光缆的种类和机械性能

光缆的种类和机械性能
光缆的种类和机械性能

在进行光缆综合布线时,应根据实际应用情况,参考光缆的应用范围和机械性能指标,选择合适的光缆产品。下面将光缆的种类和机械性能详细介绍如下:

1. 单芯互联光缆

(1) 应用范围

·跳线。

·内部设备连接。

·通信柜配线面板。

·墙上出口到工作站的连接。

·水平拉线,直接端接。

·适用于使用环氧树脂或LIGHTCRIMP连接头端接。

(2)性能优点

·高性能的单模和多模光纤符合所有的工业标准。

·900μm紧密缓冲外衣易于连接与剥除。

·Aramid抗拉线增强组织,提高了对光纤的保护。

·UL/CSA验证符合OFNR和OFNP性能要求。

·设计和测试均根据Bellcore GR-409-CORE及IEC793-1/794-1标准。

·扩展级别62.5/125符合ISO/IEC 11801:1995标准。

图1-单芯光缆

2.双芯互联光缆

(1)应用范围

·交连跳线。

·水平走线直接端接。

·光纤到桌。

·通信柜配线面板。

·墙上出口到工作站的连接。

·适用于使用环氧树脂或LIGHTCRIMP连接头端接。

(2)性能与特点

·光纤之间易于区分。

·高性能的单模和多模光纤符合所有的工业标准。

·900μm紧密缓冲外衣易于连接与剥除。

·Aramid抗拉线增强组织提高了对光纤的保护。

·UL/CSA验证符合OFNR和OFNP性能要求。

·设计和测试均根据Bellcore GR-409-CORE及IEC793-1/794-1标准。

·扩展级别62.5/125符合ISO/IEC 11801:1995标准。

图2-双芯光缆图

图3-四芯光缆

3.分布式光缆(分多单元分散型12芯光缆和多单元分散型24~72芯两种) (1)应用范围

·多点信息口水平布线。

·垂直布线。

·大楼内主干布线。

·从设备间到无源跳线间的连接。

·从主干分支到各楼层应用。

·适用于胶水型光纤连接头以及LIGHTCRIMP光纤头端接。

(2)性能与特点

·高性能的单模和多模光纤符合所有的工业标准。

·900μm紧密缓冲外衣易于连接与剥除。

·按照EZA标准色码标识。

·UL/CSA验证符合OFNR和OFNP性能要求。

·设计和测试均根据Bellcore GR-409-CORE及IEC793-1/794-1标准。

·扩展级别62.5/125符合ISO/IEC 11801:1995标准。

·防护网可抵挡尖锐物损伤。

图4-多单元分散型12芯光缆图5-多单元分散型24~72芯光缆4.分散式光缆(有4芯、6芯、8芯、12芯)

(1)应用范围

·分散光缆组合。

·多根光纤交插连接,结构坚固。

·水平光纤到多站点出口,端接简单、直接。

·适于环氧树脂光纤连接头以及LIGHTCRIMP光纤头直接端接。

(2)性能与特点

·高性能的单模和多模光纤符合所有的工业标准。

·900μm紧密缓冲外衣易于连接与剥除。

·2.4mm独立光纤辅单元,允许带套连接头端接。

·UL/CSA验证符合OFNR和OFNP性能要求。

·设计和测试均根据Bellcore GR-409-CORE及IEC793-1/794-1标准。

·扩展级别62.5/125符合ISO/IEC 11801:1995标准。

·走线方式高度灵活。

·Aramid抗拉线增强组织提高了对光纤的保护。

5.室外光缆(有4芯、6芯、8芯、12芯,又分铠装和全绝缘型,)

(1)应用范围

·园区中楼宇之间的连接。

·长距离网络。

·主干线系统。·本地环路和支路网络。

·严重潮湿、温度变化大的环境。

·架空连接(和悬缆线一起用)、地下管道或直埋、悬吊缆/服务缆。

(2)性能与特点

·高性能的单模和多模光纤符合所有的工业标准。

·900μm紧密缓冲外衣易于连接与剥除。

·套管内具有独立TIA彩色编码的光纤。

·轻质的单通道结构节省了管内空间,管内灌注防水凝胶,以防止水渗入。

·设计和测试均根据Bellcore GR-20-CORE标准。

·扩展级别62.5/125符合ISO/IEC 11801:1995标准。

·Aramid抗拉线增强组织提高了对光纤的保护。

·聚乙烯外衣对紫外线或恶劣的室外环境有保护作用。

·低磨擦的外皮使之可轻松穿过管道,完全绝缘或铠装结构,撕剥绳使剥离外表更方便。

图6-室外光缆4-12芯(单管铠装)图7-室外光缆4-12芯(单管全绝缘)6.室外光缆24~144芯铠装类型与全绝缘类型

(1)应用范围

·园区中楼宇之间的连接。

·长距离网络。

·主干线系统。

·本地环路和支路网络。

·严重潮湿、温度变化大的环境。

·架空连接(和悬缆线一起使用)、地下管道或直埋。

(2)性能与特点

·高性能的单模和多模光纤符合所有的工业标准。

·绝缘结构可避免雷击。

·套管内具有独立TIA彩色编码的光纤。

·轻质的单通道结构节省了管内空间,管内灌注防水凝胶,以防止水渗入,注胶芯完全由聚脂带包裹。

·设计和测试均根据Bellcore GR-20-CORE标准。

·扩展级别62.5/125符合ISO/IEC 11801:1995标准。

·Aramid抗拉线增强组织性能,提高对光纤的保护。

·聚乙烯外衣在紫外线或恶劣的室外环境下有保护作用。

·低磨擦的外皮使之可轻松穿过管道,完全绝缘或铠装结构,撕剥绳使剥离外表更方便。室外光缆24~144芯光缆分全绝缘和铠装,规格有24、36、48、60、72、96、144芯7种。

图8-室外24~144芯光缆

7.单管全绝缘型室内/室外光缆(有4芯、6芯、8芯、12芯、24芯、32芯)

