光电编码器分类
光电编码器分类及作用

光电编码器分类及作用光电编码器是一种通过光电转换将输出轴的机械几何位移量转换为脉冲或数字量的传感器,主要由光源、码盘、光学系统及电路4部分组成,光电编码器主要有增量式编码器、绝对式编码器、混合式绝对值编码器、旋转变压器、正余弦伺服电机编码器等,其中增量式编码器、绝对式编码器、混合式绝对值编码器属于数字量编码器,旋转变压器、正余弦伺服电机编码器属于模拟量编码器.一、增量式编码器增量式编码器可以将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,通过计数设备来知道其位置.增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。
它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。
一般来说,增量式光电编码器输出A、B 两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。
同时还有用作参考零位的Z 相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。
标志脉冲通常用来指示机械位置或对积累量清零。
二、绝对式编码器绝对式编码器每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
其位置是由输出代码的读数确定的。
当电源断开时,绝对型编码器并不与实际的位置分离。
重新上电时,位置读数仍是当前的。
绝对编码器能够直接进行数字量大的输出,在码盘上会有若干的码道,码道数就是二进制位数。
在每条码道上都会由透光与不透光的扇形区域组成,通过采用光电传感器对信号进行采集。
在码盘两侧分别设置有光源和光敏元件,这样光敏元件则能够根据是否接受到光信号进行电平的转换,输出二进制数。
并且在不同位置输出不同的数字码。
从而可以检测绝对位置。
但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数。
光电编码器分类和选择

绝对式编码器有与位置相对应的代码输出,通常为二进制码或BCD码。从代码数大小的变化可以判别正反方向和位移所处的位置,绝对零位代码还可以用于停电位置记忆。绝对式编码器的测量范围常规为0—360度。
增量型旋转编码器
轴的每圈转动,增量型编码器提供一定数量的脉冲。周期性的测量或者单位时间内的脉冲计数可以用来测量移动的速度。如果在一个参考点后面脉冲数被累加,计算值就代表了转动角度或行程的参数。双通道编码器输出脉冲之间相差为90º。能使接收脉冲的电子设备接收轴的旋转感应信号,因此可用来实现双向的定位控制;另外,三通道增量型旋转编码器每一圈产生一个称之为零位信号的脉冲。
从单圈绝对值编码器到多圈绝对值编码器
单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码器只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。要测量旋转超过360度范围,就要用到多圈绝对值编码器。
编码器生产厂家运用钟表齿轮机械的原理,当中心码盘旋转时,通过齿轮传动另一组码盘(或多组齿轮,多组码盘),在单圈编码的基础上再增加圈数的编码,以扩大编码器的测量范围,这样的绝对编码器就称为多圈式绝对编码器,它同样是每个位置编码唯一不重复的,而无需记忆。
多圈编码器另一个优点是由于测量范围大,实际使用往往富裕较多,这样在安装时不必要费劲找零点,将某一中间位置作为起始点就可以了,而大大简化了输出、串行输出、总线型输出、变送一体型输出等,单圈低位数的编码器一般用并行信号输出,而高位数的和多圈的编码器输出信号不用并行信号(并行信号连接线多,易错码易损坏),一般为串行或总线型输出。其中串行最常用的是时钟同步串联信号(SSI);总线型最常用的是PROFIBUS-DP型,其他的还有DeviceNet, CAN, Interbus, CC-link等;变送一体型输出使用方便,但精度有所牺牲。
光电编码器的分类及它们的特点介绍

