机械优化设计课后习题答案
机械优化设计课后习题答案

6 0 海赛矩阵H ( X ) 0 4
a 各阶主子式: a11 6 0,11 a 21 a12 a 22 6 0 0 0 4
H(X)是正定的,所以, f (X) 为凸函数。
得:极值点 X* [1/ 3 1/ 4]T ,极值f ( x* ) 229/ 24
X( k ) ( k )S( k ) 的几何意义。
2-2 已知两向量 P 1 [1 2
2 0]T , P 2 1]T ,求该两向量之间的夹角 。 2 [2 0
2-3 求四维空间内两点 (1,3,1,2) 和 (2,6,5,0) 之间的距离。 2-4 计 算 二 元 函 数 f (X) x13 x1 x22 5x1 6 在 X(0) [1 1]T 处 , 沿 方 向
x1 d 根据该优化问题给定的条件与要求,取设计变量为 X = x2 D2 ; n x3
(2)建立数学模型的目标函数; 取弹簧重量为目标函数,即:
1
f(X) =
2
4
rx1 x2 x3
2
(3)本问题的最优化设计数学模型: min s.t. f (X) =
2
4
rx1 x2 x3
2
X∈R
3·
g1(X) =0.5-x1 ≤0 g2(X) =10-x2 ≤0 g3(X) =x2-50 ≤0 g4(X) =3-x3 ≤0 g5(X) = (1
x1 8Fx2 ) ≤0 2 x2 x13
3
8Fx2 x3 g6(X) = ≤0 4 Gx1
求:
2、 3、 4 时的四条等值线,并在图上 (1) 以一定的比例尺画出当目标函数依次为 f ( X) 1、
机械优化设计试题及答案

机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。
2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。
#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。
如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。
2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。
若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。
#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。
(完整版)机械优化设计习题参考答案孙靖民第四版机械优化设计

2.黄金分割法(0.618法)
原理:提高搜索效率:1)每次只插一个值,利用一个前次的插值;2)每次的缩短率λ相同。左右对称。
程序:p52
(四)插值方法
1.抛物线法
原理:任意插3点:
算得: ; ;
要求:
设函数 用经过3点的抛物线 代替,有
解线代数方程
解得:
程序框图p57
网格法 ,缩小区间,继续搜索。
Monte Carlo方法 , ,随机数。
比较各次得到的 得解
遗传算法(专题)
(二)区间消去法(凸函数)
1.搜索区间的确定:高—低--高( )则区间内有极值。
2.区间消去法原理:在区间[a, b]内插两个点a1, b1保留有极值点区间,消去多余区间。
缩短率:
(三)0.618法
可行方向—约束允许的、函数减小的方向。(图)约束边界的切线与函数等高线的切线方向形成的区域。
数学模型
用内点法或混合法,取 ,
直接方法
(一)随机方向法
1.在可行域产生一个初始点 ,因 (约束),则
--(0,1)的随机数。
2.找k个随机方向,每个方向有n个方向余弦,要产生kn个随机数 , , ,随机方向的单位向量为
3.取一试验步长 ,计算每个方向的最优点
4.找出可行域中的最好点 得搜索方向 。以 为起点, 为搜索方向得 。最优点必须在可行域内或边界上,为此要逐步增加步长。
得
穷举下去得递推公式
3.算例
p73
4.框图p72
5.特点
作业:1. 2.
(六)变尺度法
1.引言
坐标变换
二次函数
令 为尺度变换矩阵
《机械优化设计》第6章习题解答-2资料