(1)应用范围

·在不需任何互联设备情况下,由户外延伸到户内,线缆具有阻燃特性。

·园区中楼宇之间的互连。

·本地线路和支路网络。

·严重潮湿、温度变化极大的环境。

·架空连接(和悬缆线一起使用时)。

·地下管道或直埋。

·悬吊缆/服务缆。

(2)性能与特点

·高性能的单模和多模光纤符合所有的工业标准。

·LSZH的设计符合低毒、无烟的要求。

·套管内具有独立TIA彩色编码的光纤。

·轻质的单通道结构节省了管内空间,管内灌注防水凝胶,以防止水渗入,注胶芯完全由聚脂带包裹。

·设计和测试均根据Bellcore GR-20-CORE标准。

·扩展级别62.5/125符合ISO/IEC 11801:1995标准。

·Aramid抗拉线增强组织提高对了光纤的保护。

·聚乙烯外衣在紫外线或恶劣的室外环境下有保护作用。

·低磨擦的外皮使之可轻松穿过管道,完全绝缘或铠装结构,撕剥绳使剥离外表更方便。

光纤数字传输系统性能测试

1前言 本实验指导书为 《数字传输技术 (A)《光纤通信系统》 》 《光纤通信测量技术》 《光同步传输技术》课程的实验用书,其有关内容也可以配合《数字传输技术(A)《光纤通信系统》 》 《光纤通信测量技术》 《光同步传输技术》等课程教材使 用。 本实验指导书用于光纤数字传输系统性能测试和光纤传输网络的设备与网 络管理操作几方面的必做实验,主要是光纤数字线路系统传输性能测试、SDH 设备认识和 SDH 网络管理系统及操作。其中光纤数字线路系统传输性能测试是最基本的实验项目。 光纤数字线路系统包括光端机、光中继机和光纤线路等,其性能参数包括设 备和系统光接口参数和电接口传输性能,光接口参数主要是光设备光接口参数、光通道(光纤线路)传输特性,电接口传输性能主要包括误码性能、定时性能和可用性等,需要测试的项目较多,涉及多种测试仪表和测试方法。本指导书重点介绍光纤线路接续和接续损耗的监测、光纤衰减测试实验、光接口参数测试和光纤数字传输系统的传输性能测试实验。 选做实验的指导书另行编写。 目录 1实验一光纤接续和监测 2实验二光纤衰减测试 3实验三光接口参数测试 5实验四电接口传输性能测试 10实验五 SDH 设备认识 17实验六 SDH 网络管理系统及操作 19 3 实验一

光纤的接续和监测 一.试验目的 掌握光纤接续原理 掌握光纤接续损耗的测试原理 学习使用熔接机和了解光纤接续过程 二.试验原理 光纤接续的常用方法有热熔法和冷接法等,热熔法的主要步骤如下:连接光 纤端面的制备,端面的定位和对准,熔接。 光纤接续损耗 As 的定义为 As = ?10 lg 式中 pr pt (dB) pt 为发射光纤发出的光功率,W pr 为接收光纤接收的光功率,W 监测光纤接续损耗的方法有多种,如:光时域反射计(OTDR)监测和四功率法测 试等,目前都采用光时域反射计监测法,其测试系统原理土如图 1.1 所示。 OTDR 发射光纤 接收光纤 图 1.1 光纤接续损耗的监测 测试时 OTDR 发出测试光脉冲,并测得连接光纤的背向色散曲线如图 1.2 所示,根据所得曲线设置五个测试点(即采用五点法)即得到接续损耗值。 三.试验仪器和设备 A 1.TYPE35SE 光纤熔接机, 1 台 2.光时域反射计, 3.光纤, 四.测试步骤

最新金属的力学性能测试题及答案

第一章金属的力学性能 一、填空题 1、金属工艺学是研究工程上常用材料性能和___________的一门综合性的技术基础课。 2、金属材料的性能可分为两大类:一类叫_____________,反映材料在使用过程中表现出来的特性, 另一类叫__________,反映材料在加工过程中表现出来的特性。 3、金属在力作用下所显示与弹性和非弹性反应相关或涉及力—应变关系的性能,叫做金属________。 4、金属抵抗永久变形和断裂的能力称为强度,常用的强度判断依据是__________、___________等。 5、断裂前金属发生不可逆永久变形的能力成为塑性,常用的塑性判断依据是________和_________。 6、常用的硬度表示方法有__________、___________和维氏硬度。 二、单项选择题 7、下列不是金属力学性能的是() A、强度 B、硬度 C、韧性 D、压力加工性能 8、根据拉伸实验过程中拉伸实验力和伸长量关系,画出的力——伸长曲线(拉伸图)可以确定出金 属的() A、强度和硬度 B、强度和塑性 C、强度和韧性 D、塑性和韧性 9、试样拉断前所承受的最大标称拉应力为() A、抗压强度 B、屈服强度 C、疲劳强度 D、抗拉强度 10、拉伸实验中,试样所受的力为() A、冲击 B、多次冲击 C、交变载荷 D、静态力 11、属于材料物理性能的是() A、强度 B、硬度 C、热膨胀性 D、耐腐蚀性 12、常用的塑性判断依据是() A、断后伸长率和断面收缩率 B、塑性和韧性 C、断面收缩率和塑性 D、断后伸长率和塑性 13、工程上所用的材料,一般要求其屈强比() A、越大越好 B、越小越好 C、大些,但不可过大 D、小些,但不可过小 14、工程上一般规定,塑性材料的δ为() A、≥1% B、≥5% C、≥10% D、≥15% 15、适于测试硬质合金、表面淬火刚及薄片金属的硬度的测试方法是() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都可以 16、不宜用于成品与表面薄层硬度测试方法() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上方法都不宜 17、用金刚石圆锥体作为压头可以用来测试() A、布氏硬度 B、洛氏硬度 C、维氏硬度 D、以上都可以 18、金属的韧性通常随加载速度提高、温度降低、应力集中程度加剧而() A、变好 B、变差 C、无影响 D、难以判断 19、判断韧性的依据是() A、强度和塑性 B、冲击韧度和塑性 C、冲击韧度和多冲抗力 D、冲击韧度和强度 20、金属疲劳的判断依据是() A、强度 B、塑性 C、抗拉强度 D、疲劳强度 21、材料的冲击韧度越大,其韧性就() A、越好 B、越差 C、无影响 D、难以确定 三、简答题 22、什么叫金属的力学性能?常用的金属力学性能有哪些?

实验一 连接器和光纤跳线性能测试实验

实验一连接器和光纤跳线性能测试实验 一、实验仪器 1、Z S-9005光纤通信实验系统一台 2、Z S-9006光纤光无源器件连接实验箱一台 3、光功率计一台 二、实验目的 1、使学生深入了解光连接器和光纤跳线器的各种特性 2、熟悉光连接器和光纤跳线器的应用方法 三、实验内容 准备工作:首先按本实验指导书的1.2节的要求,将数字传输系统一和数字传输系统二连成互通状态,然后将1310/1550收发一体模块中的UK02光纤收发模块通过尾纤与光纤连接器相连,如图4.2.1所示,这时光源发光波长为1310nm,连接尾纤、连接器和光无源部件时注意定位销方向。 连接器跳线 图4.2.1 光连接器和跳线性能测试连接示意 1、插入损耗测量 1)用光功率计测量1310nm光源经尾纤输出在“a”点的光功率P a;然后将信号接入连接器的输入端口;用光功率计测量经一对光连接器和光纤跳线器输出“b”点光功率P b。记录测量结果,填入表格,计算一对光连接器和光纤跳线器插入损耗值。 2)可以在“b”点之后,再接入一对光连接器和光纤跳线器,测量输出“c”点光功率P c,观测大致的误差偏离值。