光电编码器的分类及它们的特点介绍
光电编码器是集光、机、电技术于一体的数字化传感器,可以高精度测量被测物的转角或直线位移量,是目前应用最多的传感器。
信号输出原理图
光电编码器的分类
光电编码器按测量方式的分为旋转编码器和直尺编码器,按编码方式的分为绝对式编码器、增量式编码器和混合式编码器。
旋转编码器:通过测量被测物体的旋转角度并将测量到的旋转角度转化为脉冲电信号输出。
直尺编码器:通过测量被测物体的直线行程长度并将测量到的行程长度转化为脉冲电信号输出。
绝对式旋转编码器
用光信号扫描分度盘(分度盘与传动轴相联)上的格雷码刻度盘以确定被测物的绝对位置值,然后将检测到的格雷码数据转换为电信号以脉冲的形式输出测量的位移量。
特点:
1.在一个检测周期内对不同的角度有不同的格雷码编码,因此编码器输出的位置数据是唯一的;
2.因使用机械连接的方式,在掉电时编码器的位置不会改变,上电后立即可以取得当前位置数据;
3.检测到的数据为格雷码,因此不存在模拟量信号的检测误差。
增量式旋转编码器。
高精度光电编码器的设计与应用研究

高精度光电编码器的设计与应用研究光电编码器作为一种测量位置和角度的重要设备,在现代工业中得到了广泛的应用。
其主要原理是通过光电效应将物理量转化为电信号,再通过信号处理得到准确的位置或角度信息。
本文将探索高精度光电编码器的设计与应用,并研究该技术在工业领域的发展潜力。
第一节: 光电编码器的原理与分类光电编码器的原理基于光电效应,即光线照射到光电传感器上,产生电子与空穴对后,通过电路的处理,转化为电信号。
根据测量方式和应用需求的不同,光电编码器可以分为增量型和绝对型两种。
增量型光电编码器通过光电转换和信号处理,测量出物体运动的相对位移。
它适用于需要实时监测运动状态的场景,但无法恢复出绝对位置信息。
绝对型光电编码器能够准确确定物体的绝对位置或角度,无需初始化过程,并具有良好的抗干扰性。
它适用于需要准确定位和高精度控制的工业领域。
第二节: 高精度光电编码器的设计要点高精度光电编码器的设计要点关键在于提高信号的稳定性和精度。
以下是一些设计要点的概述:1. 光源和光电传感器的选择合适的光源和光电传感器选择对信号的稳定性至关重要。
光源应具有稳定的光强度和狭窄的光束角度,而光电传感器应具有高灵敏度和低噪声,以确保高质量的信号输出。
2. 信号的处理和解码算法设计高精度的光电编码器需要优化信号处理和解码算法。
有效的滤波和噪声抑制算法可以减小外界干扰对测量结果的影响,并提高信号的准确性和稳定性。
3. 机械结构的优化光电编码器的机械结构对其测量性能有重要影响。
减小机械误差和抗震动设计可以提高编码器的精度和稳定性。
此外,合适的安装方式和机械连接方式也对测量结果的准确性有重要影响。
第三节: 高精度光电编码器在工业领域的应用高精度光电编码器在工业领域有着广泛的应用。
以下是几个典型的应用案例:1. 机器人控制在工业机器人控制中,光电编码器用于测量机器人关节的角度和位置,实现对机器人运动的精确控制。
高精度的光电编码器可以提高机器人的定位精度和工作效率。
光电式编码器

通常数控机床的机械原点与各铀的脉冲编码器发出Z相脉冲的位置
是一致的。
光源
码盘
光电元件
Z 零位脉冲 A 增量脉冲 B辨向脉冲
图6.30 增量式编码器的结构图
(2)绝对式编码器
1)码制和码盘 码盘按其所用码制可分为:二进制、循环码(葛莱码)、十进
绝对式编码器图案不均匀,几位编码器其码盘上就有几位码 道,在编码器的相应位置都可输出对应的数字码,在码盘运动过 程中读取这些代码,即能实时测得坐标的变化。这种方法的优点 是坐标固定与测量以前状态无关,不需起动时的位置重合,抗干 扰能力强,无累积误差,具有断电位置保持,在不读数的范围内 移动速度可超越极限响应速度,不需要方向判别和可逆计数,信 号并行传送等。缺点是结构复杂、价格高,为提高分辨率需要提 高码道数目或者使用减速齿轮机构组成双码盘机构,将任意位置 取作零位时需进行一定的运算。
2.光电式编码器的接口与安装使用注意事项
(1)机械方面
编码器轴与用户端输出轴之间通过联轴节连接如下图所示, 避免因用户轴的串动、跳动,造成编码器轴系和码盘的损坏。应 保证编码器轴与用户轴的不同轴度<0.2mm,与轴线的偏角<1.5o 安装时严禁敲击和摔打碰撞,以免损坏轴系和码盘。 (2)电气方面
编码器的输出线不能与动力线等绕在一起或同一管道传输, 也不宜在配电盘附近使用,配线时采用屏蔽电缆,可以参照下图 进行配线。
增量式编码器图案和光脉冲信号均匀,可将任意位置作为基 准点,从该点开始按一定的量化单位检测位移或转角,计量脉冲 数即可折算为位移或转角。该方法因无确定的对应测量点,一旦 停电则失掉当前位置,且速度不可超越计数器极限响应速度,此 外由于噪声影响可能造成计数积累误差。优点是其的零点可任意 预置,且测量速度仅受计数器容量限制。
编码器分类

