江苏徐州市高中数学第一章常用逻辑用语11命题及其关系111四种命题学案苏教版1-1!
2021年高中数学第一章常用逻辑用语1.1.1四种命题课件14苏教版选修1_1

1.1 命题及其关系
以下语句的表述形式有什么特点?你能判断 它们的真假吗? (1)假设直线a∥b,那么直线a和直线b无公共点; (2)2+4=7; (3)垂直于同一条直线的两个平面平行; (4)假设x2=1,那么x=1; (5)两个全等三角形的面积相等; (6)3能被2整除.
假设一个点在线段的垂直平分线上,那么它到这条线段 两端点的距离相等。 〔3〕对顶角相等。 假设两个角是对顶角,那么这两个角相等。 〔4〕到圆心的距离不等于半径的直线不是圆的切线; 假设一条直线到圆心的距离不等于半径,那么它不是圆的
切线。
课堂练习
2、填空: 〔1〕命题“末位是0的整数,可以被5整除〞 的假逆设命一题个是整:数可以被5整除,那么它的末位是0。
以下四个命题中,命题(1)与命题(2)(3)(4)的条件和 结论之间分别有什么关系?
(1) 同位角相等,两直线平行; (2) 两直线平行,同位角相等 ; (3) 同位角不相等,两直线不平行; (4) 两直线不平行,同位角不相等.
命那┓那┓另么设另题么p么q一qq一〞〞命如,它〞,如它另那命如命个个..题果的,果的一那么题果题叫叫(原逆原否个么p1(原(做做11)〞命否和命命叫它))命原原和和.题命(题题做的题命命4((23)为题为为原逆叫))为题 题叫叫为命命做的的做做题题互逆否互互““的为为“命命““逆否假假逆逆假题题假假命命设设否否设..设设题题p┓命命p┓“p,..,那其其q题,那题p那假,,么中中那.么那.其q一一么q么中〞〞个个一,,命命个原 命 否题题原否是原命否命命题存叫叫命命否题存命题的在题呢性题题存做做的在题与真相呢?叫呢与的在原原真相与其假关??做其真相假关其逆是性命命逆假关原是性否题题,,
高中数学《四种命题》导学案

第一章常用逻辑用语1.1.2 四种命题一、学习目标:1.了解命题的逆命题、否命题和逆否命题,并会写出一个命题的逆命题、否命题和逆否命题.2.能够判断四种命题的真假.【重点、难点】1.认识四种命题之间的关系以及真假性之间的关系.2.会利用命题的等价性解决问题.二、学习过程【情景创设】探究下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数;(2)若f(x)是周期函数,则f(x)是正弦函数;(3)若f(x)不是正弦函数,则f(x)不是周期函数;(4)若f(x)不是周期函数,则f(x)不是正弦函数.【导入新课】1.原命题与逆命题2.原命题与否命题3.原命题与逆否命题【典例分析】例1.已知命题p:若a是奇数,则a是质数,则命题p的逆命题是( )A.若a是奇数,则a是质数B.若a是质数,则a是奇数C.若a不是奇数,则a不是质数D.若a不是质数,则a不是奇数例2.“△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为________.例3. 判断命题“若△ABC不是等腰三角形,则它的任何两个内角不相等”的逆否命题为________(填“真命题”或“假命题”).【变式拓展】:1.命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )A.逆命题B.否命题C.逆否命题D.无关命题2.下列命题的否命题为“邻补角互补”的是( )A.邻补角不互补B.互补的两个角是邻补角C.不是邻补角的两个角不互补D.不互补的两个角不是邻补角3.下列四个命题:①“若x+y=0,则x,y互为相反数”的否命题;②“若a>b,则a2>b2”的逆否命题;③“若x≤-3,则x2-x-6>0”的否命题;④“对顶角相等”的逆命题.其中真命题的个数是( )A.0B.1C.2D.34.命题“若a>b,则2a>2b-1”的逆否命题是.三、总结反思:1.原命题与逆命题的关系逆命题是将原命题的条件与结论互换,原命题的逆命题与原命题是互逆的,即逆命题的逆命题是原命题.2.原命题与否命题的关系原命题的条件和结论都否定即得否命题,原命题也可以看作是它的否命题的否命题.3.原命题与逆否命题的关系原命题的条件和结论“换位”得逆命题,“换质”(即否定)得否命题,既“换位”又“换质”得逆否命题.4.四种命题的三个关注点(1)写原命题的逆命题时,不要交换命题的前提条件.(2)写一个命题的否命题时,要对命题的条件和结论都进行否定,避免出现不否定条件,而只否定结论的错误.(3)任何一个命题都包含条件和结论两部分,通过条件和结论的不同变换都可以得到这个命题的逆命题、否命题和逆否命题.因此任何一个命题都有逆命题、否命题和逆否命题.四、随堂检测1.命题:若a2+b2=0(a,b∈R),则a=b=0的逆否命题是( )A.若a≠b≠0(a,b∈R),则a2+b2≠0B.若a=b≠0(a,b∈R),则a2+b2≠0C.若a≠0且b≠0(a,b∈R),则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠02.已知命题“若ab≤0,则a≤0或b≤0”,则下列结论正确的是( )A.真命题,否命题:“若ab>0,则a>0或b>0”B.真命题,否命题:“若ab>0,则a>0且b>0”C.假命题,否命题:“若ab>0,则a>0或b>0”D.假命题,否命题:“若ab>0,则a>0且b>0”3.给定下列命题:①若a>0,则方程ax2+2x=0有解;②“等腰三角形都相似”的逆命题;③“若x-错误!未找到引用源。
江苏省东台市高中数学第一章常用逻辑用语1.1命题及其关系导学案无答案苏教版选修1_1

1.1命题及其关系主备人:学生姓名:得分:学习目标:1.通过实例理解命题的概念,会判断命题的真假.2.了解命题的四种形式,能正确判断四种命题之间的关系.学习难点:1.会写命题的逆命题、否命题、逆否命题2.利用四种命题的关系判断命题的真假学习方法:自主预习,合作探究,启发引导一、导入亮标我们知道,能够判断真假的语句叫做命题.例如,如果两个三角形全等,那么它们的面积相等;①如果两个三角形的面积相等,那么它们全等;②如果两个三角形不全等,那么它们的面积不相等;③如果两个三角形的面积不相等,那么它们不全等.④思考:命题②,③,④与命题①有什么关系?二、自学检测1.上面的四个命题都是“如果……,那么……”形式的命题,可以记为“若p则q”,其中p是命题的条件,q是命题的结论.2.在上面的例子中:命题②的条件和结论分别是命题①的结论和条件,我们称这样的两个命题互为命题;命题③的条件和结论分别是命题①的条件的否定和结论的否定,我们称这样的两个命题互为命题;命题④的条件和结论分别是命题①的结论的否定和条件的否定,我们称这样的两个命题互为命题.3.一般地,设“若p则q”为原命题,那么“若q则p”就叫做原命题的逆命题;“若非p 则非q”就叫做原命题的否命题;“若非q则非p”就叫做原命题的逆否命题.(非p、非q 分别表示p和q的否定)三、合作探究例1 写出命题“若a=0,则ab=0”的逆命题、否命题与逆否命题.思考:原命题的真假、逆命题的真假、否命题的真假与逆否命题的真假有什么关系?