用目测法观察主板上的电容是否有鼓包、漏液或严重损坏,是否有被烧焦的芯片及电子元器件,以及少电子元器件或者PCB板断线等。还有各插槽有无明显损坏。3.电阻测量法:也叫对地测量阻值法。可以用测量阴值大小的方法来大致判断芯片以及电子元器件的好坏,以及判断电路的严重短路和断路的情况。如:用二极管档测量晶体管是否有严重短路、断路情况来判断其好坏,或者对ISA插槽对地的阻值来判断南桥好坏情况等。 4.电压测量法:主要是通过测量电压,然后与正常主板的测试点比较,找出有差异的测试点,最后顺着测试点的线路(跑电路)最终找到出故障的元件,更换元件。 二.主板维修的步骤: 1.首先用电阻测量法,测量电源、接口的5V、12V、等对地电阻,如果没有对地短路,再进行下一步的工作。 * 2.加电(接上电源接口,然后按POWER开关)看是否能开机,若不能开机,修开机电路,若能开机再进行下一步工作。 3.测试CPU主供电、核心电压、只要CPU主供电不超过,就可以加CPU(前提是目测时主板上没有电容鼓包、漏液),同时把主板上外频和倍频跳线跳好(最好看一下CMOS),看看CPU是否能工作到C,或者D3(C1或D3为测试卡代码,表示CPU已经工作),如果不工作进行下一步。 4.暂时把CPU取下,加上假负载,严格按照资料上的测试点,测试各项供电是否正常。 如:核心电压,和PG的及SLOT1的等,如正常再进行下一小工作。 5.根据资料上的测试点测试时钟输出是否正常,时钟输出为,如正常进行下一步。 6.看测试卡上的RESET灯是否正常(正常时为开机瞬间,灯会闪一下,然后熄灭,当我们短接RESET 跳线时,灯会随着短接次数一闪一闪,如灯常亮或者常来均为无复位。),如果复位正常再进行下一步。 7.首先测BIOS的CS片选信号(为CPU第一指令选中信号),低电平有效,然后测试BIOS的CE信号(此信号表示BIOS把数据放在系统总线上)低电平有效。 8.若以上步骤后还不工作,首先目测主板是否有断线,然后进行BIOS程序的刷新,检查CPU插座接触是否良好。 9.若以上步骤依然不管用,只能用最小系统法检修。步骤为:更换I/O南桥北桥

主板供电全解析

主板供电全解析 首先来认识一下CPU供电电路的器件,找一片技嘉X48做例子。 上图中我们圈出了一些关键部件,分别是PWM控制器芯片(PWM Controller)、MOSFET驱动芯片(MOSFET Driver)、每相的MOSFET、每相的扼流圈(Choke)、输出滤波的电解电容(Electrolytic Capacitors)、输入滤波的电解电容和起保护作用的扼流圈等。下面我们分开来看。

(图)PWM控制器(PWM Controller IC) 在CPU插座附近能找到控制CPU供电电路的中枢神经,就是这颗PWM主控芯片。主控芯片受VID的控制,向每相的驱动芯片输送PWM的方波信号来控制最终核心电压Vcore的产生。 MOSFET驱动芯片(MOSFET Driver) MOSFET驱动芯片(MOSFET Driver)。在CPU供电电路里常见的这个8根引脚的小芯片,通常是每相配备一颗。每相中的驱动芯片受到PWM主控芯片的控制,轮流驱动上桥和下桥 MOS管。很多PWM控制芯片里集成了三相的Driver,这时主板上就看不到独立的驱动芯片了。

早一点的主板常见到这种14根引脚的驱动芯片,它每一颗负责接收PWM控制芯片传来的两相驱动信号,并驱动两相的MOSFET的开关。换句话说它相当于两个8脚驱动芯片,每两相电路用一个这样的驱动芯片。 MOSFET,中文名称是场效应管,一般被叫做MOS管。这个黑色方块在供电电路里表现为受到栅极电压控制的开关。每相的上桥和下桥轮番导通,对这一相的输出扼流圈进行充电和放电,就在输出端得到一个稳定的电压。每相电路都要有上桥和下桥,所以每相至少有两颗MOSFET,而上桥和下桥都可以用并联两三颗代

新手入门--变频器电路原理分析

新手入门--变频器电路原理分析(分享) 要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动!变频器维修入门--电路分析图对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。 1)驱动电路 驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。 对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。有些品牌、型号的变频器直接采用专用驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。

驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。 2)保护电路 当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。 在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,内部都具有保护功能。 图2.4所示的电路是较典型的过流检测保护电路。由电流取样、信号隔离放大、信号放大输出三部分组成。

电脑主板CPU供电电路原理图解

电脑主板CPU供电电路原理图解 一.多相供电模块的优点 1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。 2.可以降低供电电路的温度。因为多了一路分流,每个器件的发热量就减少了。3.利用多相供电获得的核心电压信号也比两相的来得稳定。一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。 二.完整的单相供电模块的相关知识 该模块是由输入、输出和控制三部分组成。输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。 图1单相供电电路图 主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。所以各大主板厂商都采用多相供电回路。多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。 小知识 场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其应用比较广泛,可以放大、恒流,也可以用作可变电阻。 PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。 实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。

图2 主板上的电感线圈和场效应管 了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。 三.判断方法 1.一个电感线圈、两个场效应管和一个电容构成一相电路。 这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的个数无关。这是因为在主板供电电路中电容很富裕,所以,一个电感加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场效应管;三相供电回路则是三个电感加上六个场效应管。依次类推,N相也就是N个电感加上2N个场效应管。当然这里说的是最标准的供电系统,对一些加强的供电系统的辨认就需要大家多多积累了。

#电脑主板供电电路原理图解

电脑主板供电电路原理图解 一、多相供电模块的优点: 1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。 2.可以降低供电电路的温度。因为多了一路分流,每个器件的发热量就减少了。 3.利用多相供电获得的核心电压信号也比两相的来得稳定。一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。 二、完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。 图1单相供电电路图 主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。所以各大主板厂商都采用多相供电回路。多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。 小知识: 场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其使用比较广泛,可以放大、恒流,也可以用作可变电阻。 PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。 实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。

图2主板上的电感线圈和场效应管 了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。 三、判断方法: 1.一个电感线圈、两个场效应管和一个电容构成一相电路。 这是最标准的供电系统,很多人认为:判定供电回路的相数和电容的个数无关。这是因为在主板供电电路中电容很富裕,所以,一个电感加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场效应管;三相供电回路则是三个电感加上六个场效应管。依次类推,N相也就是N个电感加上2N个场效应管。当然这里说的是最标准的供电系统,对一些加强的供电系统的辨认就需要大家多多积累了。

相关文档
最新文档