人工智能09贝叶斯网络(PPT57页)
合集下载
Bayesiannetwork贝叶斯网络精品PPT课件

Parameter Learning
• In order to fully specify the Bayesian network and thus fully represent the joint probability distribution, it is necessary to specify for each node X the probability distribution for X conditional upon X's parents
prior possibility P(Y) ( rankings, recent history of their performance)
Introduction
• First half is over • The outcome of the first period may be
treated as a random variable X, the óbserved evidence' that influence your prediction of the final value of Y.
• Prior confidence --------belief • Process--------belief propagation dynamics
causal relationships
statistical dependence between
Bayesian Networks
• DAG: Directed Acyclic Graph • CPT: Conditioanl Probability Tables
• P(Y|X)= PX |YPY Hale Waihona Puke XIntroduction
高级人工智能贝叶斯公式PPT课件

P(D|T,L,B)
Dyspnoea
T L B D=0 D=1 0 0 0 0.1 0.9 0 0 1 0.7 0.3 0 1 0 0.8 0.2 0 1 1 0.9 0.1
...
P(A, S, T, L, B, C, D) = P(A) P(S) P(T|A) P(L|S) P(B|S) P(C|T,L) P(D|T,L,B)
贝叶斯方法正在以其独特的不确定性知识 表达形式、丰富的概率表达能力、综合先 验知识的增量学习特性等成为当前数据挖 掘众多方法中最为引人注目的焦点之一。
2020/9/29
史忠植 高级人工智能
3
贝叶斯网络是什么
贝叶斯(Reverend Thomas Bayes 1702-1761) 学派奠基性的工作是贝叶斯的论文“关于几率性 问题求解的评论”。或许是他自己感觉到它的学 说还有不完善的地方,这一论文在他生前并没有 发表,而是在他死后,由他的朋友发表的。著名 的数学家拉普拉斯(Laplace P. S.)用贝叶斯的 方法导出了重要的“相继律”,贝叶斯的方法和 理论逐渐被人理解和重视起来。但由于当时贝叶 斯方法在理论和实际应用中还存在很多不完善的 地方,因而在十九世纪并未被普遍接受。
2020/9/29
史忠植 高级人工智能
6
贝叶斯网络的应用领域
辅助智能决策 数据融合 模式识别 医疗诊断 文本理解 数据挖掘
2020/9/29
史忠植 高级人工智能
7
统计概率
统计概率:若在大量重复试验中,事件A发生的频 率稳定地接近于一个固定的常数p,它表明事件A 出现的可能性大小,则称此常数p为事件A发生的 概率,记为P(A), 即
P(A·B)=P(A)·P(B|A) 或 P(A·B)=P(B)·P(A|B)
贝叶斯网络全解课件

等。
评分函数
定义一个评分函数来评估网络结构的优劣,常用的评分函数包 括BIC(贝叶斯信息准则)和AIC(赤池信息准则)等。
参数学习优化
1 2
参数学习
基于已知的网络结构和数据集,学习网络中各节 点的条件概率分布,使得网络能够最好地拟合数 据集。
最大似然估计
使用最大似然估计方法来估计节点的条件概率分 布,即寻找使得似然函数最大的参数值。
案例三
异常检测:使用贝叶斯网络检测金融市场中的异常交易行为。
06
贝叶斯网络展望
当前研究热点
概率图模型研究
贝叶斯网络作为概率图模型的一种,其研究涉及到对概率图 模型基本理论的研究,包括对概率、图、模型等基本概念的 理解和运用。
深度学习与贝叶斯网络的结合
随着深度学习技术的发展,如何将深度学习技术与贝叶斯网 络相结合,发挥各自的优势,是当前研究的热点问题。
未来发展方向
可解释性机器学习
随着人工智能技术的广泛应用,人们对机器学习模型的可解释性要求越来越高 。贝叶斯网络作为一种概率模型,具有天然的可解释性优势,未来可以在这方 面进行更深入的研究。
大规模贝叶斯网络
随着数据规模的增大,如何构建和处理大规模贝叶斯网络成为未来的一个重要 研究方向。
技术挑战与展望
联合概率
两个或多个事件同时发生的概率。联合概率 的计算公式为 P(A∩B)=P(A|B)⋅P(B)+P(B|A)⋅P(A)。
条件独立性
01
条件独立的概念
在给定某个条件时,两个事件之 间相互独立,即一个事件的发生 不影响另一个事件的发生。
02
条件独立性的应用
03
条件独立性的判断
在贝叶斯网络中,条件独立性用 于简化概率计算,降低模型复杂 度。
评分函数
定义一个评分函数来评估网络结构的优劣,常用的评分函数包 括BIC(贝叶斯信息准则)和AIC(赤池信息准则)等。
参数学习优化
1 2
参数学习
基于已知的网络结构和数据集,学习网络中各节 点的条件概率分布,使得网络能够最好地拟合数 据集。
最大似然估计
使用最大似然估计方法来估计节点的条件概率分 布,即寻找使得似然函数最大的参数值。
案例三
异常检测:使用贝叶斯网络检测金融市场中的异常交易行为。
06
贝叶斯网络展望
