石墨烯材料的应用
石墨烯的应用

石墨烯的应用
石墨烯是一种具有单层碳原子排列成的二维晶格结构的材料,具有许多独特的物理、化学和机械性质,因此在多个领域都有广泛的应用。
以下是一些常见的石墨烯应用:
1.电子器件:由于石墨烯具有高电子迁移率、高载流子迁移率和优异的电导率,因此被广泛应用于电子器件中,如场效应晶体管(FET)、透明导电膜、逻辑电路等。
2.光学器件:石墨烯具有宽带隙和高吸收率的特点,可用于太阳能电池、光电探测器、激光器等光学器件中,提高光电转换效率和传感性能。
3.储能设备:石墨烯在锂离子电池、超级电容器等能量存储设备中具有重要应用。
其大表面积、高电导率和快速离子传输性能有助于提高能量密度和充放电速度。
4.传感器:石墨烯具有高比表面积和化学惰性,可用于气体传感器、生物传感器等传感器设备中,检测环境中的气体、生物分子等。
5.强化材料:石墨烯可以增强复合材料的力学性能,提高材料的强度、刚度和耐磨性,常用于航空航天、汽车制造、体育用品等领域。
6.生物医学:石墨烯在生物医学领域具有潜在应用,可用于药物输送、生物成像、组织工程等。
其生物相容性和表面修饰的可调控性使其成为生物医学材料的研究热点。
7.热管理:石墨烯具有优异的热导率和导热性能,可用于热界面材料、散热器、导热膏等热管理领域,提高热传递效率。
总的来说,石墨烯作为一种多功能的纳米材料,在电子学、光学、能源、生物医学和材料科学等领域都有着广泛的应用前景。
石墨烯应用到医疗产品的案例

石墨烯应用到医疗产品的案例全文共四篇示例,供读者参考第一篇示例:石墨烯是一种由碳原子组成的二维晶格结构材料,具有极好的导电性、导热性和机械强度,因此在医疗产品领域有着广泛的应用前景。
本文将介绍几个石墨烯应用到医疗产品的案例,让我们一起来看看这些应用是如何改变医疗行业的。
石墨烯在医疗影像领域的应用。
由于石墨烯极好的导电性和透明性,可以制成高灵敏度的生物传感器,用于监测人体内部的生理参数。
石墨烯传感器可以实时监测血压、血糖、血液氧含量等指标,帮助医生更准确地诊断病情,提高治疗的效果。
石墨烯还可以制成超灵敏的X 射线吸收器,提高医学影像的清晰度和分辨率,减少辐射对患者的伤害。
石墨烯在生物医学材料领域的应用。
石墨烯具有优异的生物相容性和抗菌性,可以用于制备人工骨骼、人工皮肤、生物传感器等医疗器械。
石墨烯人工骨骼具有硬度高、强度大、重量轻的特点,可以替代传统的金属骨骼修复材料,降低手术风险和减少术后并发症。
石墨烯人工皮肤具有良好的导热性和导湿性,可以促进伤口愈合,减少疤痕形成,为烧伤患者提供更好的康复效果。
石墨烯在药物输送领域的应用。
石墨烯纳米片具有大比表面积和良好的药物载荷能力,可以用于制备药物载体,实现定向输送和控释治疗。
通过将药物载体与石墨烯包裹在一起,可以提高药物的生物利用度和靶向性,减少药物对健康组织的损伤。
石墨烯药物输送系统还可以实现药物的智能释放,根据患者的病情和生理状态进行调整,提高治疗的效果和患者的生活质量。
石墨烯在医疗产品领域的应用正在逐渐扩大,为医学诊疗和康复提供了新的思路和方法。
随着石墨烯技术的不断进步和完善,相信未来石墨烯将会成为医疗领域的重要材料,为人类健康和生活带来更多的福祉。
【本文原创,未经允许禁止转载】。
第二篇示例:石墨烯在医用成像领域的应用。
由于石墨烯的优异导电性和生物相容性,科研人员们已经研究出了一种能够用于医用成像的石墨烯纳米材料。