8. 有一汽门用弹簧,已知安装高度H1=50.8mm,安装(初始)载荷F1=272N ,最大工作载荷F2=680N ,工作行程h=10.16mm 弹簧丝用油淬火的50CrV A 钢丝,进行喷丸处理; 工作温度126°C ;要求弹簧中径为20mm ≤D2≤50mm ,弹簧总圈数4≤n1≤50,支 承圈数n2=1.75,旋绕比C ≥6;安全系数为1.2;设计一个具有重量最轻的结构方案。
[解] 1.设计变量:影响弹簧的重量的参数有弹簧钢丝直径:d ,弹簧中径D1和弹簧总圈数n1,可取这三个参数作为设计变量:即:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=H D x x x 212.目标函数:弹簧的重量为式中 ρ――钢丝材料的容重,目标函数的表达式为3221611262101925.0108.725.0)(x x x n D d x F --⨯=⨯⨯=π3.约束条件:1)弹簧的疲劳强度应满足min S S ≥式中 2.1m i n m i n =--S S ,可取最小安全系数,按题意S ――弹簧的疲劳安全系数,由下式计算:m s s s S ττττττττα⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=002式中 :劳极限,计算方法如下弹簧实际的脉动循环疲--0τ初选弹簧钢丝直径:4mm ≤d ≤8mm ,其抗拉强度MPa b 1480=σ,取弹簧的循环工作次数大于710,则材料的脉动循环疲劳极限为MPa b 44414803.03.0'0=⨯==στ设可靠度为90%,可靠性系数 868.0=r k ; 工作温度为126°C ,温度修正系数 862.0126273344273344=+=+=T k t再考虑到材料经喷丸处理,可提高疲劳强度10%,则弹簧实际的脉动循环疲劳极限为MPa k k t r 4.365444862.0868.01.1)1.01('00=⨯⨯⨯=+=ττ36/107.8mm kg -⨯=ρρπ12220.25n D d W =--s τ弹簧材料的剪切屈服极限,计算公式为MPa b s 74014805.05.0=⨯==στ--ατ弹簧的剪应力幅,计算公式为328dD F ka πτα=式中 k ――曲度系数,弹簧承受变应力时,计算公式为14.02)(6.1615.04414d D C C C k ≈+--=a F ――载荷幅,其值为N F F F a 2042/)272680(2/)(12=-=-=m τ――弹簧的平均剪应力,计算公式为328dD F k m sm πτ=式中s k ――应力修正系数,计算公式为dD C k s /615.01615.012+=+= m F ――平均载荷,其值为N F F F m 4762/)272680(2/)(12=+=+=由此,得到弹簧疲劳强度的约束条件为 计算剪应力幅ατ:86.2186.023214.023.8308)/(6.1x x d D F d D dD F ka a =⋅==ππτα328 计算平均应力幅m τ:21312246.74512.1212615.01x x x d D F Dd dD F k m m sm +=⎪⎪⎭⎫ ⎝⎛+==33288ππτ 计算弹簧的实际疲劳安全系数S :mms s s S τττττττττταα494.0506.14.365+=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=0002从而得到弹簧的疲劳强度约束条件为012.1)(min 1≤-=-=SS S S x g 2)根据旋绕比的要求,得到约束条件016)(21min 2≤-=-=x x C C C x g3)根据对弹簧中径的要求,得到约束条件50222≤-=-=≤-=-=1)4(0120)3(max max 242min 3x D D D g x D D D g4)根据压缩弹簧的稳定性条件,要求:c F F ≤2式中 c F ――压缩弹簧稳定性的临界载荷,可按下式计算:K H D H F C ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=2022085.611813.0μ 式中 K ――要求弹簧具有的刚度,按下式计算:mm N h F F K /2.4016.1027268012=-=-=0H ――弹簧的自由高度,按下式计算: 当mm K F 16.9240.26802===λ 时, 304.20)5.0(2.1)5.0(310+-=+-=x n H λμ――长度折算系数,当弹簧一端固定,一端铰支时,取 7.0=μ;则:[][]⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+---+-=221398.1311304.20)5.0(268.320.3040.5)(13x x x x x F C于是得 01680)(25≤-=-=CC C F F F F x g5)为了保证弹簧在最大载荷作用下不发生并圈现象,要求弹簧在最大载荷2F 时的高度2H 应大于压并高度b H ,由于13112)5.0()5.0(64.4016.108.50x x d n H h H H b -=-==-=-=于是得到010123.00246.0)(131226≤--=-=x x x H H H x g b6)为了保证弹簧具有足够的刚度,要求弹簧的刚度αK 与设计要求的刚度K 的误差小于1/100,其误差值用下式计算:401.02.40)75.1(8100/)(33241---=--=x x Gx K K K αθ式中 G ――弹簧材料的剪切弹性模量,取G=80000Mpa 。
机械优化设计研究生课后作业

第一章思考练习1-1、 优化设计问题的数学模型是由哪几部分组成的?其一般表达形式是什么?答:优化设计数学模型是优化设计的数学描述,它由三部分组成:设计变量、约束条件和目标函数。
设计变量是可供调整变化以改进设计的设计参数。
N 个设计变量构成一个N 维设计向量:[]TN x x x X ,,,21K K =约束条件是优化设计中为取得可行设计,须根据实际要求、客观条件对设计加的种种限制。
一般表达式:0),,,()(21==N j j x x x h X h K K )~1(D J j =0),,,()(21≤=N j j x x x g X g K K )~1(J j =目标函数是衡量设计方案X 优劣程度的数值指标,一般使设计变量的某种性态函数。
一般表达式:),,,()(21n x x x f X f K K = 它的数学模型一般表达式为:Find []N TN R x x x X ∈=,,,21K KMin )(X f s.t. 0)(=X hj )~1(D J j =0)(=≤X g j )~1(J j =1-2、 建立优化设计问题数学模型的一半步骤及其需要注意的问题是什么? 答:一、选取设计变量 需要注意的问题:(1)设计变量必须是独立变量,有明显依赖关系得变量仅取其一。
(2)设计变量的选取与优化层次及优化问题的提法有关。
(3)设计变量的数目要适当,过多会使问题变得复杂,求解困难;过少则优化效果差。
应选取确有显著影响且能直接调整控制的参数为设计变量。
二、建立目标函数 需要注意的问题:(1)可能是:重量、体积、效益、承载能力、安全度、可靠性、寿命、精度、误差、振动基频、运动误差、速度、加速度、效率等。
具体选取哪个取决于对设计的具体要求和客观条件。
(2)根据工程实际情况定:选最重要的为优化目标。
(3)有当前设计方案的实际情况确定。
(4)应考虑指标是否容易给出数学表达。
(5)要可解析、可数值、可经验、可近似。
《机械优化设计》习题及答案1word版本