当前研究热点
概率图模型研究
贝叶斯网络作为概率图模型的一种,其研究涉及到对概率图 模型基本理论的研究,包括对概率、图、模型等基本概念的 理解和运用。
深度学习与贝叶斯网络的结合
随着深度学习技术的发展,如何将深度学习技术与贝叶斯网 络相结合,发挥各自的优势,是当前研究的热点问题。
未来发展方向
可解释性机器学习
随着人工智能技术的广泛应用,人们对机器学习模型的可解释性要求越来越高 。贝叶斯网络作为一种概率模型,具有天然的可解释性优势,未来可以在这方 面进行更深入的研究。
大规模贝叶斯网络
随着数据规模的增大,如何构建和处理大规模贝叶斯网络成为未来的一个重要 研究方向。
技术挑战与展望
联合概率
两个或多个事件同时发生的概率。联合概率 的计算公式为 P(A∩B)=P(A|B)⋅P(B)+P(B|A)⋅P(A)。
条件独立性
01
条件独立的概念
在给定某个条件时,两个事件之 间相互独立,即一个事件的发生 不影响另一个事件的发生。
02
条件独立性的应用
03
条件独立性的判断
在贝叶斯网络中,条件独立性用 于简化概率计算,降低模型复杂 度。
人工智能09贝叶斯网络

• Yes: remember the ballgame and the rain causing traffic, no correlation?
– Are X and Z independent given Y?
束
• More popular in Vision and physics
Bayesian networks
一种简单的,图形化的数据结构,用于表示变量之间的依赖 关系(条件独立性),为任何全联合概率分布提供一种简 明的规范。
Syntax语法: a set of nodes, one per variable a directed(有向) , acyclic(无环) graph (link ≈ "direct influences") a conditional distribution for each node given its parents: P (Xi | Parents (Xi))—量化其父节点对该节点的影响
Example
我晚上在单位上班,此时邻居John给我打电话说我家 警报响了,但是邻居Mary没有给打电话。有时轻微 的地震也会引起警报。那么我家真正遭贼了吗?
Variables: Burglary(入室行窃) , Earthquake, Alarm, JohnCalls, MaryCalls
网络拓扑结构反映出因果关系: – A burglar can set the alarm off – An earthquake can set the alarm off – The alarm can cause Mary to call – The alarm can cause John to call
Why are Graphical Models useful
– Are X and Z independent given Y?
束
• More popular in Vision and physics
Bayesian networks
一种简单的,图形化的数据结构,用于表示变量之间的依赖 关系(条件独立性),为任何全联合概率分布提供一种简 明的规范。
Syntax语法: a set of nodes, one per variable a directed(有向) , acyclic(无环) graph (link ≈ "direct influences") a conditional distribution for each node given its parents: P (Xi | Parents (Xi))—量化其父节点对该节点的影响
Example
我晚上在单位上班,此时邻居John给我打电话说我家 警报响了,但是邻居Mary没有给打电话。有时轻微 的地震也会引起警报。那么我家真正遭贼了吗?
Variables: Burglary(入室行窃) , Earthquake, Alarm, JohnCalls, MaryCalls
网络拓扑结构反映出因果关系: – A burglar can set the alarm off – An earthquake can set the alarm off – The alarm can cause Mary to call – The alarm can cause John to call
Why are Graphical Models useful
人工智能贝叶斯网络.ppt

• Directed Acyclic Graph (DAG)
– Nodes are random variables – Edges indicate causal influences
Burglary
Earthquake
Alarm
JohnCalls
MaryCalls
3
Conditional Probability Tables
– Bayesian Networks: Directed acyclic graphs that indicate causal structure.
– Markov Networks: Undirected graphs that capture general dependencies.
2
Bayesian Networks
JohnCalls
MaryCalls
However, this ignores the prior probability of John calling.
12
Bayes Net Inference
• Example: Given that John calls, what is the probability that there is a Burglary?