2、回波损耗 被测件(连接器+跳线器)的回波损耗是指正向入射到被测件的光功率和沿着输入路径返回被测件入口端的光功率比。 实验步骤如下: (1)测量1310nm光分路器(3dB耦合器)的实际分光数值,按图4.2.2连接。在不连接被测件条件下,测量3dB耦合器a、b两路输出的功率P a和P b。 图4.2.2 3dB耦合器特性测量 (2)测量光分路器(3dB耦合器)两路输出的隔离度A ab,按图4.2.3连接。在耦合器输出端之一的a点输入功率P c dBm,测量耦合器另一输出端b点的输出功率P c,dBm 则a,b两点的隔离度A ab=P c- P c, dB。 图4.2.3 3dB耦合器隔离度测量 四、实验报告 1、分析总结各项测量结果。

实验一 光纤的几何特性测试实验

实验一光纤的几特性测试实验 姓名:学号: 一、实验的目的和意义 1、了解光纤的基本结构 2、学习光纤的处理法,包括光纤的剥线、端面切割和清洗等等法 3、利用显微镜并结合探测器放大分别观察单模和多模光纤端面结构 4、学会Matlab处理实验数据 5、掌握光学实验注意事项和实验室安全隐患及事故处理法 光纤的应用越来越广泛,了解光纤的机构、性能具有十分重要的意义。光学主要有纤芯和包层组成,纤芯由高度透明的介质组成,包层是折射率低于纤芯折射率的介质,并经过格的工艺制成光纤,光纤还要由多层保护层保护,起着增强机械性能、保护光纤的作用。 光纤的结构特性影响光纤的特性,并决定着光纤的用途,低损耗、高效率一直都是光纤的发展目标,光纤的各种特性参数(保护几参数、传光特性、加载特性、微弯特性等)的测量时光纤应用的重要依据,同时也促进各种测量技术的发展。[1]光纤按折射率分布可以分为阶跃型光纤和渐变型光纤,按模式可以分为单模光纤和多模光纤。 光纤的损耗因素众多,包括传输损耗、连接损耗、弯曲损耗、色散吸收损耗等等,光纤损耗可以用光时域反射技术等测量。[2]

本实验希望通过观测光纤的结构参数来测试光纤的性能,并更好的理解光纤的特性,观察光纤结构分析其带来的损耗影响。因为光纤较脆弱,所以日常使用的光纤有多层保护,所以首先要获取只有包层和纤芯的裸纤,然后采用显微镜结合电子探测器探测放大得到光纤的端面图像,从而分析其性能等。[3] 二、实验的系统结构和实验步骤 1、实验的系统结构 实验主要包括制作裸纤端面样本和观察端面结构两个部分,需借助剥线器得到裸纤,并进行端面处理,将得到的样本放在显微镜—探测器放大系统下观察,并利用计算机获取处理数据。 实验系统的基本结构图如下: 2、实验仪器 光纤、剥线钳、剪刀、棉球、酒精、光纤切割机、基片、双面胶、显微镜、探测器、电脑 3、实验步骤

光缆的种类与结构

2.5 光缆的种类与结构 光缆是多根光纤或光纤束制成的符合光学、机械和环境特性的结构体。光缆的结构直接影响通信系统的传输质量。不同结构和性能的光缆在工程施工、维护中的操作方式也不相同,因此必须了解光缆的结构、性能,才能确保光缆的正常使用寿命。 2.5.1 光缆的种类 光缆的种类很多,其分类的方法就更多,下面介绍一些常用的分类方法。 1、按传输性能、距离和用途分类。可分为长途光缆、市话光缆、海底光缆和用户光缆。 2、按光纤的种类分类。可分为多模光缆、单模光缆。 3、按光纤套塑方法分类。可分为紧套光缆、松套光缆、束管式光缆和带状多芯单元光缆。 4、按光纤芯数多少分类。可分为单芯光缆、双芯光缆、四芯光缆、六芯光缆、八芯光缆、十二芯光缆和二十四芯光缆等。 5、按加强件配置方法分类 光缆可分为中心加强构件光缆(如层绞式光缆、骨架式光缆等)、分散加强构件光缆(如束管两侧加强光缆和扁平光缆)、护层加强构件光缆(如束管钢丝铠装光缆)和PE外护层加一定数量的细钢丝的PE细钢丝综合外护层光缆。 6、按敷设方式分类。光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。 7、按护层材料性质分类。光缆可分为聚乙烯护层普通光缆、聚氯乙烯护层阻燃光缆和尼龙防蚁防鼠光缆。 8、按传输导体、介质状况分类。光缆可分为无金属光缆、普通光缆和综合光缆。 9、按结构方式分类 光缆可分为扁平结构光缆、层绞式结构光缆、骨架式结构光缆、铠装结构光缆(包括单、双层铠装)和高密度用户光缆等。 10、常用通信光缆按使用环境可分为 (1)室(野)外光缆——用于室外直埋、管道、槽道、隧道、架空及水下敷设的光缆。 (2)软光缆——具有优良的曲挠性能的可移动光缆。 (3)室(局)光缆——适用于室布放的光缆。 (4)设备光缆——用于设备布放的光缆。 (5)海底光缆——用于跨海洋敷设的光缆。 (6)特种光缆——除上述几类之外,作特殊用途的光缆 2.5.2 光缆的型号 光缆型号由它的型式代号和规格代号构成,中间用一短横线分开。 1、光缆型式由五个部分组成,如图2.11所示。

实验一光纤的几何特性测试实验

实验一光纤的几何特性测试实验 姓名:学号: 一、实验的目的和意义 1、了解光纤的基本结构 2、学习光纤的处理方法,包括光纤的剥线、端面切割和清洗等等方法 3、利用显微镜并结合探测器放大分别观察单模和多模光纤端面结构 4、学会Matlab处理实验数据 5、掌握光学实验注意事项和实验室安全隐患及事故处理方法 光纤的应用越来越广泛,了解光纤的机构、性能具有十分重要的意义。光学主要有纤芯和包层组成,纤芯由高度透明的介质组成,包层是折射率低于纤芯折射率的介质,并经过严格的工艺制成光纤,光纤还要由多层保护层保护,起着增强机械性能、保护光纤的作用。 光纤的结构特性影响光纤的特性,并决定着光纤的用途,低损耗、高效率一直都是光纤的发展目标,光纤的各种特性参数(保护几何参数、传光特性、加载特性、微弯特性等)的测量时光纤应用的重要依据,同时也促进各种测量技术的发展。[1]光纤按折射率分布可以分为阶跃型光纤和渐变型光纤,按模式可以分为单模光纤和多模光纤。 光纤的损耗因素众多,包括传输损耗、连接损耗、弯曲损耗、色散吸收损耗等等,光纤损耗可以用光时域反射技术等测量。[2] 本实验希望通过观测光纤的结构参数来测试光纤的性能,并更好的理解光纤的特性,观察光纤结构分析其带来的损耗影响。因为光纤较脆弱,所以日常使用的光纤有多层保护,所以首先要获取只有包层和纤芯的裸纤,然后采用显微镜结合电子探测器探测放大得到光纤的端面图像,从而分析其性能等。[3] 二、实验的系统结构和实验步骤 1、实验的系统结构 实验主要包括制作裸纤端面样本和观察端面结构两个部分,需借助剥线器得到裸纤,并进行端面处理,将得到的样本放在显微镜—探测器放大系统下观察,并利用计算机获取处理数据。 实验系统的基本结构图如下: 2、实验仪器 光纤、剥线钳、剪刀、棉球、酒精、光纤切割机、基片、双面胶、显微镜、探测器、电脑