机械优化设计习题及参考答案1-1.简述优化设计问题数学模型的表达形式。
答:优化问题的数学模型是实际优化设计问题的数学抽象。
在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。
求设计变量向量[]12Tn x x x x =L 使 ()min f x → 且满足约束条件()0(1,2,)k h x k l ==L ()0(1,2,)j g x j m ≤=L2-1.何谓函数的梯度?梯度对优化设计有何意义?答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂+∂∂=∂∂2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d fρ令xo Tx f x f x f x fx f ⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂∂=∇21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。
(1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。
(2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。
梯度)0(x f ∇方向为函数变化率最大方向,也就是最速上升方向。
负梯度-)0(x f ∇方向为函数变化率最小方向,即最速下降方向。
2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最大的方向和数值。
解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p表示,函数变化率最大和数值时梯度的模)0(x f ∇。
求f (x1,x2)在x0点处的梯度方向和数值,计算如下:()⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂=∇120122214210x x x x f x f x f 2221)0(⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∇x f x f x f =5⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇∇=5152512)0()0(x f x f p ϖ2-3.试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T 处的最速下降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。
机械优化设计课后答案

机械优化设计课后答案【篇一:机械优化设计第5章习题参考答案】?4000.333?时, f(x*)??cjxj??5.567。
t第2题答案:x??2024840 0?,z??428。
*t第3题提示:求解方法可参考第四节中的应用实例。
第4题提示:如果设x1、x2、x3、x4、x5分别以Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ五种下料方式所用钢材的件数,则此问题的数学模型是:求一组xj(j?1,2,?,5)的值,满足下列限制条件x1?2x2 ?x4 ?100?2x3?2x4?x5 ?100???3x1?x2?2x3 ?3x5?100?xj?0 (j?1,2,?,5)??使总的尾料z?0.1x2?0.2x3?0.3x4?0.8x5 达到最小。
【篇二:《机械优化设计》复习题答案】xt>一、填空题1、用最速下降法求f(x)=100(x2- x12) 2+(1- x1) 2的最优解时,设x(0)=[-0.5,0.5]t,第一步迭代的搜索方向为 [-47,-50]t。
2、机械优化设计采用数学规划法,其核心一是,二是。
3、当优化问题是的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高趋势。
5、包含n个设计变量的优化问题,称为维优化问题。
6、函数 1txhx?btx?c的梯度为。
28模型的基本要素。
9、对于无约束二元函数f(x1,x2),若在x0(x10,x20)点处取得极小值,其必要条件是10约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数f(x)?x2?10x?36的极小点,初始搜索区间[a,b]?[?10,10],经第一次区间消去后得到的新区间为12、优化设计问题的数学模型的基本要素有、。
?1?h13、牛顿法的搜索方向dkkgk,其计算量且要求初始点在极小点置。
14、将函数f(x)=x12+x22-x1x2-10x1-4x2+60表示成1txhx?btx?c 的形式215、存在矩阵h,向量 d1,向量 d2,当满足t d1和向量 d2是关于h共轭。
《机械优化设计》孙靖民哈尔滨工业大学课后答案

