五连杆机构
旋转运动转直线运动的机构

旋转运动转直线运动的机构一、引言在机械工程中,我们常常需要将旋转运动转化为直线运动,以实现特定的功能。
为此,工程师们设计了各种机构,通过合理的构造和运动传递,将转动的运动转换为直线运动。
本文将介绍一些常见的旋转运动转直线运动的机构及其工作原理。
二、齿轮传动机构齿轮传动是最常见的将旋转运动转换为直线运动的机构之一。
它由两个或多个齿轮组成,通过齿轮的啮合来传递力和运动。
在齿轮传动中,一个齿轮的旋转运动将传递到另一个齿轮上,从而实现直线运动。
三、滚珠丝杠机构滚珠丝杠机构是一种常用的将旋转运动转换为直线运动的机构。
它由一个螺杆和一个带有滚珠的螺母组成。
当螺杆旋转时,滚珠将在螺母内滚动,从而使螺母沿螺杆轴线方向进行直线运动。
四、曲柄滑块机构曲柄滑块机构是一种常见的将旋转运动转换为直线运动的机构。
它由一个旋转的曲柄和一个滑块组成。
当曲柄旋转时,滑块将沿着固定的轨道进行直线运动。
曲柄滑块机构常用于发动机中的活塞运动传递。
五、连杆机构连杆机构是一种将旋转运动转换为直线运动的机构。
它由一个旋转的连杆和一个滑块组成。
当连杆旋转时,滑块将沿着固定的轨道进行直线运动。
连杆机构常用于工业机械中的运动传递和运动控制。
六、凸轮机构凸轮机构是一种将旋转运动转换为直线运动的机构。
它由一个旋转的凸轮和一个滑块组成。
当凸轮旋转时,滑块将沿着凸轮轮廓进行直线运动。
凸轮机构常用于自动机械中的运动控制和执行。
七、蜗杆机构蜗杆机构是一种将旋转运动转换为直线运动的机构。
它由一个旋转的蜗杆和一个带有蜗轮的齿轮组成。
当蜗杆旋转时,蜗轮将在齿轮上滚动,从而使齿轮沿直线方向进行运动。
蜗杆机构常用于工程机械中的传动和减速装置。
八、结论通过合理的设计和选择机构,我们可以将旋转运动转换为直线运动,以满足不同的工程需求。
齿轮传动、滚珠丝杠、曲柄滑块、连杆、凸轮和蜗杆机构都是常见的实现这一目标的机构。
在实际应用中,我们应根据具体需求选择合适的机构,并注意机构的耐久性、精度和效率等方面的考虑。
ZBS-C机构运动创新设计方案实验台-Read

机构运动创新设计实验一、实验目的:1、培养学生对机械系统运动方案的整体认识,加强学生的工程实践背景的训练,拓宽学生的知识面,培养学生的创新意识、综合设计及工程实践动手能力。
2、通过机构的拼接,在培养工程实践动手能力的同时,可以发现一些基本机构及机械设计中的典型问题,通过解决问题,可以对运动方案设计中的一些基本知识点融会贯通,对机构系统的运动特性有一个更全面的理解。
3、加深学生对平面机构的组成原理、结构组成的认识,了解平面机构组成及运动特性,进一步掌握机构运动方案构型的各种创新设计方法。
二、实验设备及工具:1、创新组合模型一套,包括组成机构的各种运动副、构件、动力源及一套实验工具。
设备名称:ZBS-C 机构运动创新设计方案实验台,实验台组件清单如下:ZBS-C机构运动创新方案设计实验台组件清单1)齿轮:模数2,压力角20°,齿数为28、35、42、56,单级齿轮传动可实现四种基本传动比,中心距组合为:63、70、77、84、91、98;2)凸轮:基圆半径20㎜,升回型,从动件行程为30㎜;从动件采用对心滚子从动件;为保证凸轮和从动件始终保持接触,还提供了弹簧使其产生力锁合。
3)齿条:模数2,压力角20°,单根齿条全长为400㎜;4)槽轮:4槽槽轮;4工位;5)拨盘:可形成两销拨盘或单销拨盘;6)主动轴:轴端带有一平键,有圆头和扁头两种结构型式(可构成回转或移动副);7)从动轴:轴端无平键,有圆头和扁头两种结构型式(可构成回转副或移动副);8)转动副轴(或滑块):用于两构件形成转动副或移动副;9)复合铰链Ⅰ(或滑块):用于三构件形成复合转动副或形成转动副+移动副;10)复合铰链Ⅱ(或滑块):用于四构件形成复合转动副;11)主动滑块插件:插入主动滑块座孔中,使主动运动为往复直线运动;12)主动滑块座:装入直线电机齿条轴上形成往复直线运动;13)活动铰链座Ⅰ:用于在滑块导向杆(或连杆)以及连杆的任意位置形成转动-移动副;14)活动铰链座Ⅱ:用于在滑块导向杆(或连杆)以及连杆的任意位置形成转动副或移动副。
5连杆机构运动分析