画出:四种命题的关系图(见课本)例2 把下列命题改写成“若p则q”的形式,并写出它们的逆命题、否命题与逆否命题,同时指出它们的真假.(1)对顶角相等;(2)四条边相等的四边形是正方形.例3 判断下列说法是否正确:(1)一个命题的否命题为真,它的逆命题也一定为真;(2)一个命题的逆否命题为真,它的逆命题不一定为真.例4 写出下列命题的逆命题、否命题与逆否命题,并分别判断它们的真假:(1)若||||b a =,则a =b ;(2)若x <0,则x2>0.四、展示点评本节学习了以下内容:1. 命题的概念2. 怎样写命题的条件和结论3. 写命题的逆命题/否命题和逆否命题4. 利用命题的等价性判断命题的真假五、检测清盘1.下列语句中是的命题有 (填上所有符合题意的序号)①空集是任何集合的真子集;②把门关上;③垂直于同一直线的两条直线平行; ④自然数是偶数吗?2.下列命题:①若0<m ,则方程02=+-m x x 有实根;②函数)(sin )(R x x x x f ∈=是奇函数;③已知U 为全集,若U B A =Y ,则B C A U =;④若直线和平行,则.其中,真命题有.(填上所有符合题意的序号)3.一个命题与它的逆命题,否命题,逆否命题这四个命题中A 真命题的个数一定是奇数B 真命题的个数一定是偶数C 真命题的个数可能是奇数,也可能是偶数D 上述判断都不正确4.给出下列命题:①若,则;②若,则;③若,则;④对于实数,若,则;网]⑤正方形不是菱形.其中真命题是;假命题是.(填上所有符合题意的序号)5.下列四个命题中真命题的个数是①“”的否命题;②“若都是偶数,则是偶数”的否命题;③“”的逆否命题;④已知的逆命题。
高中数学常用逻辑用语:命题及其关系

常用逻辑用语:命题及其关系要求层次重难点 “若p ,则q ”形式的命题及其逆命题、否命题与逆否命题A 理解四种命题的相互关系;掌握充要条件的判定四种命题的相互关系B 充要条件C(一) 知识内容1.对于“如果p ,则q ”形式的命题,p 称为命题的条件,q 称为命题的结论.定理:经过证明为真的命题.当命题“如果p ,则q ”经过推理证明断定是真命题时,我们就说则p 可以推出q ,记作p q ,读作“p 推出q ”.2.命题的四种形式:命题“如果p ,则q ”是由条件p 和结论q 组成的,对p q ,进行“换位”和“换质(否定)”后,可以构成四种不同形式的命题. ⑴原命题:如果p ,则q ; ⑵原命题的逆命题:如果q ,则p ; ⑶原命题的否命题:如果非p ,则非q ; ⑷原命题的逆否命题:如果非q ,则非p .否逆为互逆为互否互否互逆互否互逆如果非q ,则非p如果非p ,则非q如果 q,则 p如果 p,则 q3.命题“如果p ,则q ”的四种形式之间有如下关系:⑴互为逆否命题的两个命题等价(同真或同假).因此证明原命题,也可以改证它的逆否命题.例题精讲高考要求常用逻辑用语:命题及其关系板块一:命题的四种形式⑵互逆或互否的两个命题不等价.<教师备案>注意命题的否定与否命题之间的区别,前者是命题的反面,且与命题的真假恰好相反;后者是对条件与结论同时进行否定,它的真假与原命题的真假没有绝对的联系.(二)典例分析【例1】 判断下列语句是否是命题:⑴张三是四川人;⑵1010是个很大的数;⑶220x x +=;⑷260x +>;⑸112+>;【例2】 判断下列命题的真假.⑴空间中两条不平行的直线一定相交; ⑵垂直于同一个平面的两个平面互相垂直; ⑶每一个周期函数都有最小正周期; ⑷两个无理数的乘积一定是无理数; ⑸若A B ,则A B B ≠;⑹若1m >,则方程220x x m -+=无实数根. ⑺已知a b c d ∈R ,,,,若a c ≠或b d ≠,则a b c d +≠+; ⑻已知a b c d ∈R ,,,,a b c d +≠+,则a c ≠或b d ≠.【例3】 设语句()p x :πcos()sin 2x x +=-,写出π()3p ,并判断它是不是真命题;【例4】 下面有四个命题:①若a -不属于N ,则a 属于N ;②若a b ∈∈N N ,,则a b +的最小值为2;③212x x +=的解可表示为{}11,.其中真命题的个数为( ) A .0个 B .1个 C .2个 D .3个【例5】 如果两个三角形全等,那么它们的面积相等; ①如果两个三角形的面积相等,那么它们全等; ② 如果两个三角形不全等,那么它们的面积不相等; ③ 如果两个三角形的面积不相等,那么它们不全等; ④ 命题②、③、④与命题①有何关系?【例6】 写出下列命题的否命题,并判断否命题的真假.⑴命题p :“若0,ac ≥则二次方程20ax bx c ++=没有实根”; ⑵命题q :“若x a ≠且x b ≠,则2()0x a b x ab -++≠”; ⑶命题r :“若(1)(2)0x x --=,则1x =或2x =”.⑷命题l :“ABC ∆中,若90C ︒∠=,则A ∠、B ∠都是锐角”; ⑸命题s :“若0abc =,则a b c ,,中至少有一个为零”.【例7】 下列命题中正确的是( )①“若220x y +≠,则x y ,不全为零”的否命题 ②“正多边形都相似”的逆命题③“若0m >,则20x x m +-=有实根”的逆否命题④“若x x 是无理数”的逆否命题A .①②③④B .①③④C .②③④D .①④【例8】 写出下列命题的逆命题,否命题,逆否命题,并判断它们的真假.⑴“负数的平方是正数”;⑵“若a 和b 都是偶数,则a b +是偶数”; ⑶“当0c >时,若a b >,则ac bc >”; ⑷“若5x y +=,则3x =且2y =”;【例9】 ⑴命题:“若220(),a b a b +=∈R ,则“0a b ==”的逆否命题是( ) A .若0(),a b a b ≠≠∈R ,则220a b +≠ B .若0a ≠且0(),b a b ≠∈R ,则220a b +≠ C .若0(),a b a b =≠∈R ,则220a b +≠ D .若0a ≠或0(),b a b ≠∈R ,则220a b +≠ ⑵有下列四个命题:①命题“若1xy =,则x ,y 互为倒数”的逆命题;②命题“面积相等的三角形全等”的否命题;③命题“若1≤m ,则220x x m -+=有实根”的逆否命题;④命题“若A B B =,则A B ⊆”的逆否命题.其中是真命题的是 (填上你认为正确的命题的序号).【例10】 ⑴ “在ABC ∆中,若90C ∠=︒,则A ∠、B ∠都是锐角”的否命题为;⑵(2007重庆)命题:“若21x <,则11x -<<”的逆否命题是( ) A .若21≥x ,则1≥x 或1≤x - B .若11x -<<,则21x < C .若1x >或1x <-,则21x > D .若1≥x 或1≤x -,则21≥x【例11】 下列命题中_________为真命题.①“A B A =”成立的必要条件是“A B ”;②“若220x y +=,则x ,y 全为0”的否命题; ③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.【例12】 已知命题“如果1≤a ,那么关于x 的不等式22(4)(2)10≥a x a x -++-的解集为∅”.