这种新型的医用成像材料能够在体内迅速传播,并为医生提供更清晰的影像,帮助医生们更准确地诊断疾病。
石墨烯在吸附中的应用及发展

石墨烯在吸附中的应用及发展石墨烯是一种由碳原子构成的二维薄层材料,具有独特的结构和性质,因此在吸附方面有着广泛的应用和发展潜力。
以下是关于石墨烯在吸附中的应用及发展的1200字以上的介绍。
石墨烯具有高比表面积和优异的化学稳定性,这使得它成为一种理想的吸附材料。
首先,石墨烯可以用于吸附有机和无机物质。
由于石墨烯的结构独特,它可以通过静电吸引、π-π堆积和范德华力等相互作用方式吸附各种分子物质。
例如,石墨烯可以吸附重金属离子,如铅、镉和汞等,从水中去除有害物质,从而净化水源。
此外,石墨烯还可以吸附有机污染物,如苯、甲苯和氯苯等,从工业废水和城市污水中进行处理和净化。
其次,石墨烯在气体吸附方面也有广泛应用。
石墨烯可以吸附气体分子,如二氧化碳和甲烷等,在空气净化和气体储存方面具有潜在的用途。
石墨烯与气体分子的相互作用主要是通过范德华力来实现的,由于石墨烯的高比表面积和化学稳定性,它能够有效地吸附气体分子,并具有较高的吸附容量和选择性。
此外,石墨烯还可以通过控制孔径大小和表面修饰等方式来调控吸附性能,进一步提高其在气体吸附中的应用潜力。
此外,石墨烯在催化吸附方面也有着重要的应用。
石墨烯可以作为催化剂的载体,吸附反应物质,并提供活性位点来促进反应的进行。
通过在石墨烯表面选择性地吸附反应物质,可以提高催化反应的效率和选择性。
例如,石墨烯可以用于催化有机物的加氢反应和氧化反应,以及吸附有害气体的催化转化。
此外,石墨烯还可以与其他催化剂复合使用,提高催化反应的效果。
除了上述应用外,石墨烯在吸附材料的开发中还有许多潜在的应用。
例如,石墨烯可以用于制备超级电容器,通过在石墨烯表面吸附离子来实现电荷存储。
此外,石墨烯还可以用于制备高效的吸附分离膜,通过选择性地吸附分离物质,实现高效的分离和纯化。
另外,石墨烯还可以用于制备高性能吸附剂,如气体吸附剂、水处理剂和催化剂等。
总之,石墨烯作为一种具有独特结构和性质的二维薄层材料,在吸附方面具有广泛的应用和发展潜力。
石墨烯在医药中的应用

石墨烯在医药中的应用石墨烯是一种由碳原子构成的单层二维材料,具有高导电、高导热、高强度、高透明度等优异特性。
这些特性使得石墨烯在医药领域中具有广泛的应用前景。
本文将从药物输送、生物传感器和组织工程三个方面介绍石墨烯在医药中的应用。
一、药物输送1.1 石墨烯作为药物载体石墨烯具有大面积和高比表面积的特性,可以作为药物载体,将药物吸附在其表面或内部进行输送。
与传统的纳米材料相比,石墨烯具有更好的生物相容性和更低的毒性。
1.2 石墨烯修饰的纳米粒子将纳米粒子与石墨烯进行修饰可以提高其生物相容性和稳定性,同时还能够增加其吸附能力和靶向能力。
这种方法被广泛应用于抗癌药物输送系统中。
1.3 石墨烯氧化物将氧化后的石墨烯(GO)作为药物载体,可以通过其大量的羟基和羧基与药物相互作用,将药物吸附在其表面或内部进行输送。
同时,GO 还可以通过表面修饰实现靶向输送。
二、生物传感器2.1 石墨烯场效应晶体管(GFET)石墨烯场效应晶体管是一种基于石墨烯的传感器,可以检测微量分子、细胞和生物分子等。
其灵敏度高、响应速度快、可重复性好等特点使得其在生物传感领域中具有广泛的应用前景。
2.2 石墨烯纳米带(GNR)石墨烯纳米带是一种具有极高灵敏度和特异性的生物传感器。