7
Independencies in Bayes Nets
• If removing a subset of nodes S from the network renders nodes Xi and Xj disconnected, then Xi and Xj are independent given S, i.e. P(Xi | Xj, S) = P(Xi | S)
贝叶斯网络简介PPT课件

而在贝叶斯网络中,由于存在前述性质,任意随 机变量组合的联合条件概率分布被化简成
其中Parents表示xi的直接前驱节点的联合,概率 值可以从相应条件概率表中查到。
.
6
例子
P(C, S,R,W) = P(C)P(S|C)P(R|S,C)P(W|S,R,C) chain rule
= P(C)P(S|C)P(R|C)P(W|S,R,C) since
= P(C)P(S|C)P(R|C)P.(W|S,R) since
7
贝叶斯网络的构造及训练
1、确定随机变量间的拓扑关系,形成DAG 。这一步通常需要领域专家完成,而想要 建立一个好的拓扑结构,通常需要不断迭 代和改进才可以。
2、训练贝叶斯网络。这一步也就是要完成 条件概率表的构造,如果每个随机变量的 值都是可以直接观察的,方法类似于朴素 贝叶斯分类。但是通常贝叶斯网络的中存 在隐藏变量节点,那么训练方法就是比较 复杂。
4、将收敛结果作为推. 断值。
9
贝叶斯网络应用
医疗诊断,
工业,
金融分析,
计算机(微软Windows,Office),
模式识别:分类,语义理解
军事(目标识别,多目标跟踪,战争身份识别
等),
生态学,
生物信息学(贝叶斯网络在基因连锁分析中应
用),
编码学,
分类聚类,
时序数据和动态模型 .
• 用概率论处理不确定性的主要优点是保 证推理结果的正确性。
.
2
几个重要原理
• 链规则(chain rule)
P ( X 1 , X 2 ,X . n ) . P ( . X 1 ) , P ( X 2 |X 1 ) P ( X .n | . X 1 , . X 2 ,X . n ) ..,
贝叶斯信念网络汇总课件

参数学习的常用算法
常用的参数学习方法包括最大似然估计、贝叶斯估计和期望最大化算法等。这些算法可以帮助我们从数据中学习 到最佳的参数设置,使得贝叶斯网络能够最好地拟合概率推理是贝叶斯信念网络的核心,它基于概率理论来描述不 确定性。
02
概率推理的目标是计算给定证据下某个假设的概率,或者计算
06
贝叶斯网络的发展趋势与 未来展望
深度学习与贝叶斯网络的结合
深度学习在特征提取上的 优势
贝叶斯网络在处理复杂、高维数据时,可以 借助深度学习强大的特征提取能力,提高模 型对数据的理解和表达能力。
贝叶斯网络的概率解释能力
贝叶斯网络具有清晰的概率解释,可以为深度学习 模型提供可解释性强的推理框架,帮助理解模型预 测结果。
参数可解释性
通过可视化技术、解释性算法等方法,可以进一步解释贝叶斯网络 中参数的意义和影响,提高模型的可信度和用户接受度。
感谢您的观看
THANKS
联合优化与模型融合
未来研究可以探索深度学习与贝叶斯网络在 结构、参数和优化方法上的联合优化,实现 两者的优势互补。
大数据处理与贝叶斯网络
大数据处理的需求
随着大数据时代的到来,如何高 效处理、分析和挖掘大规模数据 成为关键问题。贝叶斯网络在大 数据处理中具有广阔的应用前景 。
并行计算与分布式
实现
针对大规模数据,可以采用分布 式计算框架,如Hadoop、Spark 等,对贝叶斯网络进行并行化处 理,提高推理和学习的效率。
在贝叶斯网络中,变量间的关系通过 条件独立性来表达。确定条件独立性 有助于简化网络结构,提高推理效率 。
构建有向无环图
根据条件独立性评估结果,可以构建 一个有向无环图来表示贝叶斯网络的 结构。这个图将各个变量连接起来, 反映了它们之间的依赖关系。
常用的参数学习方法包括最大似然估计、贝叶斯估计和期望最大化算法等。这些算法可以帮助我们从数据中学习 到最佳的参数设置,使得贝叶斯网络能够最好地拟合概率推理是贝叶斯信念网络的核心,它基于概率理论来描述不 确定性。
02
概率推理的目标是计算给定证据下某个假设的概率,或者计算
06
贝叶斯网络的发展趋势与 未来展望
深度学习与贝叶斯网络的结合
深度学习在特征提取上的 优势
贝叶斯网络在处理复杂、高维数据时,可以 借助深度学习强大的特征提取能力,提高模 型对数据的理解和表达能力。
