最新几类常见递推数列的解法

最新几类常见递推数列的解法
最新几类常见递推数列的解法

几类递推数列通项公式的常见类型及解法

江西省乐安县第二中学 李芳林 邮编 344300 已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法.

一、a a d n n +=+1型

形如d a a n n +=+1(d 为常数)的递推数列求通项公式,将此类数列变形得

a a d n n +-=1,再由等差数列的通项公式()a a n d n =+-11可求得a n .

例1: 已知数列{}a n 中()a a a n N n n 1123==+∈+,,求n a 的通项公式.

解: ∵a a n n +=+13 ∴a a n n +-=13

∴ {}a n 是以a 12=为首项,3为公差的等差数列. ∴()a n n n =+-=-21331为所求的通项公式. 二、)(1n f a a n n +=+型

形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n

)或可裂项成差的分式形式.——可移项后叠加相消.

例2:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1)

∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3)

=

2

1

[1+(2n -3)]( n -1)=( n -1)2 n ∈N + 三、n n a q a ?=+1型

形如n n a q a ?=+1(q 为常数)的递推数列求通项公式,将此类数列变形得

q a a n

n =+1

,再由等比数列的通项公式11-?=n n q a a 可求得a n . 例3 : 已知数列{}a n 中满足a 1=1,n n a a 21=+,求n a 的通项公式. 解:∵n n a a 21=+ ∴

21

=+n

n a a

∴ {}a n 是以11=a 为首项,2为公比的等比数列. ∴1

2

-=n n a 为所求的通项公式.

四、n n a n f a ?=+)(1型 形如n n a n f a ?=+)(1

可转化为)(1n f a a n n =+.其中f (n ) =p

p

c mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或

n

n a a 1

+=kn (k ≠0)或n n a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1).

例4:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0 ∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0

∴1

1+=+n n a a

n n

∴n

n n n n n

n a a a a a a a a a a n n n n n n n 112

12

31

2111

23

22

11

=???--?--?-=?????=-----

五、a 1+n = f (a n ) 型

形如a 1+n = f (a n ),其中f (a n )是关于a n 的函数.-—需逐层迭代、细心寻找其中规律.

例5:已知数列{a n },a 1=1, n ∈N +,a 1+n = 2a n +3 n ,求通项公式a n . 解: ∵a 1+n = 2 a n +3 n

∴ a n =2 a 1-n +3 n -1 =2(2 a 2-n +3 n -2)+3 n -1 = 22(2 a 3-n +3 n -3)+2·3 n -2+3 n -1 =……=2 n -2(2 a 1+3 )+2 n -3·3 2+2 n -4·3 3+2 n-5·3 4+…+22·3 n-3+2·3 n -2+3 n-1 =2 n -1+2 n -2·3 +2 n -3·3 2+2 n-4·3 3+…+22·3 n -3+2·3 n -2+3 n -1 n n n n 232312

312

1

-=??????????? ??--=-

六、a 1+n =pa n + q 型

形如a 1+n =pa n + q ,pq ≠0 ,p 、q 为常数. 当p =1时,为等差数列;

当p ≠1时,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x

?a 1+n + x = p (a n +

p x q +), 令x =p x q + ∴x =1

-p q

时,有a 1+n + x = p (a n + x ), 从而转化为等比数列 {a n +

1

-p q

} 求解.

例6:已知数列{a n }中,a 1=1,a n = 2

1

a 1-n + 1,n = 1、2、3、…,求通项a n . 解:∵ a n = 21a 1-n + 1 ? a n -2 =2

1

(a 1-n -2)

又∵a 1-2 = -1≠0 ∴数列{ a n -2}首项为-1,公比为2

1

的等比数列.

∴ a n -2 = -11

)2

1(-?n 即 a n = 2 -2n -1 n ∈N +

七、a 1+n =pa n + f (n )型

形如a 1+n =pa n + f (n ),p ≠0且 p 为常数,f (n )为关于n 的函数. 当p =1时,则 a 1+n =a n + f (n ) 即类型二.

当p ≠1时,f (n )为关于n 的多项式或指数形式(a n ).