它可以通过改变电子结构来检测微量生物分子,并且可以实现多重检测。
三、组织工程3.1 石墨烯支架将石墨烯制成支架形态,可以作为组织工程中的载体,用于修复组织缺损。
由于其高导电性和高透明度,可以促进神经再生和细胞增殖。
3.2 石墨烯纳米线石墨烯纳米线是一种具有高强度和高导电性的材料,可以用于组织工程中的电刺激。
通过将其与细胞培养基结合,可以促进细胞增殖和分化。
3.3 石墨烯基生物打印利用生物打印技术,可以将细胞和石墨烯纳米线一起打印成三维结构,用于组织工程中的人工器官修复。
总结:在医药领域中,石墨烯作为一种新型材料,具有广泛的应用前景。
从药物输送、生物传感器和组织工程三个方面介绍了其应用。
石墨烯的多功能应用

石墨烯的多功能应用石墨烯是一种由碳原子构成的二维晶格结构材料,具有许多独特的物理和化学性质,被誉为21世纪最具潜力的材料之一。
石墨烯的发现引起了科学界的广泛关注,其在各个领域的多功能应用也成为研究的热点之一。
本文将介绍石墨烯的多功能应用,包括电子学、光学、生物医药、能源存储等方面的应用。
一、电子学领域石墨烯在电子学领域具有重要的应用前景。
由于石墨烯具有优异的电子输运性能,可以用于制备高性能的场效应晶体管。
石墨烯场效应晶体管具有高电子迁移率、高载流子迁移速度和优良的热导率,可以用于高速电子器件的制备。
此外,石墨烯还可以用于柔性电子器件的制备,如柔性显示屏、柔性传感器等,为电子产品的发展提供了新的可能性。
二、光学领域石墨烯在光学领域也具有重要的应用价值。
石墨烯具有优异的光学性能,可以用于制备光电器件和光学器件。
石墨烯具有宽广的光学吸收谱和快速的载流子响应速度,可以用于制备高性能的光电探测器和光学调制器。
此外,石墨烯还可以用于制备超薄光学器件,如超薄透镜、超薄偏振器等,为光学器件的微型化和集成化提供了新的途径。
三、生物医药领域石墨烯在生物医药领域的应用也备受关注。
石墨烯具有优异的生物相容性和生物相互作用性,可以用于生物传感、药物传递、组织工程等方面。
石墨烯纳米材料可以作为生物传感器的载体,用于检测生物分子的浓度和活性。
此外,石墨烯还可以用于药物的传递和释放,提高药物的生物利用度和靶向性。
在组织工程方面,石墨烯可以用于细胞培养支架的制备,促进组织再生和修复。
四、能源存储领域石墨烯在能源存储领域也有重要的应用。
石墨烯具有高表面积和优异的电导率,可以用于制备超级电容器和锂离子电池。
石墨烯超级电容器具有高能量密度、高功率密度和长循环寿命,可以用于储能系统和电动汽车的动力源。
石墨烯锂离子电池具有高比能量、长循环寿命和快速充放电特性,可以用于便携式电子产品和储能设备。
综上所述,石墨烯具有广泛的多功能应用,涉及电子学、光学、生物医药、能源存储等多个领域。
石墨烯在医药中的应用

石墨烯在医药中的应用石墨烯在医药中的应用引言:石墨烯是一种由连续的碳原子形成的单层薄片材料,具有出色的导电性、热导性和机械性能。
它的发现引起了全球范围内的关注,并在各个领域展示出巨大潜力。
在医药领域,石墨烯的广泛应用为疾病治疗、生物传感和医疗器械等方面带来了革命性的变革。
本文将从多个角度探讨石墨烯在医药中的应用。
第一部分:石墨烯在药物传递中的应用首先,石墨烯作为一种载体材料,可以有效地用于药物传递系统。
由于其高比表面积和强大的载药能力,石墨烯可以用来包装药物,并将其精确地送达到特定的细胞或组织。
此外,石墨烯还可以通过调整其表面性质来实现药物的缓慢释放,从而延长药物的作用时间并提高疗效。