它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A .0个B .2个C .3个D .4个【例13】 已知等比数列{}n a 的前n 项和为n S .⑴若m S ,2m S +,1m S +成等差数列,证明m a ,2m a +,1m a +成等差数列; ⑵写出⑴的逆命题,判断它的真伪,并给出证明.【例14】 ⑴命题p :奇函数一定有(0)0f =;命题q :函数1y x x=+的单调递减区间是[10)(01],,-.则下列四个判断中正确的是( )A .p 真q 真B . p 真q 假C . p 假q 真D . p 假q 假 ⑵设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; ②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题的序号是 ____ .(写出所有真命题的序号)【例15】 设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a .若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换.现有下列命题: ①设f 是平面M 上的线性变换,则(0)0f =;②对a V ∈,设()2f a a =,则f 是平面M 上的线性变换; ③若e 是平面M 上的单位向量,对a V ∈设()f a a e =-,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则()(),f a f b 也共线. 其中真命题是 (写出所有真命题的序号)【例16】 对于四面体ABCD ,下列命题正确的是 (写出所有正确命题的编号).①相对棱AB 与CD 所在的直线是异面直线;②由顶点A 作四面体的高,其垂足是BCD ∆的三条高线的交点;③若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面; ④分别作三组相对棱中点的连线,所得的三条线段相交于一点;⑤最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.【例17】 设直线系:cos (2)sin 1(02π)M x y θθθ+-=≤≤,对于下列四个命题:A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数(3)n n ≥,存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).【例18】 关于x 的方程()222110x x k ---+=,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根;②存在实数k ,使得方程恰有4个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根; 其中假.命题的个数是( ) A .0 B .1C .2D .3【例19】 命题“若x y =,则||||x y =”,写出它的逆命题、否命题、逆否命题,并判断它们的真假【例20】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤,则220x x q ++=有实根”的逆否命题; ④“等边三角形的三个内角相等”逆命题;其中真命题的个数为( ) A .1 B .2 C .3 D .4【例21】 原命题:“设a b c ∈R ,,,若a b >,则22ac bc >”以及它的逆命题、否命题、逆否命题中,真命题共有( )个.A .0B .1C .2D .4【例22】 下面有五个命题:①函数44sin cos y x x =-的最小正周期是π. ②终边在y 轴上的角的集合是π|2k a a k ⎧⎫=∈⎨⎬⎩⎭Z ,. ③在同一坐标系中,函数sin y x =的图象和函数y x =的图象有三个公共点.④把函数π3sin 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6得到3sin 2y x =的图象.⑤函数πsin 2y x ⎛⎫=- ⎪⎝⎭在()0π,上是减函数. 其中真命题的序号是 .【例23】 设a ,b 是两条直线,α,β是两个平面,则a b ⊥的一个充分条件是( )A .a α⊥,b β∥,αβ⊥B .a α⊥,b β⊥,αβ∥C .a α⊂,b β⊥,αβ∥D .a α⊂,b β∥,αβ⊥【例24】 命题“若ABC ∆不是等腰三角形,则它的任何两个内角不相等”的逆否命题是 .【例25】 给出以下四个命题:①“若0x y +=,则x y ,互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q -≤,则20x x q ++=有实根”的逆否命题;④“不等边三角形的三内角相等”的逆否命题.其中真命题是( )A .①②B .②③C .①③D .③④【例26】 对于直角坐标平面内的任意两点11(),A x y 、22(),B x y ,定义它们之间的一种“距离”: 1212AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222AC CB AB +=; ③在ABC ∆中,AC CB AB +>. 其中真命题的个数为( )A .1个B .2个C .3个D .4个【例27】 有下列四个命题:①“若0x y +=,则,x y 互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若1≤q ,则220x x q ++=有实根”的逆否命题;④“不等边三角形的三个内角相等”逆命题.其中真命题为( )A .①②B .②③C .①③D .③④【例28】 已知三个不等式:000,,c dab bc ad a b>->->(其中,,,a b c d 均为实数).用其中两个不等式作为条件,余下的一个不等式作为结论组成一个命题,可组成真命题的个数是( ) A .0 B .1 C .2 D .3【例29】 命题:“若21x <,则11x -<<”的逆否命题是( )A .若21x ≥,则1x ≥或1x -≤B .若11x -<<,则21x <C .若1x >或1x <-,则21x >D .若1x ≥或1x -≤,则21x ≥【例30】 已知m n ,是两条不同直线,αβγ,,是三个不同平面,下列命题中正确的是( ) A .若m n αα∥,∥,则m n ∥ B .若αγβγ⊥⊥,,则αβ∥ C .若m m αβ∥,∥,则αβ∥D .若m n αα⊥⊥,,则m n ∥【例31】 已知直线m 、n 与平面α、β,给出下列三个命题:①若m α∥,n α∥,则m n ∥;②若m α∥,n α⊥,则n m ⊥;③若m α⊥,m β∥,则αβ⊥. 其中真命题的个数是( )A .0B .1C .2D .3。
四种命题及其相互关系-课件

• 由图示可知?处应为互逆关系.