⑴若f (n )为关于n 的多项式(f (n ) = kn + b 或kn 2

+ bn + c ,k 、b 、c 为常数),——可用待定系数法转化为等比数列.

例7:已知数列{ a n }满足a 1=1,a 1+n = 2a n +n 2,n ∈N +求a n . 解:令a 1+n + x [a (n +1)2

+ b (n +1) + c ] = 2(a n + an 2+ bn + c )

即 a 1+n = 2 a n + (2a –ax )n 2

+ (2b -2ax – bx )n +2c –ax –bx – cx 比较系数得:

?????=---=--=-0202212cx bx ax c bx ax b ax a ? ??

?

?

?

?

??

?

-+=-=-=x bx ax c x ax b x a 22221 ? 令x = 1,得:?????===321c b a ∴ a 1+n + (n +1)2

+2(n +1) + 3 = 2(a n + n 2

+2n + 3) ∵ a 1+1+2×1+3 = 7

令b n = a n + n 2+2n + 3 则 b 1+n = 2b n b 1= 7 ∴数列{ b n }为首项为7,公比为2的等比数列 ∴ b n = 7× 21-n 即 a n + n 2

+2n + 3 = 7× 21

-n

∴ a n = 7× 2

1

-n -( n 2

+2n + 3 ) n ∈N +

⑵若f (n )为关于n 的指数形式(a n

).

①当p 不等于底数a 时,可转化为等比数列; ②当p 等于底数a 时,可转化为等差数列. 例8:若a 1=1,a n = 2 a 1-n + 31

-n ,(n = 2、3、4…) ,求数列{a n }的通项a n .

解: ∵ a n = 2 a 1-n + 3

1

-n ∴ 令a n + x ×3n

= 2(a 1-n +x ×3

1

-n ) 得 a n = 2 a 1-n -x ×3

1

-n

令-x ×3n

= 3n

?x = -1 ∴ a n -3n

= 2(a 1-n -3

1

-n ) 又 ∵ a 1-3 = - 2

∴数列{n

n a 3-}是首项为-2,公比为2的等比数列.

∴n n a 3-=-2·21-n 即a n = 3n -2n

n ∈N +

例9:数列{ a n }中,a 1=5且a n =3a 1-n + 3n -1 (n = 2、3、4…) 试求通项a n . 解: a n =3a 1-n + 3n -1 ? a n +-=--)2

1(3211n a 3n

?13

21

3211

1+-=---n n n n a a ?{n n a 321-}是公差为1的等差数列. ?n n a 321-=

3

21

1-a +(1-n ) = 3215-+(1-n ) = n +21 ?a n = (2

13)21+?+n n n ∈N +

八、a 2+n = p a 1+n + q a n 型

解法一(待定系数法):先把原递推公式转化为)(112n n n n sa a t sa a -=-+++ 其中s ,t 满足?

?

?-==+q st p

t s

解法二(特征根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02

=--q px x ,叫做数列{}n a 的特征方程。若21,x x 是特征方程的

两个根,当21x x ≠时,数列{}n a 的通项为1

211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1

211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1

1)(-+=n n x Bn A a ,得

到关于A 、B 的方程组)。

例10: 已知数列{a n }中a 1= 1, a 2= 2且n n n a a a 212+=++ ,+∈N n ; 求{a n }的通项. 解:令a 2+n +x a 1+n = (1+x ) a 1+n + 2 a n ? a 2+n +x a 1+n = (1+x )( a 1+n +

x

+12a n

)

令x =x

+12 ?x 2

+ x – 2 = 0 ?x = 1或 -2

当x = 1时,a 2+n + a 1+n =2(a 1+n + a n ) 从而a 2+ a 1= 1 + 2 = 3 ∴数列{ a 1+n + a n }是首项为3且公比为2的等比数列. ∴ a 1+n + a n = 31

2

-?n …… …… ①

当x = - 2时, a 2+n - 2a 1+n = - (a 1+n -2a n ) , 而 a 2- 2a 1= 0 ∴ a 1+n - 2a n = 0 …… …… ② 由①、②得:a n = 2