机械原理(苗老师)
结论:当已知一构件上两点的速度时,则该构件上的其他 任一点的速度便可利用速度影像与构件图形相似的原理求 出。
注意点: 相对速度方向垂直于机构位置图上与之对应的两点连
线, 这是就同一构件上两点而言的,不能用于机构不同构 件上的各点。
ω
C
α
A
VBA
B aA
VA
ω2
B
2
1
ω1
α1
C
E 3 ω3
机械原理(苗老师)
2.速度瞬心分类 (1) 绝对瞬心
若两构件之一是静止的,称瞬心其为绝对瞬心 因此绝对瞬心是构件上瞬时绝对速度为零的的一点 (2) 相对瞬心 如果两构件都是运动的称其瞬心为相对瞬心 相对瞬心是两构件上具有同一瞬时绝对速度的重合点 3.表示法:构件i和构件j的瞬心一般用符号Pij或Pji 4.机构瞬心的数目
ω1/ω3为该机构的原动件1与从动件3的瞬时角速度之比
ω1/ω3=LP34P13 / LP14P13
VP13
机械原理(苗老师) P24
P14 A
P23 C B
2
1 P12
3
4 P34
D
上式表明两构件的角速度与其绝对速度瞬心至相对速度瞬 心的距离成反比。两个角速度的方向相同。应用该方法,也 可以求得该机构其他任意两构件得角速度比的大小和角速度 的方向
K
其瞬心位于过接触点的共法线n-n上
n1
n 2
VK1K2
机械原理(苗老师)
3、由“三心定理”确定机构的瞬心
(1)适用范围:当机构中不互相直接联接的各构件之间的瞬心
,用前面的方法往往不易确定。在这种情况下,均可应用“三 心定理”
(2)定理的叙述“作平面运动的三个构件有三个瞬心,它们
机械原理 连杆机构

H (a b) 2 e 2 (b a ) 2 e 2
0
,有急回特性。 1 B
A
1
有急回特性。
B1
2
B2
三.平面四杆机构的传动角与死点
(一)压力角与传动角 在不计摩擦力、重力、惯性力的条件下,机构 压力角: 中驱使输出件运动的力的方向线与输出件上受 力点的速度方向线所夹的锐角。 F F cos 1 F2 传动角:压力角的余角。 F F2 F sin C 越小,受力越好。 2 B F1v 越大,受力越好。 c 1 1 3 C min A vB D 4 B
3 以最短杆的对边构件为机架,则此机构为双摇杆机构。
(2)如果最短杆与最长杆的长度之和大于其它两杆长度之和 (不满足杆长和条件),则不论选哪个构件为机架, 都为双摇杆机构。
2.滑块机构有曲柄的条件
B 1 a
A
4 2 b C3
B2
B2 2 b C 3 4
B1
1
b
a a
1
E
D
A
a
F G
b
B2
A
(<360°) 1
(0~360°)
(0~360°)
A
(<360°) D
4 双曲柄机构
D
4 双摇杆机构
B 1 A
B
2
4
2
C 3 1 A
4
C 3
(a)曲柄滑块机构
B 1 A
(b)曲柄转动导杆机构
B
回转导杆机 构
2 4
C 3 A1
2 4
(c)曲柄摇块机构
B
1 A
二自由度五连杆机构的瞬心