光纤机械性能

光纤机械性能 第一节光纤机械性能测试目的 当光纤在成缆过程中和用于实际环境中时,必须经受住一定的机械应力和化学环境的侵蚀;在光缆施工过程中,光纤需要量熔融连接,光纤涂敷层的可剥离后裸纤的翘曲度都会影响光纤的熔接难易和损耗大小,这些都属于光纤机械性能和操作性能的范畴。石英光纤必须具有足够的强度来经受机械环境,例如光纤的二次被覆,以及光缆敷设和运行期间受到的张力、宏弯和微弯。在通常的使用条件下,光纤都会受到张力(如在光缆中)、均匀弯曲(如在圆筒上)或平行表面的两点弯曲(如在熔接情况中)。在所有这些机械环境中,光纤经受了环境构成所特有的应力。最普通的机械环境是单轴向张力。石英光纤是一种脆性材料,在施加的应力下经历持续的变形后会断裂成两段或几段。由于光纤断裂会导致通信线路中断,故光纤的材料强度和可靠性是人们最关心的问题。对用于系统上的光纤而言,系统失效的唯一主要原因就是光缆失效,固有因素引起的失效很少,多半原因是由于火灾和直埋光缆附近的挖掘引起突然断裂一类的外部因素。随着光纤制造技术的不断提高,目前所用光纤的筛选强度都在0.69GPa以上,内在的机械失效的概率很低,尽管如此,由于修理和更换光纤的成本很高,故相关的经济风险便不可小视,这些风险促使人们努力把运行中的内在机械失效的概率减小到最低,因而提高光纤产品的长期机械可靠性是主要的课题。 实际上,光纤的机械强度由表面存在的裂纹和杂质决定,涂敷层也起着至关重要的作用。涂敷层的粘附力越强,对裂纹的保护作用就越明显,光纤的强度就越高。另一方面,在光缆的连接中,需要剥除光纤的涂敷层进行熔接,在光纤光缆的测试中,需要剥除光纤的涂敷层制作端面,也就是说,光纤涂敷层应具有可剥性。所以涂敷层的粘附力不宜小也不宜大,按国家标准规定,涂敷层的剥离力在1.3~8.9N之间。 当剥去涂敷层后,一根未支撑的光纤有一个自然弯曲的趋势,即翘曲性能。例如,一根从V形槽的端面出来的悬空光纤可以向上、向下或者向左右弯曲。虽然翘曲对连接器、机械连接或使用有源校准的熔融连接没有坏的影响,但翘曲可在光纤是无源熔融连接时或许多光纤同时熔接(光纤带的批量熔接)时产生偏离。 为了使得光纤能在实际的通信线路上使用,它应具有足够的机械强度和便利的操作性能,以便于成缆和敷设,而且可在恶劣的环境条件下不会因疲劳而断裂,以保证光纤足够的使用寿命。我们必须弄清光纤的断裂机理、机械强度试验方法、表征光纤强度的各参数的物理意义和光纤使用寿命的计算方法。

光纤测试方案

光纤测试方案 一.布线系统测试概述 为确保综合布线系统性能,确认布线系统的元器件性能及安装质量,工程完工后需按综合布线系统测试说明进行有关的测试。 综合布线系统测试包括: ·>水平铜缆链路测试; ·>垂直干线铜缆链测试; >垂直干线光缆链测试; >·端对端信道联合测试 系统测试完毕后,即组织有关技术及管理人员对整个系统进行验收。 千兆比水平铜缆的测试说明: 千兆比水平铜缆系统采用专用测试仪器进行测试,测试指标包括: 1.极性、连续性、短路、断路测试及长度 2.信号全程衰减测试 3.信号近、远串音衰耗测试 4.结构回转衰耗SRL 5.特性阻抗 6.传输延时 本方案中,采用下列布线测试仪表进行测试: Microtest QmniScanner FLUKE 国际标准组织(ISO)及Lucent推荐下列布线测试仪表: 1、fluke (Fluke Corporation) 2、PenaScanner (Microtest Inc) 本方案中,我公司建意采用以下铜缆测试仪器:

Microtest Lucent KS23763L1 (连接性测试) 3、FLUKE (特性指标测试) STPl 六类100-150双绞线,250 MHz FTP;阻燃特性NFC32070 2.1标准 4、用网络测试仪,测试线路是否安装完好,将测线报告整理,归档。 二.系统测试所用工具 测试所用工具主要是: FLUCK DSP FLUCK 网络测试仪操作规程: 根据测量的种类是通道还是链路,选择相对的适配器; 测量前将仪器校准; 测量时,将主机和智能远端的旋钮打开; 输入测量时间、地点、测试姓名; 在AUTOTEST项开始测试,储存结果; 将测试结果转换成电子文档; 将主机和智能远端关机; 将仪器收好,检查是否有遗漏配件。 注意事项:插接时一定要将插头和插口对齐,将线路接通;注意轻拔轻 插,一定要将头弹起按下再拔出;注意仪器和线路远离电力线和强电场。 其他工具如下表: 仪器名称数量产地说明 接地摇表 1 进口 万用表 2 国产 水平尺 6 国产 FULKE 1 美国

金属材料的力学性能测试题.doc

一、填空题(60 分) 1. 金属材料的性能的性能包括和。 2. 力学性能包括、、、、。 3. 圆柱形拉伸试样分为和两种。 4. 低碳钢拉伸试样从开始到断裂要经过、 、、四个阶段。 5. 金属材料的强度指标主要有和。 6. 金属材料的塑性指标主要有和。 7. 硬度测定方法有、、。 8. 夏比摆锤冲击试样有和两种。 9. 载荷的形式一般有载荷、载荷和载荷三种。 10. 钢铁材料的循环基数为,非铁金属循环基数为。 11. 提高金属疲劳强度的方法有和 。 表示用“ C”标尺测定的1000/30 表示用压头直径为 kgf 试验力作用下,保持为。硬度值为。 的硬质合金球,在s时测得的布氏硬度值 14. 金属材料的工艺性能包括、、 、、。