• 解法2:用特殊命题探究
• p:若x>2,则x>1,r:若x>1,则x>2,s: 若x≤1,则x≤2,p的否命题:若x≤2,则x≤1, 故s是p的否命题的逆命题.
典例探究学案
•四种命题的概念
写出下列命题的逆命题、否命题与逆否命题. (1)正数的平方根不等于 0; (2)当 x=2 时,x2+x-6=0; (3)若 a>b,则 ac2>bc2.
若命题 p 的否命题为 q,命题 p 的逆否命题为 r,
则 q 与 r 的关系是( )
A.互逆命题
B.互否命题
C.互为逆否命题
D.以上都不正确
• [答案] A
• [分析] 研究命题之间的关系,将命题写成 “若p则q”形式,然后依据四种命题的定义解 答.
• [解析] 设p为“若A,则B”,那么q为“若¬A, 则¬B”,r为“若¬B,则¬A”.由于q和r的条件 和结论互换,故q和r互为逆命题.
• [方法规律总结] 1.写出四种命题的方法
• (1)交换原命题的条件和结论,所得的命题是 逆命题;
• (2)同时否定原命题的条件和结论,所得的命 题是否命题;
• (3)交换原命题的条件和结论,并且同时否定, 所得的命题是逆否命题.
• 写出下列命题的逆命题、否命题、逆否命 题.
• (1)若x2+y2=0,则x、y全为0; • (2)若a+b是偶数,则a、b都是偶数. • [解析] (1)逆命题:若x、y全为0,则x2+y2
• [解析] 本题主要考查命题的四种形式.写逆 否命题时,将原命题的题设和结论分别否定 再交换.故选C.
高中数学 第一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题 1.1.3 四种命题间的

1.1.2 四种命题1.1.3 四种命题间的相互关系学习目标:1.了解四种命题的概念,能写出某命题的逆命题、否命题和逆否命题.(重点)2.知道四种命题之间的相互关系以及真假性之间的联系.(易混点)3.会利用命题的等价性解决问题.(难点)[自主预习·探新知]1.四种命题的概念及表示形式名称定义表示形式互逆命题对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.原命题为“若p,则q”;逆命题为“若q,则p”互否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的否命题原命题为“若p,则q”;否命题为“若p,则q”互为逆否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题原命题为“若p,则q”;逆否命题为“若q,则p”2.四种命题间的相互关系(1)四种命题之间的关系(2)四种命题间的真假关系原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假由上表可知四种命题的真假性之间有如下关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.[基础自测]1.思考辨析(1)命题“若p,则q”的否命题为“若p,则q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.( )(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.[答案](1)×(2)√(3)√2.命题“若一个数是负数,则它的相反数是正数”的逆命题是( )A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]3.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )【导学号:97792008】A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.][合作探究·攻重难]四种命题把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题和逆否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.[规律方法] 1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:原词语等于(=)大于(>)小于(<)是都是至多有一个否定词语不等于(≠)不大于(≤)不小于(≥)不是不都是至少有两个原词语至少有一个至多有n个任意的任意两个所有的能否定词语一个也没有至少有(n+1)个某一个(确定的)某两个某些不能1.(1)命题“若y =kx ,则x 与y 成正比例关系”的否命题是( )【导学号:97792009】A .若y ≠kx ,则x 与y 成正比例关系B .若y ≠kx ,则x 与y 成反比例关系C .若x 与y 不成正比例关系,则y ≠kxD .若y ≠kx ,则x 与y 不成正比例关系D [条件的否定为y ≠kx ,结论的否定为x 与y 不成比例关系,故选D.] (2)命题“若ab ≠0,则a ,b 都不为零”的逆否命题是________.若a ,b 至少有一个为零,则ab =0 [“ab ≠0”的否定是“ab =0”,“a ,b 都不为零”的否定是“a ,b 中至少有一个为零”,因此逆否命题为“若a ,b 至少有一个为零,则ab =0”.]四种命题的关系及真假判断(1)对于原命题:“已知a 、b 、c ∈R ,若a >b ,则ac 2>bc 2”,以及它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路探究] (1)只需判断原命题和逆命题的真假即可. (2)思路一 写出原命题的逆否命题→判断其真假 思路二 原命题与逆否命题同真同假即等价关系→判断原命题的真假→得到逆否命题的真假[解析] (1)当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C.[答案] C(2)法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0,∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0,根的判别式Δ=1+4a >0,∴方程x2+x-a=0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.[规律方法]判断命题真假的方法1解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证.2原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可.[跟踪训练]2.判断下列四个命题的真假,并说明理由.(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.等价命题的应用1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.提示:根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.