编码器分类1、按信号的原理分:增量式编码器、肯定式编码器、混合式编码器1)增量式编码器直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90,从而可便利地推断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简洁,机械平均寿命可在几万小时以上,抗干扰力量强,牢靠性高,适合于长距离传输。
其缺点是无法输出轴转动的肯定位置信息。
2)肯定式编码器利用自然二进制或循环二进制(格雷码)方式进行光电转换的。
肯定式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,肯定编码器可有若干编码,依据读出码盘上的编码,检测肯定位置。
编码的设计可采纳二进制码、循环码、二进制补码等。
它的特点是:(1)可以直接读出角度坐标的肯定值;(2)没有累积误差;(3)电源切除后位置信息不会丢失。
但是辨别率是由二进制的位数来打算的,也就是说精度取决于位数,目前有10位、14位等多种。
3)混合式肯定值编码器它输出两组信息:一组信息用于检测磁极位置,带有肯定信息功能;另一组则完全同增量式编码器的输出信息。
肯定值编码器是一种直接编码和直接测量的检测装置。
它能指示肯定值位置,没有累积误差,电源切除后,位置信息不丢失。
常用的编码器有编码盘和编码尺,统称为码盘。
从编码器的使用记数来分类,有二进制编码、二进制循环码(葛莱码)、二-十进制码等编码器。
从结构原理分类,有接触式、光电式和电磁式等几种。
混合式肯定值编码器就是把增量制码与肯定制码同做在一块码盘上。
在圆盘的最外圈是高密度的增量条纹,中间有四个码道组成肯定式的四位葛莱码,每1/4同心圆被葛莱码分割成16个等分段。
该码盘的工作原理是三极记数:粗、中、精计数。
码盘转的转数由对“一转脉冲”的计数表示。
在一转以内的角度位置有葛莱码的4*16不同的数值表示。
每1/4圆葛莱码的细分有最外圆的增量码完成。
增量式光电编码器:测速,测转动方向,测移动角度、距离(相对)。
光电编码器分类和选择