贝叶斯网络的概率解释能力
贝叶斯网络具有清晰的概率解释,可以为深度学习 模型提供可解释性强的推理框架,帮助理解模型预 测结果。
参数可解释性
通过可视化技术、解释性算法等方法,可以进一步解释贝叶斯网络 中参数的意义和影响,提高模型的可信度和用户接受度。
感谢您的观看
THANKS
联合优化与模型融合
未来研究可以探索深度学习与贝叶斯网络在 结构、参数和优化方法上的联合优化,实现 两者的优势互补。
大数据处理与贝叶斯网络
大数据处理的需求
随着大数据时代的到来,如何高 效处理、分析和挖掘大规模数据 成为关键问题。贝叶斯网络在大 数据处理中具有广阔的应用前景 。
并行计算与分布式
实现
针对大规模数据,可以采用分布 式计算框架,如Hadoop、Spark 等,对贝叶斯网络进行并行化处 理,提高推理和学习的效率。
在贝叶斯网络中,变量间的关系通过 条件独立性来表达。确定条件独立性 有助于简化网络结构,提高推理效率 。
构建有向无环图
根据条件独立性评估结果,可以构建 一个有向无环图来表示贝叶斯网络的 结构。这个图将各个变量连接起来, 反映了它们之间的依赖关系。
贝叶斯网络培训课件

05
贝叶斯网络的应用案例
Chapter
分类问题
总结词
贝叶斯网络在分类问题中具有广泛的应用,能够有 效地处理各种数据类型,包括连续和离散数据。
详细描述
通过构建分类模型,贝叶斯网络可以用于解决诸如 垃圾邮件过滤、疾病诊断、信用评分等问题。这些 问题的共同特点是,需要根据已知的特征对未知的 目标进行分类或标签。贝叶斯网络通过概率推理和 概率更新来优化分类效果,提高分类准确性和鲁棒 性。
特点
03
04
05
表达直观:贝叶斯网络 以图形化的方式表达概 率模型,易于理解。
概率完整:贝叶斯网络 包含了所有需要的概率 信息,可以用于推断和 决策。
灵活性强:可以添加、 删除节点和边,适应不 同的应用场景。
贝叶斯网络的应用场景
01
02
03
分类问题
贝叶斯网络可以用于分类 问题,如垃圾邮件识别、 疾病诊断等。
对于大规模的数据集,贝叶斯网络的推理可能变得非常复杂和计算量大。
02
贝叶斯网络的基本概念
Chapter
条件概率
条件概率是指在一个事件B发生的条件下,另一个事件A发生的概率。通 常表示为P(A|B)。
条件概率是贝叶斯网络中的一个基本概念,用于描述事件之间的条件关 系。
在贝叶斯网络中,条件概率被用于计算给定一组证据下,某个变量取某 个值的概率。
06
贝叶斯网络的未来发展与挑战
Chapter
理论完善与拓展
理论完善
随着贝叶斯网络在各个领域的广泛应用,针对其理论的深入 研究和完善显得尤为重要。这包括对贝叶斯网络结构的优化 、推断算法的改进以及概率图模型的深入研究等。
拓展应用领域
贝叶斯网络在各个领域都有广泛的应用,如医疗、金融、推 荐系统等。未来可以进一步拓展其应用范围,探索其在更多 领域的应用潜力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k
18
Global semantics(全局语义)
The full joint distribution is defined as the product of the local conditional distributions: 全联合概率分布可以表示为贝叶斯网络中 的条件概率分布的乘积
19
– Is X independent of Z given Y?
22
Common Cause共同原因
• 另一个基础的形态: two effects of the same cause – Are X and Z independent? – Are X and Z independent given Y?
opportunities.
“某事发生的概率是0.1” 意味着0.1是在无穷 多样本的极限
条件下能够被观察到的比例
但是,在许多情景下不可能进行重复试
验
2
Probability概率
Probability is a rigorous formalism for uncertain knowledge
概率是对不确定知识一种严密的形式化方法
6
什么是图模型?
概率分布的图表示 – 概率论和图论的结合
• Also called 概率图模型 • They augment analysis instead of using pure
algebra(代数)
7
What is a Graph?