【导学号:97792010】[思路探究] (1)根据其逆否命题求解.(2)证明其逆否命题成立.[解析](1)∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x∈R,ax2-2ax-3≤0恒成立”,若a=0,则-3≤0恒成立,∴a=0符合题意.若a≠0,由题意知{a<0Δ=4a2+12a≤0,即{a<0-3≤a≤0,∴-3≤a<0综上知,a的取值范围是-3≤a≤0.[答案][-3,0](2)证明原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.[规律方法] 1.若一个命题的条件或结论含有否定词时,直接判断命题的真假较为困难,这时可以转化为判断它的逆否命题.2.当证明一个命题有困难时,可尝试证明其逆否命题成立.3.证明:若a2-4b2-2a+1≠0,则a≠2b+1.[证明]“若a2-4b2-2a+1≠0,则a≠2b+1”的逆否命题为“若a=2b+1,则a2-4b2-2a+1=0”.∵a=2b+1,∴a2-4b2-2a+1=(2b+1)2-4b2-2(2b+1)+1=4b2+1+4b-4b2-4b-2+1=0.∴命题“若a=2b+1,则a2-4b2-2a+1=0”为真命题.由原命题与逆否命题具有相同的真假性可知,原命题得证.[当堂达标·固双基]1.命题“若a∉A,则b∈B”的逆命题是( )A.若a∉A,则b∉B B.若a∈A,则b∉BC.若b∈B,则a∉A D.若b∉B,则a∉AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a∉A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.]3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为 ( )A.1 B.2 C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.【导学号:97792011】若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.[解] (1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.。
高中数学第1部分第1章常用逻辑用语1.1命题及其关系1.1.1四种命题1数学教案

1.1.1 四 种 命 题 命题的概念(1)这幅画真漂亮! (2)求证3是无理数;(3)菱形是平行四边形吗?(4)等腰三角形的两底角相等;(5)x >2 012;(6)若x 2=2 0122,则x =2 012.问题:在这些语句中哪些能判断出真假,哪些不能判断出真假. 提示:(1)(2)(3)(5)不能判断真假;(4)(6)能判断真假.1.能够判断真假的语句叫做命题.2.命题⎩⎪⎨⎪⎧ 真命题:判断为真的命题.假命题:判断为假的命题.四种命题及其关系(1)若两个三角形全等,则这两个三角形相似;(2)若两个三角形相似,则这两个三角形全等;(3)若两个三角形不全等,则这两个三角形不相似;(4)若两个三角形不相似,则这两个三角形不全等.问题:命题(1)与命题(2)、(3)、(4)的条件和结论之间分别有什么关系?提示:命题(1)的条件是命题(2)的结论,且命题(1)的结论是命题(2)的条件.对于命题(1)和(3).其中一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定;对于命题(1)和(4).其中一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定.1.四种命题的概念(1)如果一个命题的条件和结论是另一个命题的结论和条件,那么这两个命题叫做互逆命题.(2)如果一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题.(3)如果一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题.2.命题的四种形式原命题:若p,则q;逆命题:若q,则p;否命题:若非p,则非q;逆否命题:若非q,则非p.3.四种命题之间的关系四种命题真假之间的关系(1)如果两个三角形全等,那么它们的面积相等;(2)如果两个三角形的面积相等,那么它们全等;(3)如果两个三角形不全等,那么它们的面积不相等;(4)如果两个三角形面积不相等,那么它们不全等.问题1:若把命题(1)看作原命题,这四个命题之间有什么关系?提示:(1)与(2)、(3)与(4)为互逆关系;(1)与(3)、(2)与(4)为互否关系;(1)与(4)、(2)与(3)为互为逆否关系.问题2:判断四个命题的真假.提示:命题(1)(4)是真命题;命题(2)(3)是假命题.1.四种命题的真假性2(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题互为逆命题或否命题,它们的真假性没有关系.1.原命题是相对其他三种命题而言的.事实上,可以把任意一个命题看成原命题,来研究它的其他形式的命题.2.当一个命题有大前提而要写出其他三种命题时,大前提仍作大前提.3.若两个命题互为逆否命题,则它们有相同的真假性,即它们同真同假.所以,当一个命题的真假不易判断时,可以通过对其逆否命题的真假的判断来判断原命题的真假.[对应学生用书P3]命题的概念及其判断[例1](1)2是无限循环小数;(2)x2-3x+2=0;(3)垂直于同一条直线的两条直线必平行吗?(4)一个等比数列的公比大于1时,该数列为递增数列;(5)当x=4时,2x+1>0;(6)把门关上.[思路点拨] 首先判断是不是命题,如果是,然后再判断它是真命题还是假命题.[精解详析] (1)能判断真假,是命题,是假命题.(2)不是命题,因为语句中含有变量x,在没给变量x赋值前,无法判断语句的真假(这种语句叫“开语句”).(3)不能判断真假,不是命题.(4)是命题,当等比数列的首项a1<0,公比q>1时,该数列是递减数列,因此是一个假命题.(5)能判断真假,是命题,是真命题.(6)因为没有作出判断,所以不是命题.[一点通]1.判断一个语句是不是命题,关键是看能不能判断真假.2.判定一个命题是真命题时,一般需要经过严格的推理论证,论证要有推理依据,有时应综合各种情况作出正确的判断;而判定一个命题为假命题时,只需举出一个反例即可.1.下列语句:(1)2+2 2是有理数;(2)1+1>2;(3)2100是个大数;(4)968能被11整除;(5)非典型性肺炎是怎样传播的?其中是命题的是________.解析:(1)能判断真假,是命题,是假命题;(2)能判断真假,是命题,是假命题;(3)不能判断真假,不是命题;(4)是命题,是真命题;(5)不能判断真假,不是命题.答案:(1)、(2)、(4)2.判断下列命题的真假:(1)函数y =sin 4x -cos 4x 的最小正周期是π;(2)斜率相等的两条直线平行;(3)不等式|3x -2|>4的解集是(-∞,-23)∪(2,+∞); (4)平行于同一平面的两条直线平行.