光电编码器分类和选择编码器Encoder为传感器(Sensor)类的一种,主要用来侦测机械运动的速度、位置、角度、距离或计数,除了应用在产业机械外,许多的马达控制如伺服马达、BLDC伺服马达均需配备编码器以供马达控制器作为换相、速度及位置的检出所以应用范围相当广泛。
根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,分为增量式编码器和绝对式编码器。
光电编码器是利用光栅衍射原理实现位移—数字变换的,从50年代开始应用于机床和计算仪器,因其结构简单、计量精度高、寿命长等优点,在国内外受到重视和推广,在精密定位、速度、长度、加速度、振动等方面得到广泛的应用。
a.增量式编码器特点:增量式编码器转轴旋转时,有相应的脉冲输出,其计数起点任意设定,可实现多圈无限累加和测量。
编码器轴转一圈会输出固定的脉冲,脉冲数由编码器光栅的线数决定。
需要提高分辨率时,可利用 90 度相位差的 A、B 两路信号进行倍频或更换高分辨率编码器。
b. 绝对式编码器特点绝对式编码器有与位置相对应的代码输出,通常为二进制码或 BCD 码。
从代码数大小的变化可以判别正反方向和位移所处的位置,绝对零位代码还可以用于停电位置记忆。
绝对式编码器的测量范围常规为 0—360 度。
增量型旋转编码器轴的每圈转动,增量型编码器提供一定数量的脉冲。
周期性的测量或者单位时间内的脉冲计数可以用来测量移动的速度。
如果在一个参考点后面脉冲数被累加,计算值就代表了转动角度或行程的参数。
双通道编码器输出脉冲之间相差为90º。
能使接收脉冲的电子设备接收轴的旋转感应信号,因此可用来实现双向的定位控制;另外,三通道增量型旋转编码器每一圈产生一个称之为零位信号的脉冲。
增量型绝对值旋转编码器绝对值编码器为每一个轴的位置提供一个独一无二的编码数字值。
特别是在定位控制应用中,绝对值编码器减轻了电子接收设备的计算任务,从而省去了复杂的和昂贵的输入装置:而且,当机器合上电源或电源故障后再接通电源,不需要回到位置参考点,就可利用当前的位置值。
小型绝对式光电编码器原理及实现

一、概述1. 光电编码器在工业自动化领域发挥着重要作用2. 小型绝对式光电编码器具有高精度、高分辨率等优点3. 本文旨在介绍小型绝对式光电编码器的原理和实现方法二、光电编码器的分类1. 根据工作原理可分为绝对式和增量式光电编码器2. 小型绝对式光电编码器在工业设备的位置检测和运动控制中应用广泛3. 绝对式光电编码器具有即时读取绝对位置信息的优势三、小型绝对式光电编码器的原理1. 光电编码器由光源、光栅、检测器等部分组成2. 通过光源发出光线,经过光栅隔开,最终被检测器检测3. 光栅的设计和排列方式决定了编码器的工作原理和精度4. 小型绝对式光电编码器通过在光栅上加入不同编码规律的方式,实现了对绝对位置信息的准确解读四、小型绝对式光电编码器的实现1. 采用微型化的光栅设计和制造工艺2. 使用高灵敏度的检测器和信号处理电路3. 结合先进的芯片技术,实现对绝对位置信息的精准读取4. 小型绝对式光电编码器的实现不仅在硬件设计上有所突破,还在软件算法方面进行了优化五、小型绝对式光电编码器的应用1. 在精密仪器设备中的位置检测和控制2. 在机械臂、自动化生产线等领域的运动控制3. 在航天航空、医疗器械等高端领域的应用六、小型绝对式光电编码器的发展趋势1. 微型化、集成化是未来的发展方向2. 智能化、多功能化是未来的发展趋势3. 根据市场需求,同时提高性能和降低成本七、总结1. 小型绝对式光电编码器在工业自动化领域具有重要意义2. 原理和实现方法的介绍可帮助工程师更好地理解和应用该技术3. 未来,小型绝对式光电编码器将在微型化、智能化等方面继续取得突破性进展八、参考文献1. XXX.(年份)《光电编码器原理与应用》. 我国机械工业出版社2. XXX.(年份)《光电编码器技术手册》. 机械工业出版社3. XXX.(年份)《光电编码器在工业自动化中的应用》. 自动化技术杂志以上是一篇关于小型绝对式光电编码器原理及实现的文章,希望对您有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电编码器分类
光电编码器分类
光电编码器主要有增量式编码器、绝对式编码器、混合式绝对值编码器、旋转变压器、正余弦伺服电机编码器等,其中增量式编码器、绝对式编码器、混合式绝对值编码器属于数字量编码器,旋转变压器、正余弦伺服电机编码器属于模拟量编码器。
一、增量式编码器
增量式编码器可以将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,通过计数设备来知道其位置.增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。
它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。
一般来说,增量式光电编码器输出A、B两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。
同时还有用。