第二部分:石墨烯在诊断中的应用其次,石墨烯在医学诊断中的应用也引起了人们的关注。
由于其超高的灵敏性和特殊的光学特性,石墨烯可以用于生物传感器和成像技术。
例如,将石墨烯与特定的分子结合,可以构建出高灵敏度的传感器,用于检测生物标志物的存在和浓度变化。
此外,石墨烯还可以用于各种成像技术,如磁共振成像和光学成像,以提供更准确的诊断结果。
第三部分:石墨烯在组织工程中的应用另外,石墨烯在组织工程领域也具有巨大的潜力。
由于其良好的生物相容性和导电性能,石墨烯可以用于构建仿生组织和器官。
研究人员已经成功地利用石墨烯来制作人工皮肤、人工骨骼和人工器官等。
这些石墨烯基的仿生组织不仅具有良好的生物相容性和机械性能,还可以实现与生物组织的良好耦合,提高治疗效果。
总结和回顾性内容:通过对石墨烯在医药中的应用进行深入探讨,我们可以看到石墨烯在药物传递、诊断和组织工程等方面的巨大潜力。
作为一种具有独特性能的材料,石墨烯为医药领域的创新提供了新的思路和方法。
然而,尽管石墨烯在理论上表现出很多优异特性,但其在实际应用中仍面临着许多挑战,如制备工艺、生物相容性和安全性等方面的问题。
因此,进一步的研究和探索对于实现石墨烯在医药领域的商业化应用至关重要。
石墨烯材料在纳米科技中的应用

石墨烯材料在纳米科技中的应用在当代科技中,有一种材料备受关注,那就是石墨烯。
石墨烯是由石墨单层组成的二维材料,由于其优异的电子、热学和力学性能,被认为是未来材料领域的重要发展方向之一。
特别是在纳米科技领域,石墨烯具有巨大的应用前景。
一、基础研究中的应用石墨烯作为一种新兴材料,其基础研究日益深入。
由于石墨烯的电子能带特性,石墨烯被广泛地用于制备新型的光电器件和传感器。
通过石墨烯的独特性能,科学家可以研究电子、光、热等波长的物理性质,为石墨烯的深入应用提供了坚实的基础。
二、纳米传感器的应用随着科技的不断发展,人们对于材料的性能要求也越来越高。
石墨烯作为一种新型纳米材料,在纳米传感器领域发挥着巨大的作用。
石墨烯传感器因其优异的电子、光学和机械特性,可以实现对于高灵敏度的气体、湿度、压力、生物分子等细小物质的检测。
这样的传感器在生物医学、环境监测、新能源等领域都有广泛的应用前景。
三、新型太阳能电池的应用由于石墨烯的独特性质,石墨烯还可以被用于制备新型的太阳能电池,这种电池拥有高效的光电转化性能。
使用石墨烯作为透明导电层,可以明显提高电池的光电转化效率和稳定性,并且石墨烯的可撕裂特性也可以降低生产成本。
因此,新型石墨烯太阳能电池具有重要的应用前景,并且在未来可以成为可再生能源的主要代表。
四、新型纳米器件的应用石墨烯具有高强度、高导电、高导热等优异性质,因此可以被广泛地用于制备新型纳米器件。
例如,通过在石墨烯表面加工纳米结构,可以制备出具有超大电容量和高电子迁移速率的石墨烯超级电容器。
此外,石墨烯还可以用于制备出各种新型纳米器件,例如石墨烯晶体管、石墨烯光电元件、石墨烯微波器件等。
总的来说,石墨烯作为一种新型材料,其应用十分广泛,未来石墨烯的应用前景十分看好。
虽然目前石墨烯的应用还处于起步阶段,但是相信随着科技的不断发展,石墨烯在纳米科技中的重要作用会越来越大。
高纯度石墨烯用途

高纯度石墨烯用途
高纯度石墨烯具有许多潜在的应用领域。
以下是一些常见的用途:
1. 电子学和纳米电子学:高纯度石墨烯具有优异的电子传输性能,可用于制备高性能的半导体器件、电极材料和导电材料。