二自由度五连杆机构的瞬心摘要:一、引言二、二自由度五连杆机构的定义和特点三、瞬心的概念和作用四、二自由度五连杆机构瞬心的求解方法五、实例分析六、瞬心在二自由度五连杆机构中的应用七、结论正文:一、引言在机械工程领域,二自由度五连杆机构是一种常见的传动机构,广泛应用于各种机械设备中。
瞬心是机构动力学和运动学的重要研究对象,对于理解和优化机构性能具有重要意义。
本文将探讨二自由度五连杆机构的瞬心,分析其求解方法及在机构中的应用。
二、二自由度五连杆机构的定义和特点二自由度五连杆机构是指具有两个自由度的五杆传动机构,通常包括一个驱动杆、一个从动杆和三个固定杆。
其主要特点是可以在两个方向上实现运动传递,并且在某些条件下可以实现自锁。
三、瞬心的概念和作用瞬心是指在某一瞬间,机构中两个相对运动的构件之间的接触点。
在瞬心处,两个构件的相对速度为零,作用力矩相互抵消。
瞬心的作用主要体现在以下几点:1.瞬心可以改变机构的速度传递特性,使得机构在某些位置具有较大的速度增益或减益;2.瞬心可以影响机构的力传递特性,改变作用在从动件上的力矩;3.瞬心有助于分析和优化机构的动态性能,如降低振动、减小冲击等。
四、二自由度五连杆机构瞬心的求解方法求解二自由度五连杆机构瞬心的方法主要包括以下几个步骤:1.建立机构的运动学模型,确定各杆的长度和相对位置;2.分析机构的运动过程,确定驱动杆和从动杆的运动规律;3.利用瞬心的定义,找出在某一瞬间驱动杆和从动杆之间的接触点;4.计算瞬心处的速度和力矩,分析其对机构性能的影响。
五、实例分析以一个具体的二自由度五连杆机构为例,通过求解瞬心来分析其性能。
假设机构参数如下:驱动杆长度为l1,从动杆长度为l2,固定杆长度分别为l3、l4和l5,驱动杆与从动杆之间的夹角为θ。
六、瞬心在二自由度五连杆机构中的应用通过分析瞬心,可以实现以下目的:1.优化机构的速度和力传递特性,提高传动效率;2.降低机构的振动和冲击,提高运动平稳性;3.调整机构的输出特性,满足不同工况需求。
机械设计常用机构

相互转动来实现运动和 柱齿轮的轮齿在轴线上
动力的传递。
倾斜排列,锥齿圆柱齿
轮的轮齿在一个锥面上
排列。
在圆锥齿轮机构中,两 个圆锥齿轮的轮齿在一 个锥面上排列,通过啮 合实现相交轴之间的运 动和动力传递。
在蜗轮蜗杆机构中,蜗 在平面齿轮机构中,直
杆的轮齿在蜗杆面上呈 齿平面齿轮的轮齿在一
螺旋状排列,蜗轮的轮 个平面上垂直排列,斜
用于传递垂直轴之间的运动和动 力,其传动比大、结构紧凑。
平面齿轮机构
用于传递两个平面之间的运动和 动力,其传动形式包括直齿、斜
齿和曲齿等。
齿轮机构的工作原理
01
02
03
04
05
齿轮机构的工作原理基 在圆柱齿轮机构中,直
于齿轮之间的啮合关系, 齿圆柱齿轮的轮齿在轴
通过一对或多个齿轮的 线上垂直排列,斜齿圆
圆锥凸轮机构
凸轮呈圆锥状,常用于需要较小接触面积的场 合。
凸轮机构的工作原理
01
凸轮机构通过凸轮的转动,使从动件产生预期 的运动规律。
02
凸轮的形状决定了从动件的运动轨迹,从而实 现各种复杂的运动要求。
03
当凸轮转动时,从动件在垂直于凸轮轴线的平 面内作往复运动。
凸轮机构的应用
自动化生产线
用于传递和改变运动轨 迹,实现自动化生产。
棘轮机构的工作原理
01
当主动件顺时针转动时 ,棘爪便随主动件一起 顺时针转动,并推动棘
轮逆时针转动。
02
当主动件逆时针转动时 ,棘爪便被压下,无法 与棘轮齿啮合,因此棘
轮不会转动。
03
棘轮机构的运动方向取 决于主动件的转动方向
。
棘轮机构的应用
绪论、平面机构的运动简图及自由度计算

30
§2 平面机构运动简图
一、机构运动简图
不考虑与运动无关的构件外形和运动副具体 结构;
只考虑与运动有关的运动副的类型和构件的 运动尺寸,用简单的线条、规定的符号表示构 件和运动副,按比例定出运动副的位置而画出 的简图。
11
3. 机器与机构的区别 (1)机构是一个构件系统,机器除了构件系统外还包
括电气、液压等装置。 (2)机构只用于传递运动和力,而机器除了传递运动
和力外,还应当具有变换和传递能量、物料、信 息的功能。 4. 在研究构件的运动和受力情况时,机器与机构之 间并无区别(都是进行运动的传递与变换),因
此,习惯上用“机械”作为机器和机构的总称。
3. F 34 26 0
F 0,机构(超)静定
C 3
2 C'
D' D
B
1
1
4 4
A
5
E
43
五连杆机构:不确定运动
44
五连杆机构:具有确定运动
45
F≤0,构件间无相对运动,不成为机构。 原动件数=F,运动确定
F>0, 原动件数<F,运动不确定 原动件数>F,机构破坏
机构具有确定运动的条件: F > 0,且 F = 原动件数
41
二、平面机构自由度计算公式
设平面机构有: n个活动构件
3n个自由度
PL个平面低副
引入2 PL个约束
PH 个平面高副
引入 PH个约束
该平面机构自由度: F 3n 2PL PH
例
n 3,PL 4,PH 0
F 3n 2PL PH 33 2 4 0 1
空间连杆机构