• Consists of nodes (also called vertices) and links (also called edges or arcs)
32Βιβλιοθήκη 因果关系?• 当贝叶斯网络反映真正的因果模式时: – Often simpler (nodes have fewer parents) – Often easier to think about – Often easier to elicit from experts(专家)
• BNs 不一定必须是因果 – 有时无因果关系的网络是存在的 (especially if variables are missing) – 箭头反映相关性,而不是因果关系
33
Inference in Bayesian networks
34
推理任务
简单查询: 计算后验概率P(Xi|E=e) e.g., P(NoGas| Gauge油表=empty, Lights=on, Starts=false)
联合查询 : P(Xi,Xj| E=e) = P(Xi| E=e)P(Xj| Xi,E=e)
– Are X and Z independent given Y?
• No: remember that seeing traffic put the rain and the ballgame in competition?
– This is backwards from the other cases
最优决策: decision networks include utility 35
通过枚举进行推理
上一章解释了任何条件概率都可以通过将全 联合分布表中的某些项相加而计算得到
在贝叶斯网络中可以通过计算条件概率的乘 积并求和来回答查询。
36
通过枚举进行推理
上一章解释了任何条件概率都可以通过将全 联合分布表中的某些项相加而计算得到
Global semantics(全局语义)
The full joint distribution is defined as the product of the local conditional distributions: 全联合概率分布可以表示为贝叶斯网络中 的条件概率分布的乘积
20
Local semantics
23
Common Effect共同影响
• 最后一种配置形态: two causes of one
effect (v-structures)
– Are X and Z independent?
• Yes: remember the ballgame and the rain causing traffic, no correlation?
网络拓扑结构反映出因果关系:
– A burglar can set the alarm off
16
Example contd.
17
Compactness(紧致性)
A CPT for Boolean Xi with k Boolean parents has 2k rows for the combinations of parent values
9
Why are Graphical Models useful
• 概率理论提供了“黏合剂”whereby – 使每个部分连接起来, 确保系统作为一个 整体是一致的 – 提供模型到数据的连接方法.
• 图理论方面提供:
–直观的接口
• by which humans can model highly-
13
Bayesian networks
一种简单的,图形化的数据结构,用于表示 变量之间的依赖 关系(条件独立性),为任何全联合概率 分布提供一种简 明的规范。
Syntax语法:
a set of nodes, one per variable
a directed(有向) , acyclic(无环) graph
Bayesian networks 贝叶斯网络
1
Frequentist vs. Bayesian
客观 vs. 主观
Frequentist(频率主义者) : 概率是长期的预 期出现频率. P(A) = n/N, where n is the
number of times event A occurs in N
需要一种方法使得局部的条件独立关系能够保 证全局语义得以成立
1. Choose an ordering of variables X1, … ,Xn 2. For i = 1 to n
add Xi to the network select parents from X1, … ,Xi-1 such that 25
一个具有k个布尔父节点的布尔变量的条件概 率表中有2k个独立的可指定概率
Each row requires one number p for Xi = true (the number for Xi = false is just 1-p)
If each variable has no more than k parents, the
Local semantics: each node is conditionally independent of its nondescendants(非后代) given its parents
给定父节点,一个节点与它的非后代节点是 条件独立的
21
Causal Chains因果链
• 一个基本形式:
independent given Cavity
15
Example
我晚上在单位上班,此时邻居John给我打电 话说我家警报响了,但是邻居Mary没有给 打电话。有时轻微的地震也会引起警报。 那么我家真正遭贼了吗?
Variables: Burglary(入室行窃) , Earthquake, Alarm, JohnCalls, MaryCalls
11
图模型在机器学习中的角色
1. 形象化概率模型结构的简单方法
2. Insights into properties of model Conditional independence properties by inspecting graph
3. 执行推理和学习表示为图形化操作需要复 杂的计算
• Observing the effect enables influence
between causes.
24
构造贝叶斯网络
Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics
12
图的方向性
• 有向图模型 – 方向取决于箭头
• 贝叶斯网络 – 随机变量间的因果 关系
• More popular in AI and statistics
• 无向图模型 – 边没有箭头
• Markov random fields (马尔科夫随机场) –更适合表达变量之间的软
约束
• More popular in Vision and physics
• 在概率图模型中 – 每个节点表示一个随机变量(or 一组随机 变量)
8
Graphical Models in CS
• 处理不确定性和复杂性的天然工具 –贯穿整个应用数学和工程领域
• 图模型中最重要的思想是模块性概念 – a complex system is built by combining simpler parts.
A is conditionally independent of B given C: P(A | B, C) = P(A | C)
在大多数情况下,使用条件独立性能将全联
合概率的表示由n的指数关系减为n的线性
关系。
4
Probability Theory
Probability theory can be expressed in terms of two simple equations概率理论可使用两个简 单线性方程来表达