它可以应用于智能手机、平板电脑、显示器等电子产品中。
2. 能源储存:石墨烯具有高比表面积和优异的电导性能,可用于制备高性能的锂离子电池、超级电容器和燃料电池。
3. 材料强化剂:高纯度石墨烯可用作填充剂,增强材料的力学性能。
它可以应用于塑料、橡胶、复合材料等领域,提高材料的强度和硬度。
4. 光学应用:石墨烯具有优异的光学性能,如高透明度、宽波段吸收和强烈的拉曼散射。
它可以应用于光电子器件、传感器和光学涂料中。
5. 生物医学:高纯度石墨烯在生物医学领域具有广泛的应用前景,如药物传输、生物传感器、组织工程和癌症治疗等。
6. 水处理:石墨烯具有高效的吸附性能和氧化性,可用于水处理、废水处理和污水处理中的去除有害物质。
7. 润滑剂:石墨烯的层状结构使其在润滑领域具有优异的表现。
高纯度石墨烯可以用作高温润滑剂、固体润滑剂和润滑涂层。
这些仅是高纯度石墨烯的一些常见应用,随着研究和技术的发展,石墨烯的更多应用领域可能会被发现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯材料的应用
Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT
石墨烯材料的应用摘要:在学习了功能材料课程后,我们最终选择石墨烯最为我们的介绍材料与最终课程论文报告主题。
石墨烯目前是凝聚态物理和材料科学最为活跃的研究前沿,这一非传统的二维材料展现出极好的结晶性及电学质量,它在过去短短几年内已充分显示出在理论研究和应用方面的无穷魅力.论文主要介绍石墨烯目前已经发现的具有很好应用前景的方面。
虽然只有当商用产品出现时才能肯定其应用的现实性,但凭借其非同寻常的性质我们相信石墨烯将会给世界带来巨变。
关键词:石墨烯应用。
引言:自从2004年安德烈.海姆和康斯坦丁.诺沃肖洛夫这对师生用胶带分离法首次制得石墨烯后,不仅在2010年获得诺贝尔奖,还引起全球的石墨烯研究热。
目前全世界有无数的科研机构与科学工作者在做相关石墨烯的理论、制备、应用方面的研究,并在电化学,功能材料,电子器件,化学吸附等方面都取得了显着地成果。
虽然这些都还只是处于研究阶段,还没能应用于实际中,但就目前对石墨烯的研究表明:石墨烯的高导电、透明度高、载流子迁移率快,高比表面积、高力学强度等性质对我们的生活将会带来翻天覆地的变化,相信我们的明天会因石墨烯而更加光明。
石墨烯简介:
石墨烯就碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是单层石墨。
我们日常生活所见的石墨就是多层的,所以可通过石墨来制备石墨烯。
其发展历程是:
1934年朗道和佩尔斯指出准二晶体材料由于其自身的热力学不稳定,导致其在常温常压下会迅速分解。
1947年,菲利普华莱士开始研究石墨烯电子结构并指出其结构的不稳定性。
1987年穆拉斯首次用“graphene”来指单层石墨片。
2004年安德烈.海姆和康斯坦丁.诺沃肖洛夫用胶带分离法制得石墨烯。
可见石墨烯的研究已经有八十左右年,但是在2004年之前,世人都认为二维结构的物质根本不稳定,所以很少有人去研究。
现在发现石墨烯不仅在空气中很稳定,而且还具有非常多优良的性质。
石墨烯的应用:将分别按照其特性来介绍其应用。
极高吸附能力:由于石墨烯具有极高的比表面积,其吸附性表现的非常好,是目前已知吸附能力最高的材料。