二、判断题(25 分) 1.金属的工艺性能是指金属在各种加工中所表现出的性能。() 2.金属的力学性能是指在力作用下所显示的与弹性和非弹性反 应相关或涉及应力 - 应变关系的性能。() 3.拉伸试验时,试样的伸长量与拉伸力总成正比。() 4. 屈服现象是指拉伸过程中拉伸力达到Fs 时,拉伸力不增加, 变形量却继续增加的现象。() 5. 拉伸试样上标距的伸长量与原始标距长度的百分比,称为断后伸长率,用符号 A 表示。() 6.现有标准圆形截面长试样 A 和短试样 B,经拉伸试验测得δ 10、δ5 均为 25%,表明试样 A 的塑性比试样 B 好。 ( ) 7.常用的硬度试验方法有布氏硬度、洛氏硬度和维氏硬度。() 8.做布氏硬度试验,当试验条件相同时,压痕直径越小,则材料 的硬度越低。() 9.洛氏硬度值是根据压头压入被测材料的的深度来确定的。() 10.洛氏硬度 HRC测量方便,能直接从刻度盘上读数,生产中常 用于测量退火钢、铸铁和有色金属件。() 11.一般来说,硬度高的金属材料耐磨性也好。() 12.韧性是指金属在断裂前吸收变形能量的能力。() 13.金属的使用性能包括力学性能、物理性能和铸造性能。( ) 14.拉伸试验中拉伸力和伸长量的关系曲线称为力一伸长曲线,

光纤接口及光纤线分类

光纤接口及光纤线分类 多模光纤 多模光纤的直径通常有50和62.5微米两种规格,它们之间并没有速度上的差异。多模光纤的波长围为850纳米和1300纳米两种。850纳米波长的光是可见的,对人眼无害。1300纳米波长是不可见的,而且对视网膜有害。多模光纤两端接头的类型很多,包括SC、LC和 MT-RJ 等。多模光纤使用的是一种聚集的LED而不是真正的激光。 单模光纤 单模光纤适用于长距离的信号传输。它的波长是1300纳米,是不可视的,对人眼有害。单模光纤的直径为9微米,由于它的直径如此之小,使用它进行长距离传送信号时,光波不易被改变。所以在长距离的SAN中,单模光纤是最好的一种解决方式。由于单模光纤的直径很小,所以它的潜在发射速度也是最高的,理论极限速度是25Tb/s,而多模光纤的理论极限速度是10Gb/s。 单模光纤本身并不比多模光纤或铜芯线贵出很多,价格的增加主要在于其收发器部件,因为它使用的是激光而不是LED。由于单模光纤的直径非常小,所以对光纤收发器的精确度要求很高。 ST、SC连接器接头常用于一般网络。ST头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易掉出来;FC连接头一般电信网络采用,有一螺帽拧到适配器上,优点是牢靠、防灰尘,缺点是安装时间稍长。 MTRJ 型光纤跳线由两个高精度塑胶成型的连接器和光缆组成。连接器外部件为精密塑胶件,包含推拉式插拔卡紧机构。适用于在电信和数据网络系统中的室应用。

光纤接口连接器的种类 光纤连接器,也就是接入光模块的光纤接头,也有好多种,且相互之间不可以互用。不是经常接触光纤的人可能会误以为GBIC和SFP模块的光纤连接器是同一种,其实不是的。SFP模块接LC光纤连接器,而GBIC接的是SC光纤连接器。下面对网络工程中几种常用的光纤连接器进行详细的说明: ① FC型光纤连接器:外部加强方式是采用金属套,紧固方式为螺丝扣。一般在ODF侧采用(配线架上用的最多) ② SC型光纤连接器:连接GBIC光模块的连接器,它的外壳呈矩形,紧固方式是采用插拔销闩式,不须旋转。(路由器交换机上用的最多) ③ ST型光纤连接器:常用于光纤配线架,外壳呈圆形,紧固方式为螺丝扣。(对于10Base-F连接来说,连接器通常是ST类型。常用于光纤配线架) ④ LC型光纤连接器:连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)闩锁机理制成。(路由器常用) ⑤ MT-RJ:收发一体的方形光纤连接器,一头双纤收发一体 常见的几种光纤线

光缆的种类及型

GYXTW中心束管式室外光缆,内装4-12根光纤芯,并充满油膏,松套管外纵包阻水带和轧纹钢带、外护套采用优质黑色聚乙烯,在护套内平行对称设置两根圆钢丝。该光缆全截面阻水,结构紧密、外径小、重量轻、具有良好的机械性能,低损耗、低色散、适用于数字或模拟传输通信系统的架空、管道和直埋敷设。产品优点:1、尺寸小、重量轻、使光缆具有优越的抗弯性能,方便施工作业;2、钢带铠装层增强了光缆抗侧压,防潮性能;3、两根钢丝加强件,抗拉性能好; 4、双面涂塑钢带(PSP)提高光缆的防透潮能力独特的工艺控制与优质材料的选配,使光缆具有卓越的机械性能和环境性能. 光缆技术参数: 1、参数项目参数:光缆芯数4-12芯,光缆外径mm 2、光纤纤芯直径单模9/125um;多模62/125um或50/125um,抗拉力(N)短期≥1500 ,抗侧压≥1000 ,允许弯曲半径(动态)20倍光缆外径 3、温度特性-40℃~+60℃,重量(kg/km)100-120 4、纵向阻水性能1米高水柱24h后3m试样无水渗出 5、特征重量轻、适用于架空、管道敷设。 光缆敷设方式(主要): 架空、管道 ■适用温度范围 -40℃~+60℃ ■技术参数

常用光缆规格:光缆内光纤规格分为单模与多模。单模光缆和多模光缆中还可以分为2芯光缆,4芯光缆、6芯光缆、8芯光缆、12芯光缆、24芯光缆、36芯光缆,48芯光缆、56芯光缆,72芯光缆、96芯光缆、144芯光缆等可以根据客户的需求

选用不同芯数的光缆。 光缆选用的参考要点:光缆的选用除了根据光纤芯数和光纤种类以外,还要根据光缆的使用来选择光缆的外护套、结构,在选用时应该注意以下几点: 1.户外用光缆直埋时,宜选用铠装光缆。架空时,可选用带两根和多根加强筋的黑色塑料外护套的光缆。 2.建筑物内用的光缆在选用时应该注意其阻燃、毒和烟的特性。一般在管道中和强制通风处可选用阻燃但有烟的类型,暴露的环境中应选用阻燃、无烟和无毒的类型。 3.楼内垂直布线时,可选用层绞式光缆(Distribution Cables);水平布线式,可选用可分支光缆(Breakout Cables)。 4.传输距离在2Km以内的,可选用多模光线,超过2Km可用中继或选用单模光缆。