1

-n , +∈N n

九、1+n n a a = 1++n n qa pa 型

形如1+n n a a = 1++n n qa pa ,(p q ≠ 0).且0≠n a 的数列,——可通过倒数变形为基本数列问题. 当p = -q 时,则有:

p a a n n 1

111

=-

+ 转化为等差数列; 当p ≠ -q 时,则有:

p

pa q a n n 1

1

1

+-

=+.同类型六转化为等比数列. 例11:若数列{a n }中,a 1=1,a 1+n =2

2+n n

a a n ∈N +,求通项a n . 解: ∵ 2

21+=+n n n a a a

又,011>=a ∴0>n a ,

∴n

n a a 12111+=+ ∴21111=-+n n a a ∵111=a

∴数列{ a n }是首项为1,公差为

2

1的等差数列. ∴n a 1=1+()12

1-n ∴a n =12+n n ∈N + 类型十 、h

ra q

pa a n n n ++=

+1

解法:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有h

ra q

pa a n n n ++=+1(其

中p 、q 、r 、h 均为常数,且r h a r qr ph -

≠≠≠1,0,),那么,可作特征方程h

rx q px x ++=,当特征方程有且仅有一根0x 时,则01n a x ??

??-??

是等差数列;当特征方程有两个相异的根1x 、2

x 时,则12n n a x a x ??

-?

?-??

是等比数列。

例10:已知数列}{n a 满足性质:对于,3

24

,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.

解: 数列}{n a 的特征方程为,3

24

++=

x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第(2)部分,则有

.N ,)2

21211(2313)(1

1212111∈?-?-?+-=--?--=

--n r p r p a a c n n n λλλλ

∴.N ,)5

1(521

∈-=

-n c n n ∴.N ,1)5

1(521

)51

(5221

1112∈----?-=--=--n c c a n n n n

n λλ 即.N ,)

5(24

)5(∈-+--=n a n

n n 类型十一、 r

n n pa a =+1)0,0(>>n a p

解法:这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。

例11:已知数列{n a }中,2

111,1n n a a

a a ?=

=+)0(>a ,求数列{}

.的通项公式n a 解:由211n n a a a ?=+两边取对数得a

a a n n 1

lg lg 2lg 1+=+,

令n n a b lg =,则a b b n n 1lg 21+=+,再利用待定系数法解得:1

2)1(-=n n a

a a 。

类型十二、双数列型

解法:根据所给两个数列递推公式的关系,灵活采用累加、累乘、化归等方法求解。 例12:已知数列{}n a 中,11=a ;数列{}n b 中,01=b 。当2≥n 时,

)2(3111--+=n n n b a a ,)2(3

1

11--+=n n n b a b ,求n a ,n b .

解:因=+n n b a ++--)2(3111n n b a )2(3

1

11--+n n b a 11--+=n n b a

所以=+n n b a 11--+n n b a 1112222=+=+=???=+=--b a b a b a n n 即1=+n n b a (1)

又因为=-n n b a -+--)2(3111n n b a )2(3

111--+n n b a )(31

11---=n n b a

所以=-n n b a )(3

111---n n b a =-=--))31(222n n b a ……)()31(111

b a n -=-

1)31(-=n .即=-n n b a 1)3

1

(-=n ………………………(2) 由(1)、(2)得:])31(1[211-+=n n a , ])3

1(1[211

--=n n b

类型十三、周期型

解法:由递推式计算出前几项,寻找周期。

例13:若数列{}n a 满足???

????

<≤-≤≤=+)

121(,12)210(,21

n n n n n a a a a a ,若761=a ,则20a 的值为___________。

变式:(2005,湖南,文,5) 已知数列}{n a 满足)(1

33,0*11N n a a a a n n n ∈+-=

=+,则20a =

( )

A .0

B .3-

C .3

D .

2

3

第2次作业

一、多项选择题(本大题共20分,共 5 小题,每小题 4 分) 1.

场地竖向设计主要内容包括()。

A.

确定场地设计标高

B.

确定道路走向和坡度

C.

确定场地排水方案

D.

计算土方挖填量

E.

布置挡土墙、护坡

相关主题
相关文档
最新文档