研究发现石墨烯表面进行磺酸基功能化处理,不但可以提高石墨烯的分散性,这种功能化石墨烯对萘和萘酚的吸附能力达到了每克毫摩尔,是目前吸附能力最高的材料可以用于净化水,比目前常用的活性炭效果要好很多倍,对石墨烯表面修饰其它基团对吸附有机质与重金属离子也具有非常优异的表现;在检测气体是具有很低的噪声信号,可以精确的探测单个气体分子,这也使之在化学传感器和分子探针方面有潜在的应用前景,美国科学家研究出一款只有邮票大小的石墨烯传感器,其具有对氨水和二氧化氮就有非常灵敏的吸收检测功能,可用于炸弹检测,并且可重复使用;此外在储氢方面具有比合金优良的多的性能,有望用于下一代储氢材料,这对于氢动力汽车行业来说无疑是绝好消息。
极高的力学强度:其不仅力学强度高,而且密度度很小,超坚韧的如果物理学家们能制取出厚度相当于普通食品塑料包装袋的(厚度约100纳米)
石墨烯,它将能承受大约两吨重的物品。
在航天航空、防弹衣,和“太空电梯”的缆线、风力发电等需要高强度重量轻的这些领域将引发革命性的突破。
如石墨烯的强度超出钢铁数十倍有望被用于制造纸片般薄的超轻型飞机材料,可以很大的提高飞机的载重能力;掺杂了石墨烯防弹衣,可以做的跟普通衣物一样轻薄,对于军队来说将是一个减少伤亡的很好方法;美国家日前首次制造出碳纳米管增强聚氨酯风电叶片。
与传统材料相比,该材料重量轻、强度大、耐久性好,如果用掺杂石墨烯的话,效果会更好。
为了实现进一步扩大风力发电规模,更有效地利用风电资源,不少工程师和科学家都在致力于制造出更好的风电叶片以提高风力涡轮机的效率。
按说只要增大叶片面积就能捕获更多的风能,但事情并非这么简单。
如果叶片过重,推动转子转动就需要更大的风力,这意味着更多的风力被浪费在了推动转子上而非发电。
因此,更轻、更大、更结实耐用的叶片才是最佳选择。
所以用石墨烯来制造风力发电叶片,将可以很大的提高风力发电的效率,使风力发电的大范围推广成为可能。
透明导电:石墨烯既透明又导电的特点,使得它作为透明导电膜的潜力非常大,而透明导电膜正是触摸屏和LED显示屏的重要组成部分。
透明导电薄膜(TCFs,transparentconductingfilms)是指在可见光区
(=380780nm)有较高的透光率(Tavg大于80%),并且具有优良的导电性,电阻率可以达到10-5欧姆每米以下的薄膜材料透明导电薄膜是许多光电子器件的重组成部分,例如液晶显示器(LCD)、有机太阳能电池、有机发光二极管(OLED)、智能窗等铟锡氧化物(ITO)由于其高电导率和高透光率,已经成为透明导电薄膜的主要材料。
然而ITO在使用过程中也存在一些缺点,
包括:(1)铟的价格持续上涨,使得ITO成为日益昂贵的材料,(2)ITO脆的性质使其不能满足一些新应用(例如可弯曲的LCD有机太阳能电池)的性能要求,(3)ITO的制备方法(例如喷镀蒸发脉冲激光沉积电镀)费用高昂。
再加上电视机的彩色需要用到稀土发光材料,由于稀土的开发严重污染环境,且国外缺少稀土资源,所以一直在寻找替代品。
由此我们可以看出石墨烯有望引发触摸屏和显示器产品的革命,制造出可折叠、伸缩的显示器件。
目前,三星科学家首次制造出了由多层石墨烯和玻璃纤维聚酯片基底组成的25英寸的柔性透明触摸屏,表明石墨烯在此方面的良好应用前景。
此外石墨烯透明导电的性质还使它可以作为太阳能电池透明电极材料,能提高太阳能电池的发电效率。
比表面积巨大:石墨烯是单层碳原子,其比表面积巨大,有几吨的石墨烯便可以将地球铺满。
巨大地比表面积且导电性能,使之成为充电电池的救星。