空间连杆机构一、引言空间连杆机构是一种广泛应用于机械工程、航空航天等领域的机构形式。
它是由多个杆件通过旋转关节连接而成,形成一个可以在三维空间内运动的机构系统。
空间连杆机构具有灵活性、可变形性以及高度的运动精度等特点,被广泛应用于机械设计中。
本文将对空间连杆机构进行详细介绍。
二、基本构成及工作原理空间连杆机构由多个连接在一起的杆件组成,每个杆件通过旋转关节连接。
在这种机构中,杆件可以绕旋转关节进行旋转运动,从而实现机构的整体运动。
通过在不同的角度、长度和位置上配置杆件,可以实现各种不同的运动轨迹和工作方式。
三、常见的空间连杆机构形式1. 平面机构:平面机构是一种特殊的空间连杆机构,其所有杆件都在同一平面内运动。
平面机构常见的形式有四杆机构、五杆机构等。
这些机构具有简单的结构和明确的运动规律,被广泛应用于工程设计中。
2. 程序机构:程序机构是一种特殊的空间连杆机构,其杆件的运动需要依赖外部的输入信号来控制。
通过控制程序机构的输入信号,可以实现机构的精确控制和复杂的运动模式。
程序机构常见的形式有伺服机构、步进机构等。
3. 平行机构:平行机构是一种特殊的空间连杆机构,其特点是杆件之间具有并联的关系,可以实现杆件的平行运动。
平行机构常见的形式有平行连杆机构、平行柱机构等。
这些机构具有高刚度、高运动精度和高负载能力的特点,被广泛应用于航空航天等领域。
四、应用领域空间连杆机构在机械工程领域有着广泛的应用。
它们常被用于传输力、作为控制链接、用于转换运动方向和比例,以及实现复杂的运动轨迹。
空间连杆机构在航空航天、汽车制造、机器人等领域也有着重要的地位。
具体应用包括飞机机翼的支撑系统、汽车悬挂系统、机器人的运动系统等。
五、空间连杆机构的设计与优化在设计空间连杆机构时,需要考虑多个因素,如运动要求、结构强度、运动精度等。
同时,为了提高机构的性能,也可以通过优化控制算法、材料选择和结构设计等手段进行优化。
在优化过程中,需要考虑多种因素的权衡,以达到最佳的性能指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•车用5连杆后悬架机构简介
• 2009-3-4 文章来源:太平洋汽车网浏览量:471 作者:太平洋汽…
•关键字: 避震器悬架
5连杆后悬架是本田轿车的特有技术,全称是5连杆双叉型独立悬架系统。
由于广州本田也采用这种悬架,具有优良的平顺性和舒适性,因此受到广泛的欢迎。
顾名思义,这种后悬架含5条连杆,分别是控制臂(1)、后置定位臂(2)、上臂(3)、下臂(4)、前置定位臂(5),其中控制臂可以调整后轮前束,布置方式见图示。
5连杆后悬架的优点是构造简单,重量比较轻,并减少了悬挂系统所占用的空间。
该种悬架从1997年才开始应用。
5连杆后悬架能实现主销后倾角的最佳位置,大幅度减少路面来的前后方向力,从而改善加速和制动时的平顺性和舒适性。
同时也保证直线行驶性,因为通过螺旋弹簧悬挂拉伸或压缩而使车轮横向偏移的量值很小,不易造成两侧后轴车轮相对车纵轴线距离不均等而产生非直线行驶现象。
当车辆在转弯或制动时,采用五连杆后悬挂结构可使后轮形成正前束,改善了车辆的控制性能及跟踪能力,减少了转向不足的现象。
转向时,由于上、下臂及控制臂与纵向车轴线平行分布,并且车轮中心至控制臂的间距比车轮中心至下臂的大,使下臂衬套有较大的位移量,从而在转向时获得正前束。
制动时,由于前置定位臂和后置定位臂斜向布置,制动冲击力只会令其前束增大,控制臂不易产生位移,因此也保证了正前束。
5连杆后悬架结构紧凑,车轮占用车身面积比较少,使轿车后面空间可以安排大一些,将后排座椅和行李箱的空间增大。
由于5连杆后悬架的优点
比较显著,也容易调整,因此乘坐装置这种悬架的车辆感到比较平顺舒适。