光纤光缆性能测试技术实验指导书

光纤光缆性能测试技术实验指导书 姚燕李春生 北京邮电大学机电工程实验教学中心 2006.5

实验一 数字发送单元指标测试实验 一、实验目的 1、了解数字光发端机输出光功率的指标要求 2、掌握数字光发端机输出光功率的测试方法 3、了解数字光发端机的消光比的指标要求 4、掌握数字光发端机的消光比的测试方法 二、实验内容 1、测试数字光发端机的输出光功率 2、测试数字光发端机的消光比 3、比较驱动电流的不同对输出光功率和消光比的影响 三、预备知识 1、输出光功率和消光比的概念 四、实验仪器 1、ZY12OFCom13BG3型光纤通信原理实验箱 1台 2、FC接口光功率计 1台 3、FC/PC-FC/PC单模光跳线 1根 4、万用表 1台 5、850nm光发端机(可选) 1个 6、ST/PC-FC/PC多模光跳线(可选) 1根 7、连接导线 20根 五、实验原理 光发送机是数字光纤通信系统中的三大组成部分(光发送机、光纤光缆、光接受机)之一。其功能是将电脉冲信号变换成光脉冲信号,并以数字光纤通信系统传输性能所要求的光脉冲信号波形从光源器件组件的尾纤发射出去。 光发送机的指标有如下几点: 1、输出光功率:输出光功率必须保持恒定,要求在环境温度变化或LD器件老化的过程中,其输出光功率保持不变,或者其变化幅度在数字光纤通信工程设计指标要求的范围内,以保证其数字光纤通信系统能长期正常稳定运行。 输出光功率是指给光发端机的数字驱动电路送入一伪随机二进制序列作为测试信号,用光功率计直接测试光发端机的光功率,此数值即为数字发送单元的输出光功率。 输出光功率测试连接如图1-1所示。 图1-1 输出光功率测试连接示意图 根据CCITT标准,信号源输出信号为表1-1所规定的要求。 表1-1 信号源输出信号要求 数字率(kbit/s) 伪随机测试信号 2048 215-1

金属材料机械性能检测

金属材料机械性能检测 抗拉强度(tensile strength) 试样拉断前承受的最大标称拉应力。 抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为: σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。 抗拉强度(Rm)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:Tensile strength. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 屈服强度(yield strength) 屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 yield strength,又称为屈服极限,常用符号δs,是材料屈服的临界应力值。

光缆机械性能检测

接入网用蝶形引入光缆机械性能试验机包括拉伸、压扁、冲击、扭转、反复弯曲等试验机,满足YDT 1997-2009 《接入网用蝶形引入光缆》和GBT 7424.2-2008 《光缆总规范第2部分光缆基本试验方法》中规定的测试要求。 每台试验设备都由微电脑控制,可以单机全功能操作,也可由通信口连接计算机,实现计算机的远程全功能控制操作。 一、接入网用蝶形引入光缆拉伸试验机 1.设备组成及简介 接入网用蝶形引入光缆拉伸试验机主要由光缆卡盘组固定端设备、光缆支架、光缆拉伸端设备、光缆应变测量仪等四部分组成。 光缆卡盘组固定端设备 光缆卡盘组固定端设备是光缆固定、测力的部分,有两套卡盘和夹具用于固定光缆,有一固定在直线滑块上的导轮和负荷传感器连接。 光缆支架 光缆支架主要起对光缆卡盘组固定端设备和光缆拉伸端设备之间悬垂的光缆的支撑 作用,每个光缆支架有两套带滚轮的支撑旋臂,支撑悬臂高度可以调节。 光缆拉伸端设备 控制系统采用AEC-1000高性能控制器,AEC-1000是一个多核心的嵌入式实时控制系统,控制响应速度高,每秒钟可达400Hz,远远高于国内普遍可达到的50Hz,使得试验控制过程反应迅速,加载速率准确,设定的加载点目标力值加载无过冲。实时在线的故障自诊断可以随时监测系统,出现故障可在计算机屏幕显示出相应的信息内容,对设备维修做到有的放矢。高分辨率、高灵敏度的模拟信号输出接口,可方便连接CD300、CD400、PK2800等光纤应变色散仪,无需另外计算机里插卡,做到设备整体有序,方便日后的维护。 试验软件为图形化界面,功能布局合理,操作容易掌握。可进行试验曲线分析,数据

光缆的结构及种类

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/9b14543290.html,) 光缆的结构及种类 变宝网11月21日讯 光缆是利用置于包覆护套中的一根或多根光纤作为传输媒质并可以单独或成组使用的通信线缆组件。它可以根据环境的不同有不同的表现形式,比如需要防水、缓冲等。 一、光缆的结构 光缆的基本结构一般是由缆芯、加强钢丝、填充物和护套等几部分组成,另外根据需要还有防水层、缓冲层、绝缘金属导线等构件。 光缆由加强芯和缆芯、护套和外护层3部分组成。缆芯结构有单芯型和多芯型两种:单芯型有充实型和管束型两种;多芯型有带状和单位式两种。外护层有金属铠装和非铠装两种。 二、光缆的种类 1.按照传输性能、距离和用途的不同,光缆可以分为用户光缆、市话光缆、长途光缆和海底光缆。 2.按照光缆内使用光纤的种类不同,光缆又可以分为单模光缆和多模光缆。 3.按照光缆内光纤纤芯的多少,光缆又可以分为单芯光缆、双芯光缆等。 4.按照加强件配置方法的不同,光缆可分为中心加强构件光缆、分散加强构件光缆、护层加强构件光缆和综合外护层光缆。 5.按照传输导体、介质状况的不同,光缆可分为无金属光缆、普通光缆、综合光缆(主要用于铁路专用网络通信线路)。 6.按照铺设方式不同,光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。

7.按照结构方式不同,光缆可分为扁平结构光缆、层绞式光缆、骨架式光缆、铠装光缆和高密度用户光缆。 三、光缆的选用 光缆的选用除了根据光纤芯数和光纤种类以外,还要根据光缆的使用环境来选择光缆的外护套。 1.户外用光缆直埋时,宜选用铠装光缆。架空时,可选用带两根或多根加强筋的黑色塑料外护套的光缆。 2.建筑物内用的光缆在选用时应注意其阻燃、毒和烟的特性。一般在管道中或强制通风处可选用阻燃 但有烟的类型(Plenum),暴露的环境中应选用阻燃、无毒和无烟的类型(Riser)。 3.楼内垂直布缆时,可选用层绞式光缆(Distribution Cables);水平布线时,可选用可分支光缆(Breakout Cables)。 4.传输距离在2km以内的,可选择多模光缆,超过2km可用中继或选用单模光缆。 直埋光缆埋深标准 敷设地段或土质埋深(m)备注 普通土(硬土)≥1.2