解:(1)y =sin 4x -cos 4x =sin 2x -cos 2x =-cos 2x ,显然其最小正周期为π,故(1)为真命题.(2)斜率相等的两条直线有可能平行,也有可能重合,故(2)是假命题.(3)由|3x -2|>4得,3x -2>4或3x -2<-4,∴x >2或x <-23, ∴|3x -2|>4的解集是(-∞,-23)∪(2,+∞). 故(3)为真命题.(4)平行于同一平面的两条直线可能平行,可能相交,可能异面,故(4)为假命题.四种命题及其真假判断[例2] 判断其真假:(1)若实数a ,b ,c 成等比数列,则b 2=ac ;(2)函数y =log a x (a >0且a ≠1)在(0,+∞)上是减函数时,log a 2<0.[思路点拨] 先分清所给命题的条件和结论,再按要求写出逆命题、否命题和逆否命题,并做出真假判断.[精解详析](1)原命题可以写成:若实数a ,b ,c 成等比数列,则b 2=ac ,为真命题.逆命题:若实数a ,b ,c 满足b 2=ac ,则a ,b ,c 成等比数列,为假命题.否命题:若实数a,b,c不成等比数列,则b2≠ac,为假命题.逆否命题:若实数a,b,c,满足b2≠ac,则a,b,c不成等比数列,为真命题.(2)原命题可以写成:若函数y=log a x(a>0且a≠1)在(0,+∞)上是减函数,则log a2<0,为真命题.逆命题:若log a2<0,则函数y=log a x(a>0且a≠1)在(0,+∞)上是减函数,为真命题.否命题:若函数y=log a x(a>0且a≠1)在(0,+∞)上不是减函数,则log a2≥0,为真命题.逆否命题:若log a2≥0,则函数y=log a x(a>0且a≠1)在(0,+∞)上不是减函数,为真命题.[一点通]1.四种命题进行转化时应首先找出原命题的条件和结论,然后利用四种命题的概念直接转化即可.2.对于命题的真假判断,当直接判断有难度时,可以通过判断它的逆否命题的真假来判断.3.把下列命题改写成“若p,则q”的形式,并判断命题的真假:(1)等腰三角形的两个底角相等;(2)当x=2或x=4时,x2-6x+8=0;(3)已知x、y为正整数,当y=x+1时,y=3,x=2.解:(1)原命题可改写成:若一个三角形是等腰三角形,则两个底角相等,真命题.(2)原命题可改写成:若x=2或x=4,则x2-6x+8=0,真命题.(3)原命题可改写成:已知x、y为正整数,若y=x+1,则y =3,x=2.假命题.4.写出下列原命题的其他三种命题,并分别判断其真假:(1)在△ABC中,若a>b,则∠A>∠B;(2)正偶数不是质数;(3)若x∈A则x∈(A∪B).解:(1)原命题:在△ABC中,若a>b,则∠A>∠B,真命题;逆命题:在△ABC中,若∠A>∠B,则a>b,真命题;否命题:在△ABC中,若a≤b,则∠A≤∠B,真命题;逆否命题:在△ABC中,若∠A≤∠B,则a≤b,真命题.(2)原命题:若一个数是正偶数,则它一定不是质数,假命题,例如2;逆命题:若一个数不是质数,则它一定是正偶数,假命题,例如9;否命题:若一个数不是正偶数,则它一定是质数,假命题,例如9;逆否命题:若一个数是质数,则它一定不是正偶数,假命题,例如2.(3)原命题:若x∈A,则x∈(A∪B),真命题;逆命题:若x∈(A∪B),则x∈A,假命题;否命题:若x∉A,则x∉(A∪B),假命题;逆否命题:若x∉(A∪B),则x∉A,真命题.四种命题的综合应用[例3] a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.[思路点拨] 根据原命题与逆否命题的等价性,先证逆否命题即可.[精解详析] 法一:原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b).”证明如下:若a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.法二:假设a+b<0,则a<-b,b<-a.又∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b).这与已知条件f (a )+f (b )≥f (-a )+f (-b )相矛盾.因此假设不成立,故a +b ≥0.[一点通]由于原命题与它的逆否命题具有相同的真假性,所以在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题来间接地证明原命题为真命题.5.已知c >0,设p :函数y =c x 在R 上单调递减,q :不等式x +|x -2c |>1的解集为R ,如果p 和q 有且仅有一个正确,求c 的取值范围.解:函数y =c x 在R 上单调递减⇔0<c <1.记P ={c |0<c <1}不等式x +|x -2c |>1的解集为R ⇔函数y =x +|x -2c |在R 上恒大于1.∵x +|x -2c |=⎩⎪⎨⎪⎧ 2x -2c ,x ≥2c ,2c ,x <2c ,∴函数y =x +|x -2c |在R 上的最小值为2c .∴不等式x +|x -2c |>1的解集为R ⇔2c >1⇔c >12. 记Q =⎩⎨⎧⎭⎬⎫c | c >12. 如果p 正确,且q 不正确,借助数轴得0<c ≤12.如果p 不正确,且q 正确,借助数轴得c ≥1.∴c 的取值范围为⎝⎛⎦⎥⎤0,12∪[1,+∞). 6.证明:若a 2-4b 2-2a +1≠0,则a ≠2b +1.证明:“若a 2-4b 2-2a +1≠0,则a ≠2b +1”的逆否命题为“若a =2b +1,则a 2-4b 2-2a +1=0”.∵a =2b +1,∴a 2-4b 2-2a +1=(2b +1)2-4b 2-2(2b +1)+1=4b 2+1+4b -4b 2-4b -2+1=0.∴命题“若a =2b +1,则a 2-4b 2-2a +1=0”为真命题. 由原命题与逆否命题具有相同的真假性可知,结论正确.1.写四种命题时,可以按下列步骤进行:(1)找出原命题的条件p 和结论q ;(2)写出条件p 的否定非p 和结论q 的否定非q ;(3)按照四种命题的概念写出所有命题.2.判断命题的真假时,可以根据互为逆否的命题的真假性相同来判断,这也是反证法的理论基础.[对应课时跟踪训练(一)]1.给出下列语句:①空集是任何集合的真子集;②三角函数是周期函数吗?③一个数不是正数就是负数;④老师写的粉笔字真漂亮!⑤若x ∈R ,则x 2+4x +5>0.其中为命题的序号是________,为真命题的序号是________.解析:①是命题,且是假命题,因为空集是任何非空集合的真子集;②该语句是疑问句,不是命题;③是命题,且是假命题,因为数0既不是正数,也不是负数;④该语句是感叹句,不是命题;⑤是命题,因为x 2+4x +5=(x +2)2+1>0恒成立,所以是真命题.答案:①③⑤ ⑤2.设a ,b 是向量,命题“若a =-b ,则|a |=|b |”的逆命题是________________________.答案:若|a |=|b |,则a =-b3.