2)计算去掉最坏点
x
0 2
后的复合形的中心点:
∑ x
0 c
=
1 L
3 i =1
x
0 i
=
1 2
⎜⎜⎝⎛
⎡2⎤ ⎢⎣1 ⎥⎦
+
⎡3⎤ ⎢⎣3⎥⎦
⎟⎟⎠⎞
=
⎡2.5⎤ ⎢⎣ 2 ⎥⎦
+
⎡3⎤ ⎢⎣3⎥⎦
i ≠2
3)计算反射点
x
1 R
(取反射系数α = 1.3 )
x
1 R
=
x
0 c
+ α (x
0 c
−
x
0 2
试求在 x k = [0 1/4 1/2]T 点的梯度投影方向。
[解] 按公式 6-32 d k = −P∇f (x k ) / P∇f (x k ) 计算适用的可行方向:
x k 点的目标函数梯度为: ∇f (x k ) = [− 0.125 0.25 − 1]T
x k 点处起作用约束的梯度 G 为一个 n ⋅ J 阶的矩阵,题中:n=3,J=1:
s ⋅t
g1(x ) = − ln x 1 ≤ 0
h2 (x ) = x 1 + x 2 −1 ≤ 0
[解] 将上述问题按规定写成如下的数学模型:
subroutine ffx(n,x,fx) dimension x(n) fx=x(2)-x(1) end subroutine ggx(n,kg,x,gx) dimension x(n),gx(kg) gx(1)=-log(x(1))] gx(2)=-x(1) gx(3)=-x(2) end subroutine hhx(n,kh,x,hx) domension x(n),hx(kh) hx(1)=x(1)+x(2)-1 end 然后,利用惩罚函数法计算,即可得到如下的最优解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章习题答案
1-1 某厂每日(8h 制)产量不低于 1800件。
计划聘请两种不同的检验员,一级检验员的标准为:速度为件/h,正确率为98%,计时工资为 4元/ h;二级检验员标准为:速度为元/h。
检验员每错检一件,工厂损失 2元。
现有可供聘请检验人数为:
省,该厂应聘请一级、二级检验员各多少人?解:(1 )确定设计变量;
g2( X) = X1 -8 w 0 g3( X) = X2-10 w 0
g4( X) = -X1 w 0
g5( X) = - X2 w 0
X3 (2)建立数学模型的目标函数;
取弹簧重量为目标函数,即:
2
2
f(X)=——rx1 X2X3
4
(3)本问题的最优化设计数学模型:
2
2
min f (X) = —rx1 X2X3
4
25 15件/h,正确率为95%,计时工资 3 —级8人和二级
10人。
为使总检验费用最
根据该优化问题给定的条件与要求,取设计变量为X=
X1
X2 一级检验员二级检验员
(2)建立数学模型的目标函数;取检
验费用为目标函数,即:
f(X) = 8*4* X1+ 8*3* X2 +
2
=40x1+ 36x2
( 8*25*0.02x1 +8*15*0.05 X2)
s.t. min f (X) = 40X1+ 36X2
g i(X) =1800-8*25
3’
X € R
X i+8*15X2< 0
1-2已知一拉伸弹簧受拉力选择一组设计变量X [X1 X2F,剪切弹性模量G,材料重度
X3]T[d D2 n]T使弹簧重量最轻,同时满足下列限制条件:弹簧圈数
r,许用剪切应力[],许用最大变形量[]。
欲
簧丝直径d 0.5,弹簧中径10 D2 50。
试建立该优化问题的数学模型。
注:弹簧的应力与变形计算公式如下
ks^ , k s 1 ±
d 2c D2 (旋绕
比),
8F n D
Gd4
解:(1)确定设计变量;
X1
根据该优化问题给定的条件与要求,取设计变量为X2 D2
3 •
X€ R
g 2( X) =10- x 2 < 0 g 3( X) = X 2-50 W 0 g 4( X) =3- X 3 W 0
表面积为目标函数,即:
T 2
X=[ X 1, X 2] € R
g 2( X) = - X 2 w 0
解:(1)确定设计变量;
X 1 X 3
建立数学模型的目标函数; 取总价格为目标函数,即:
f(X) = 8(X 1 X 3 + X 2 X 3) + 6 X 1 X 2 + 12 X 1 X 2
建立数学模型的约束函数;
仓库的容积为1500 m 3。
即:
1500- X 1 X 2 X 3 =0
X 1 > 0, X 2 .> 0.,
贝U
本问题的最优化设计数学模型:
min f (X) = 8(X 1 X 3 + X 2 X 3) + 18 X 1 X 2 X € R
g 5
(x)= (1
X i . 8F X 2
2X 2
3
X 1
CL 3
8F X 2 X 3
g(X)
= GX 14
1-3某厂生产一个容积为 优化问题的数学模型。
8000 cm 3
的平底、无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这
解:根据该优化问题给定的条件与要求,取设计变量为 X i X 2
底面半径r 高
考虑题示的约束条件之后, 该优化问题数学模型为:
mn f(X)=
in f(X)=
X 12
+ 2
X 12
X 1 X 2
X 1 X 2
S.t .
g 1(X) =
-X 1 w 0
h 1(X) = 8000 -
X 12
X 2 = 0
1500 m 3
的长方形仓库,已知每平方米墙壁、屋顶和地面的造价分别为 元。
基于美学的考虑,其宽度应为高度的两倍。
现欲使其造价最低,
1-4要建造一个容积为
4元、6元和12
试导出相应优化问题的数学模型。
根据该优化问题给定的条件与要求,取设计变量为
X 2
(3) 仓库宽度为高度的两倍。
X 2 -2 X 3 = 0 即:
各变量取值应大于
0, 即:
-X 1 W 0, -X 2 W 0
g2( X) =10- x2 < 0
s.t . g
1( X) = - X1 W 0。