常见光纤设备及光纤熔接测试

常见光纤设备及光纤熔接测试 一、常见光纤设备 在FECS项目实施方案中,常会涉及光纤通讯的情况。 一般来讲,当FECS系统中以太网通讯距离>100米时,主需要进行光电转换,采用光纤通讯。与之配合使用的光纤设备主要有: 光纤光纤接口 耦合器以太网光电转换器 光纤熔接盒交换机

光纤跳线光纤尾纤 1. 光纤:光纤种类繁多,大致可分单模/多模、铠装/非铠装、2/4/8芯等 (1)单模光纤:指在工作波长中,只能传输一个传播模式的光纤,通常简称为单模光纤 (SMF:Single ModeFiber)。目前,在有线电视和光通信中,是应用最广 泛的光纤。光纤的纤芯很细(约10pm)且折射率呈阶跃状分布SMF没有 多模色散,传输频带较多模光纤更宽。光源仅有一束,其信号比较强,可 以应用于高速度、长距离的应用领域中,便也合得它的成本相对更高。 ( 2 ) 多模光纤:将光纤按工作彼长以其传播可能的模式为多个模式的光纤称作多模光纤 (MMF:MUlti ModeFiber)。纤芯直径为50pm,传输模式可达几百个, 与SMF相比传输带宽主要受模式色散支配。在短距离通信领域中MMF仍 在重新受到重视。MMF按折射率分布进行分类时,有:渐变(GI)型和 阶跃(SI)型。GI型的折射率以纤芯中心为最高,传输容量较SI型大。 多模光纤更广泛地应用于短距离或相对速度更低一些的领域中,它采用 LED 作为光源,使用宽芯线,所以其散较大;在加上整个光纤内有以多个 角度射入的光,所以其信号不如单模光纤好,但相对低的价格是它的优势。 ( 3 ) 铠装的优势:除了有增强光缆强度、免遭机械损伤及老鼠咬伤的作用,还因为大多铠装 材料是由高导磁率的钢带或钢丝构成,这对抗低频干扰十分有益!通过对 铠装层的正确接地,还可以提高电缆的防雷性能!铠装电缆给施工带来的 好处就是无需专门的电缆沟可以直埋,拐弯处也无需另砌电缆井。 光纤型号举例介绍:4A1b: 4-----4芯 A----多模,注意若是B表示单模 2.光纤接口(耦合器)方式:光纤接口方式多种多样,主要以下几类: FC 圆型带螺纹 ST 卡接式圆型(比较常用) SC 卡接式方型(比较常用) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体 3. 光纤接口盒:光纤接口盒的作用主要是通过尾纤将多根电缆集中熔接固定,并将光纤以接口 方式转出。以便于与光纤转换器进行连接。其主要参数主要是端口数量及整机固

光缆的种类与结构

光缆的种类与结构 光缆是多根光纤或光纤束制成的符合光学、机械和环境特性的结构体。光缆的结构直接影响通信系统的传输质量。不同结构和性能的光缆在工程施工、维护中的操作方式也不相同,因此必须了解光缆的结构、性能,才能确保光缆的正常使用寿命。 2.5.1 光缆的种类 光缆的种类很多,其分类的方法就更多,下面介绍一些常用的分类方法。 1、按传输性能、距离和用途分类。可分为长途光缆、市话光缆、海底光缆和用户光缆。 2、按光纤的种类分类。可分为多模光缆、单模光缆。 3、按光纤套塑方法分类。可分为紧套光缆、松套光缆、束管式光缆和带状多芯单元光缆。 4、按光纤芯数多少分类。可分为单芯光缆、双芯光缆、四芯光缆、六芯光缆、八芯光缆、十二芯光缆和二十四芯光缆等。 5、按加强件配置方法分类 光缆可分为中心加强构件光缆(如层绞式光缆、骨架式光缆等)、分散加强构件光缆(如束管两侧加强光缆和扁平光缆)、护层加强构件光缆(如束管钢丝铠装光缆)和PE外护层加一定数量的细钢丝的PE细钢丝综合外护层光缆。 6、按敷设方式分类。光缆可分为管道光缆、直埋光缆、架空光缆和水底光缆。 7、按护层材料性质分类。光缆可分为聚乙烯护层普通光缆、聚氯乙烯护层阻燃光缆和尼龙防蚁防鼠光缆。 8、按传输导体、介质状况分类。光缆可分为无金属光缆、普通光缆和综合光缆。 9、按结构方式分类 光缆可分为扁平结构光缆、层绞式结构光缆、骨架式结构光缆、铠装结构光缆(包括单、双层铠装)和高密度用户光缆等。 10、常用通信光缆按使用环境可分为 (1)室(野)外光缆——用于室外直埋、管道、槽道、隧道、架空及水下敷设的光缆。 (2)软光缆——具有优良的曲挠性能的可移动光缆。 (3)室(局)内光缆——适用于室内布放的光缆。 (4)设备内光缆——用于设备内布放的光缆。 (5)海底光缆——用于跨海洋敷设的光缆。 (6)特种光缆——除上述几类之外,作特殊用途的光缆 光缆的型号 光缆型号由它的型式代号和规格代号构成,中间用一短横线分开。 1、光缆型式由五个部分组成,如图所示。

金属力学性能测试及复习答案

金属力学性能复习 一、填空题 1.静载荷下边的力学性能试验方法主要有拉伸试验、弯曲试验、扭转试验和压缩试验等。 2. 一般的拉伸曲线可以分为四个阶段:弹性变形阶段、屈服阶段、均匀塑性变形阶段和非均匀塑性变形阶段。 3. 屈服现象标志着金属材料屈服阶段的开始,屈服强度则标志着金属材料对开始塑性变形或小量塑性变形能力的抵抗。 4. 屈强比:是指屈服强度和抗拉强度的比值,提高屈强比可提高金属材料抵抗开始塑性变形的能力,有利于减轻机件和重量,但是屈强比过高又极易导致脆性断裂。 5. 一般常用的的塑性指标有屈服点延伸率、最大力下的总延伸率、最大力下的非比例延伸率、断后伸长率、断面收缩率等,其中最为常用的是断后伸长率和断面收缩率 。 6. 金属材料在断裂前吸收塑性变形功和断裂功的能力称为金属材料的韧性。一般来说,韧性包括静力韧性、冲击韧性和断裂韧性。 7. 硬度测试的方法很多,最常用的有三种方法:布氏硬度测试方法、络氏硬度的试验方法和维氏硬度实验法。 8. 金属材料制成机件后,机件对弹性变形的抗力称为刚度。它的大小和机件的截面积及其弹性模量成正比,机件刚度=E 〃S. 9. 金属强化的方式主要有:单晶体强化、晶界强化、固溶强化、以及有序强化、位错强化、分散强化等(写出任意3种强化方式即可)。 10. 于光滑的圆柱试样,在静拉伸下的韧性端口的典型断口,它由三个区域组成:纤维区、放射区、剪切唇区。 11. 变形速率可以分为位移速度和应变速度。 二、判断题 1.在弹性变形阶段,拉力F 与绝对变形量之间成正比例线性关系;(√) 若不成比例原因,写虎克定律。 2.在有屈服现象的金属材料中,其试样在拉伸试验过程中力不断增加(保持恒定)仍能继续伸长的应力,也称为抗服强度。(×) 不增加,称为屈服强度。 3.一般来讲,随着温度升高,强度降低,塑性减小。(×) 金属内部原子间结合力减小,所以强度降低塑性增大。 4.络氏硬度试验采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后卸除主实验力,以测量压痕的深度来计算络氏硬度。压入深度越深,硬度越大,反之,硬度越小。(×) 络氏硬度公式 5.金属抗拉强度b σ与布氏硬度HB 之间有以下关系式:b σ=K ?HB ,这说明布氏硬度越大,其抗拉强度也越大。(√) 6.弹性模量E 是一个比例常数,对于某种金属来说,它是一种固有的特性。(√) 7.使用含碳量高(含碳量为0.5-0.7%)的钢,不能提高机件吸收弹性变形功。(×) 8.脆性断裂前不产生明显的塑性变形,即断裂产生在弹性变形阶段,吸收的能量很小,这种断裂是可预见的。(×)