命题“对于正数a ,若a >1,则lg a >0”及其逆命题、否命题、逆否命题四个命题中真命题的个数为________.解析:逆命题:对于正数a ,若lg a >0,则a >1.否命题:对于正数a ,若a ≤1,则lg a ≤0.逆否命题:对于正数a ,若lg a ≤0,则a ≤1.根据对数的性质可知都是真命题.答案:44.命题“若α=π4,则tan α=1”的逆否命题是________. 解析:将条件与结论分别否定,再交换即可.答案:若tan α≠1,则α≠π45.给出下列命题:①“若x 2+y 2≠0,则x ,y 不全为零”的否命题;②“若{a n }既是等差数列,又是等比数列,则a n =a n +1(n∈N *)”的逆命题;③“若m >1,则不等式x 2+2x +m >0的解集为R ”的逆否命题.其中所有真命题的序号是________.解析:①的否命题为“若x 2+y 2=0,则x ,y 全为零”是真命题;②的逆命题为“数列{a n }中,若a n =a n +1(n ∈N *),则数列{a n }既是等差数列,又是等比数列”是假命题,如0,0,0……;对于③当m >1时,Δ=4-4m <0恒成立,x 2+2x +m >0的解集为R 是真命题.因此逆否命题是真命题.答案:①③6.把下列命题写成“若p ,则q ”的形式,并判断真假.(1)奇函数的图像关于原点对称;(2)当x 2-2x -3=0时,x =-3或x =1;(3)a <0时,函数y =ax +b 的值随x 值的增大而增大.解:(1)若一个函数是奇函数,则它的图像关于原点对称,是真命题.(2)若x 2-2x -3=0,则x =-3或x =1,是假命题.(3)若a <0,则函数y =ax +b 的值随着x 值的增大而增大,是假命题.7.证明:若m 2+n 2=2,则m +n ≤2.证明:将“若m 2+n 2=2,则m +n ≤2”视为原命题,则它的逆否命题为“若m +n >2,则m 2+n 2≠2”.由于m +n >2,则m 2+n 2≥12(m +n )2>12×22=2,所以m2+n2≠2.故原命题的逆否命题为真命题,从而原命题也为真命题.8.判断下列命题的真假,并写出它们的逆命题、否命题、逆否命题,并判断其真假.(1)若四边形的对角互补,则该四边形是圆的内接四边形;(2)若在二次函数y=ax2+bx+c中,b2-4ac<0,则该函数图像与x轴有交点.解:(1)该命题为真.逆命题:若四边形是圆的内接四边形,则四边形的对角互补,为真.否命题:若四边形的对角不互补,则该四边形不是圆的内接四边形,为真.逆否命题:若四边形不是圆的内接四边形,则四边形的对角不互补,为真.(2)该命题为假.逆命题:若二次函数y=ax2+bx+c的图像与x轴有交点,则b2-4ac<0,为假.否命题:若二次函数y=ax2+bx+c中b2-4ac≥0,则函数图像与x轴无交点,为假.逆否命题:若二次函数y=ax2+bx+c的图像与x轴无交点,则b2-4ac≥0,为假.。
江苏省东台市高中数学第一章常用逻辑用语1.1命题及其关系导学案(无答案)苏教版选修1-1

1.1命题及其关系主备人:学生姓名:得分:学习目标:1.通过实例理解命题的概念,会判断命题的真假•2.了解命题的四种形式,能正确判断四种命题之间的关系. 学习难点:1.会写命题的逆命题、否命题、逆否命题2.利用四种命题的关系判断命题的真假学习方法:自主预习,合作探究,启发引导一、导入亮标我们知道,能够判断真假的语句叫做命题•例如,如果两个三角形全等,那么它们的面积相等;① 如果两个三角形的面积相等,那么它们全等;② 如果两个三角形不全等,那么它们的面积不相等;③ 如果两个三角形的面积不相等,那么它们不全等. ④ 思考:命题②,③,④与命题①有什么关系?二、自学检测1•上面的四个命题都是“如果……,那么……”形式的命题,可以记为“若p贝U q”,其中p是命题的条件,q是命题的结论.2.在上面的例子中:命题②的条件和结论分别是命题①的结论和条件,我们称这样的两个命题互为 ____ 命题;命题③的条件和结论分别是命题①的条件的否定和结论的否定,我们称这样的两个命题互为命题;命题④的条件和结论分别是命题①的结论的否定和条件的否定,我们称这样的两个命题互为命题. 3.一般地,设“若p则q”为原命题,那么“若q则p”就叫做原命题的逆命题;“若非p 则非q”就叫做原命题的否命题;“若非q则非p”就叫做原命题的逆否命题. (非p、非q 分别表示p和q 的否定)三、合作探究例1写出命题“若a= 0,则ab= 0”的逆命题、否命题与逆否命题.思考:原命题的真假、逆命题的真假、否命题的真假与逆否命题的真假有什么关系?画出:四种命题的关系图(见课本)例2把下列命题改写成“若p则q”的形式,并写出它们的逆命题、否命题与逆否命题, 同时指出它们的真假.(1)对顶角相等;(2)四条边相等的四边形是正方形.例3判断下列说法是否正确:(1 )一个命题的否命题为真,它的逆命题也一定为真;(2) 一个命题的逆否命题为真,它的逆命题不一定为真.例4写出下列命题的逆命题、否命题与逆否命题,并分别判断它们的真假:(1 )若 1 a 1 |b 1,则a= b;(2)若xv 0,贝U x2>0.四、展示点评本节学习了以下内容:1.命题的概念2.怎样写命题的条件和结论3.写命题的逆命题/否命题和逆否命题4.利用命题的等价性判断命题的真假五、检测清盘1.下列语句中是的命题有 __________________ (填上所有符合题意的序号)①空集是任何集合的真子集;②把门关上;③垂直于同一直线的两条直线平行; ④自然数是偶数吗?2.下列命题:2①若m 0,则方程x x m 0有实根;②函数f(x) xsin x(x R)是奇函数;③已知U为全集,若A B U,则A C U B;④若直线y k i x b和y k2X b2平行,则k i k2其中,真命题有___________________ L(填上所有符合题意的序号)3.一个命题与它的逆命题,否命题,逆否命题这四个命题中_______A真命题的个数一定是奇数B真命题的个数一定是偶数C真命题的个数可能是奇数,也可能是偶数D上述判断都不正确4.给出下列命题:1 12①若ac be,则a b;②若a b,则a b ;③若P 0,则P P ;④对于实数x,若x 2 0,则x 2 0 ;网]⑤正方形不是菱形.其中真命题是_________________ ;假命题是_____________ .(填上所有符合题意的序号)5. __________________________________________ 下列四个命题中真命题的个数是①“若x y 0,则x,y互为相反数”的否命题;②“若a,b都是偶数,则a b是偶数”的否命题;③“若a b,则a? b”的逆否命题;④已知a,b,e,d都是实数,“若a b,e d,则a e b d "的逆命题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1.1.1四种命题
预习导读
(文)阅读选修1-1第5——6页,然后做教学案,完成前四项。
(理)阅读选修2-1第5——7页,然后做教学案,完成前四项。
学习目标
1. 理解四种命题的概念,掌握命题形式的表示.