电动力汽车之所以到现在还没有广泛应用,就是因为电池的能量储存密度低与充电性能的问题。
由于石墨烯的巨大比表面积,能够使电池具有很高的储能密度,而且由于其阴阳两极面积巨大,可以使电池在短短几分钟甚至是几秒内边完
下载文档到电脑,查找使用更方便
2下载券65人已下载
下载
还剩2页未读,继续阅读
成充电。
有科学研究表明,用石墨烯制出的电池理论上是现有锂电池同体积下容量的数十倍,而且由于石墨烯的导电性能优异,比银还要好,电子
在石墨烯上运动能量几乎不损耗。
电池工作时几乎不发热,这使得电池更加耐用。
美国俄亥俄州Nanotek仪器公司研制出新储能设备又称为石墨烯表面锂离子交换电池,或简称为表面介导电池(SMCS),它集中了锂电池和超级电容的优点,同时兼具高功率密度和高能量储存密度的特性。
所以我们可以畅想我们未来的汽车充电速度比现在加油还要快。
我们的手机充一次电,可以用一个月之久。
但是我们目前遇到的情况是,电池充电的循环次数还不能够保证,这主要是石墨烯表面添加基团的修饰问题。
极高的载流子迁移速度:硅的载流子迁移率仅为1000~2000cm2/Vs,而石墨烯的这个指标能够达到几十万甚至上百万,是迄今发现的载流子迁移率最高的物质之一。
这一特性意味着一旦石墨烯能够取代或部分取代硅,计算机处理器运行速度有望达到100GHZ甚至1000GHZ。
由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,目前一般的电脑芯片以这种方式浪费了70%-80%的电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了非同寻常的优良特性。
但是,目前研究表明不可能用石墨烯完全取代硅做电子器件,但是部分取代是可以的,也就是掺杂石墨烯。
掺杂石墨烯也可以很大的提升CPU的运行速度,而且他的体积更小,功耗更低。
,此外美国科学家还建造出一款能打开或关闭光的光调制器(调制器是控制数据传输速度的关键),其调制速度目前为1吉赫(千兆赫),是目前调制解调器传输速度的百倍。
未来我们将一部高清的三维电影搬到我们的智能手机只需一两秒的情景指日可待。
总结:除上述应用之外,石墨烯在很多领域都有很大的、很有前景的应用。
如
在医学上,细菌在石墨烯上不能生长,所以可制造石墨烯防菌纱布;还有就是石墨烯在药物输运,细胞成像,肿瘤治疗,生物检测等方面都发现具有很好的用途。
从石墨烯的诞生到现在才短短的八年时间,虽然还没有一项应用投入与实际,但是这也已经发展的相当迅速了。
石墨烯,不愧是材料之王。
现在石墨烯很热,不仅在研究方面,论文发表如雨后春笋。
甚至在股市,也
有人炒,在国内,凡是跟石墨烯沾边的上市公司,即使在股市低迷时期,仍然轮番飙涨。
但是没有一家公司能够将生产出能投入于实际应用的产品。
其实石墨烯下游应用技术才是国内外最大的差距所在,也是我们急需突破的领域。
国内在石墨烯上做基础研究比较多,但是在石墨烯应用研究还是跟国外发达国家有比较大的差距。
因此,国内石墨烯产业能否发展起来,关键还要看应用技术的开发。
有些企业号称能年产多少吨的石墨烯,下游应用都没发展起来,量产没有用,由于石墨烯的比表面积巨大,1Kg 的石墨烯就够一家显示屏企业用上好几年了。
现在我们最要紧的就是突破技术瓶颈,将石墨烯应用于实际。
石墨烯能否带来新一次科学技术革命,得靠我们大家努力,而我们中国能不能赶上,还得依靠我们一起努力!。