光纤跳线的种类大全图文并茂

ST、SC、FC光纤接头是早期不同企业开发形成的标准,使用效果一样,各有优缺点。 ST、SC连接器接头常用于一般网络。ST头插入后旋转半周有一卡口固定,缺点是容易折断;SC连接头直接插拔,使用很方便,缺点是容易掉出来;FC连接头一般电信网络采用,有一螺帽拧到适配器上,优点是牢靠、防灰尘,缺点是安装时间稍长。 MTRJ 型光纤跳线由两个高精度塑胶成型的连接器和光缆组成。连接器外部件为精密塑胶件,包含推拉式插拔卡紧机构。适用于在电信和数据网络系统中的室内应用。 光纤接口连接器的种类 光纤连接器,也就是接入光模块的光纤接头,也有好多种,且相互之间不可以互用。不是经常接触光纤的人可能会误以为GBIC和SFP模块的光纤连接器是同一种,其实不是的。SFP模块接LC光纤连接器,而GBIC接的是SC光纤光纤连接器。下面对网络工程中几种常用的光纤连接器进行详细的说明:

① FC型光纤连接器:外部加强方式是采用金属套,紧固方式为螺丝扣。一般在ODF侧采用(配线架上用的最多) ② SC型光纤连接器:连接GBIC光模块的连接器,它的外壳呈矩形,紧固方式是采用插拔销闩式,不须旋转。(路由器交换机上用的最多) ③ ST型光纤连接器:常用于光纤配线架,外壳呈圆形,紧固方式为螺丝扣。(对于10Base-F连接来说,连接器通常是ST类型。常用于光纤配线架) ④ LC型光纤连接器:连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)闩锁机理制成。(路由器常用) ⑤ MT-RJ:收发一体的方形光纤连接器,一头双纤收发一体 常见的几种光纤线 光纤接口大全

各种光纤接口类型介绍 光纤接头 FC 圆型带螺纹(配线架上用的最多) ST 卡接式圆型 SC 卡接式方型(路由器交换机上用的最多) PC 微球面研磨抛光 APC 呈8度角并做微球面研磨抛光 MT-RJ 方型,一头双纤收发一体( 华为8850上有用) 光纤模块:一般都支持热插拔, GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型SFP 小型封装GBIC,使用的光纤为LC型 使用的光纤: 单模: L ,波长1310 单模长距LH 波长1310,1550 多模:SM 波长850 SX/LH表示可以使用单模或多模光纤

实验十二 掺铒光纤放大器(EDFA)的性能测试(优.选)

实验十二掺铒光纤放大器(EDFA)的性能测试 一、实验目的 1. 了解掺铒光纤放大器(EDFA)的工作原理、基本结构及相关特性; 2. 测试掺铒光纤放大器(EDFA)的各种参数,并根据测量的参数计算增益、输出饱和功率和噪声系数; 二、实验原理 在光纤放大器实用化以前,为了克服光纤传输中的损耗,每传输一段距离都要进行“再生”,即把传输后的弱光信号转换成电信号,经过放大、整形后,再去调制激光器,生成一定强度的光信号,即所谓的O—E—O光电混合中继。但随着传输码率的提高,“再生”的难度也随之提高,于是中继部分成了信号传输容量扩大的“瓶颈”。光纤放大器的出现解决了这一难题,其不但可对光信号进行直接放大,同时还具有实时、高增益、宽带、在线、低噪声、低损耗的全光放大功能,是新一代光纤通信系统中必不可少的关键器件;由于这项技术不仅解决了损耗对光网络传输速率与距离的限制,更重要的是它开创了C+L波段的波分复用,从而将使超高速、超大容量、超长距离的波分复用(WDM)、密集波分复用(DWDM)、全光传输、光孤子传输等成为现实,是光纤通信发展史上的一个划时代的里程碑。 在目前实用化的光纤放大器中主要有掺铒光纤放大器(Erbium-Doped Fiber Amplifier,EDFA)、半导体光放大器(SOA)和光纤喇曼放大器(FRA)等,其中掺铒光纤放大器以其优越的性能现已广泛应用于长距离、大容量、高速率的光纤通信系统、接入网、光纤CATV 网、军用系统(雷达多路数据复接、数据传输、制导等)等领域。在系统中EDFA有三种基本的应用方式:功率放大器(Power booster-Amplifier)、中继放大器(Line-Amplifier)和前置放大器(Pre-Amplifier)。它们对放大器性能有不同的要求,功放要求输出功率大,前放对噪声性能要求高,而中放两者兼顾。 1.掺铒光纤放大器的工作原理 Er3+能级图及放大过程:掺铒光纤放大器之所以能放大光信号的基本原理在于Er3+吸收泵浦光的能量,由基态4I15/2跃迁至处于高能级的泵浦态,对于不同的泵浦波长电子跃迁到不同的能级,当用980nm波长的光泵浦时,如图15-1所示,Er+3从基态跃迁至泵浦态4I11/2。由于泵浦态上的载流子的寿命只有1μs,电子迅速以非辐射方式由泵浦态豫驰至亚稳态,在亚稳态上载流子有较长的寿命,在源源不断的泵浦下,亚稳态上的粒子不断累积,从而实现粒子数反转分布。当有1550nm的信号光通过已被激活的铒光纤时,在信号光的感应下,亚稳态上的粒子以收集受激辐射的方式跃迁到基态,同时释放出一个与感应光子全同的光

相关文档
最新文档