2. 理解四种命题之间的相互关系,理解一个命题的真假与其它三个命题真
假间的关系.
3. 利用逻辑知识观察生活现象,培养我们简单推理的思维能力.
一、预习检查
1. 命题——
2. 逆命题——
3. 否命题——
4. 逆否命题——
二、问题探究
探究:如果两个三角形全等,那么它们的面积相等. ①
如果两个三角形的面积相等,那么它们全等. ②
如果两个三角形不全等,那么它们的面积不相等. ③
如果两个三角形的面积不相等,那么它们不全等. ④
1.命题②与命题①在结构上有什么关系?(条件和结论有什么联系)
2.命题③与命题①在结构上有什么关系?(条件和结论有什么联系)
3.这样我们得到3个命题,今天是四种命题,大家觉得第四种命题应该怎样由原命题得到,
并且跟逆命题与否命题有关呢?
4.我们得到了四种命题的文字定义,那它们的符号语言如何呢?
一般地,设“若p则q”为原命题,“若q则p”就叫做原命题的__________,“若非p
则非q”就叫做原命题的__________,“若非q则非p”就叫做原命题的______________
5.四种命题有怎样的关系呢?
2
例1、写出下列命题的逆命题,否命题,逆否命题.
(1)若0a,则0ab;
(2)若22ba,则ba.
(1)解:原命题:若a=0,则ab=0; ( )
逆命题: ( )
否命题: ( )
逆否命题: ( )
(2)解:原命题:若22ba,则ba. ( )
逆命题: ( )
否命题: ( )
逆否命题: ( )
例2、把下列命题改写成“若p则q”的形式,并写出它的逆命题、否命题与逆否命题,
同时指出它们的真假。
(1)全等三角形的对应边相等; (2)四条边相等的四边形是正方形;
解:⑴原命题:全等三角形的对应边相等 ( )
逆命题: ( )
否命题: ( )
逆否命题: ( )
⑵原命题:四条边相等的四边形是正方形; ( )
逆命题: ( )
否命题: ( )
逆否命题: ( )
问:四种命题之间有关系,那它们之间的真假是否有关系?从上面两个例子中,我们能否发
3
现四种命题的真假有何规律呢?
由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:
(1)两个命题互为逆否命题,它们有________的真假性;
(2)两个命题互为互逆命题或互否命题,它们的真假性没有关系
例3、(理)写出命题“设a、b为两个整数,若a、b都是偶数,则ab为偶数”的否命
题、逆否命题,并判断它们的真假.
四、思维训练
1.下列语句中命题的个数为________.
①空集是任何非空集合的真子集. ②三角函数是周期函数吗?
③若x∈R,则x2+4x+7>0. ④指数函数的图象真漂亮!
2.在空间中,下列命题正确的是________.(填序号)
①平行直线的平行投影重合; ②平行于同一直线的两个平面平行;
③垂直于同一平面的两个平面平行; ④垂直于同一平面的两条直线平行.
3.已知命题p:内接于圆的四边形对角互补,则p的否命题q是 .
4.命题"各位数字之和是3的倍数的正整数,可以被3整除"与它的逆命题、否命题、逆否命题
中,假命题的个数为 ;真命题的个数为 ;真命题是 ___________ .
5.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为
4
________.
6.(理)若下列三个方程:
03442aaxx,0122axax,0222aaxx
中,至少有一个方程
有实根,试求实数a的取值范围。
五、课后巩固
1、判断下列说法是否正确.
(1)一个命题的否命题为真,它的逆命题也一定为真. ( )
(2)一个命题的逆否命题为真,它的逆命题不一定为真.( )
2、四种命题真的个数可能为__________个.
3、有下列四个命题,其中真命题有________.(填序号)
①“若x+y=0,则x,y互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;
③“若q≤1,则x2+2x+q=0有实根”的逆命题;④“不等边三角形的三个内角相等”的
逆否命题.
4.对于命题“若数列{an}是等比数列,则an≠0”,下列说法正确的是________.(填序号)
①它的逆命题是真命题; ②它的否命题是真命题;
③它的逆否命题是假命题; ④它的否命题是假命题.
5.命题“若函数f(x)=logax(a>0,a≠1)在其定义域内是减函数,则loga2<0”的
逆否命题是 .
6、填空:
(1)命题“末位于0的整数,可以被5整除”的逆命题是:_________________________.
(2)命题“对顶角相等”的逆否命题是:______________________________.
(3)命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是:
_________ _ _ .
7、有下列四个命题:
①“若xy=1,则x、y互为倒数”的逆命题; ②“相似三角形的周长相等”的否命
题;
③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;
5
④若“A∪B=B,则A⊇B”的逆否命题.
其中真命题有________.(填序号)
8、若0m或0n,则0mn.写出其逆命题、否命题、逆否命题,并分别指出真假.
9、若命题p的逆命题是q,命题r是命题q的否命题,则p是r的__________命题.
10、(理)已知命题:
①若ab,则cacb;②若110ab,则ab;③当3x时,21023xx;
④当42log4x时,2x或12.
其中逆命题、否命题、逆否命题都是真命题的是________________.
总结与反思: