线性代数知识点总结

合集下载

线性代数知识点总结与反思

线性代数知识点总结与反思

线性代数知识点总结与反思线性代数是一门研究向量空间、线性变换和矩阵的数学学科。

它是数学分析与抽象代数的交叉学科,对于理解现代数学以及在科学与工程领域的应用具有重要意义。

线性代数在计算机图形学、统计学、机器学习和工程学等领域都有着重要的应用。

在本文中,我们将对线性代数的基本概念、基本定理以及常见应用进行总结和反思。

1. 向量空间与线性变换向量空间是线性代数的核心概念之一。

向量空间是指一个集合V,其中定义了向量的加法和数量乘法,并满足一系列属性,包括封闭性、结合律、分配律、存在零向量和逆元素等。

向量空间可以是有限维的,也可以是无限维的。

线性变换是指一个向量空间到另一个向量空间的映射,要求在两个空间之间保持加法和数量乘法运算的线性性质。

线性变换在几何变换、信号处理、数据压缩等领域有着广泛的应用。

2. 矩阵与行列式矩阵是线性代数中另一个重要的概念。

矩阵可以看作是一个二维数组,其中的元素可以是实数或复数。

矩阵可以表示为行矩阵或列矩阵,也可以表示为一个矩阵乘法。

矩阵的行列式是一个用于刻画矩阵性质的工具,它可以判断矩阵是否可逆,求解线性方程组的解,计算面积和体积等。

行列式还可以用于刻画线性空间的体积和方向。

3. 特征值与特征向量特征值和特征向量是矩阵理论中的重要概念。

对于一个n阶矩阵A,如果存在一个非零向量v和一个标量λ,使得Av=λv,那么v称为A的特征向量,λ称为A的特征值。

特征值和特征向量在对称矩阵、对角化矩阵以及矩阵的谱分解等方面有着重要的应用。

4. 线性方程组与矩阵消元线性方程组是线性代数中的一个基本问题。

解线性方程组可以使用矩阵消元、高斯消元法等方法。

通过矩阵的行变换和列变换,可以将一个线性方程组转化为简化的行阶梯形或者行最简形式,从而求解线性方程组的解。

矩阵消元法在计算机图形学、机器学习、最小二乘法等领域有着广泛的应用。

5. 点评与反思线性代数是一门重要的数学学科,在科学与工程领域有着广泛的应用。

线性代数知识点全归纳

线性代数知识点全归纳

线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。

它广泛应用于物理、工程、计算机科学等领域。

下面将对线性代数的主要知识点进行全面归纳。

1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。

常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。

2.向量及其运算:向量是一个有序数组,具有大小和方向。

常见的向量运算有加法、减法、数乘、点乘和叉乘等。

3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。

解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。

4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。

线性变换是一种保持向量空间结构的映射。

5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。

维度是向量空间中基的数量。

6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。

如果向量组中的向量线性无关,则任何线性组合的系数都为零。

7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。

矩阵乘法可以将多个线性变换组合为一个线性变换。

8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。

9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。

正定矩阵是指二次型在所有非零向量上的取值都大于零。

10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。

正交性是指两个向量的内积为零,表示两个向量互相垂直。

11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。

正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。

《线性代数》知识点归纳整理-大学线代基础知识

《线性代数》知识点归纳整理-大学线代基础知识

《线性代数》知识点归纳整理诚毅学生编01、余子式与代数余子式- 2 -02、主对角线- 2 -03、转置行列式- 2 -04、行列式的性质- 3 -05、计算行列式- 3 -06、矩阵中未写出的元素- 4 -07、几类特殊的方阵- 4 -08、矩阵的运算规则- 4 -09、矩阵多项式- 6 -10、对称矩阵- 6 -11、矩阵的分块- 6 -12、矩阵的初等变换- 6 -13、矩阵等价- 7 -14、初等矩阵- 7 -15、行阶梯形矩阵与行最简形矩阵- 7 -16、逆矩阵- 7 -17、充分性与必要性的证明题- 8 -18、伴随矩阵- 9 -19、矩阵的标准形:- 9 -20、矩阵的秩:- 9 -21、矩阵的秩的一些定理、推论- 10 -22、线性方程组概念- 10 -23、齐次线性方程组与非齐次线性方程组(不含向量)- 10 -24、行向量、列向量、零向量、负向量的概念- 12 -25、线性方程组的向量形式- 12 -26、线性相关与线性无关的概念- 12 -27、向量个数大于向量维数的向量组必然线性相关- 12 -28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题- 12 -29、线性表示与线性组合的概念- 12 -30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题- 12 -31、线性相关(无关)与线性表示的3个定理- 13 -32、最大线性无关组与向量组的秩- 13 -33、线性方程组解的结构- 13 -01、余子式与代数余子式(1)设三阶行列式D =333231232221131211a a a a a a a a a ,则①元素11a ,12a ,13a 的余子式分别为:M 11=33322322a a a a ,M 12=33312321a a a a ,M 13=32312221a a a a对M 11的解释:划掉第1行、第1列,剩下的就是一个二阶行列式33322322a a a a ,这个行列式即元素11a 的余子式M 11。

大二线性代数知识点总结

大二线性代数知识点总结

大二线性代数知识点总结线性代数是数学中的一个重要分支,是大二学生必修的一门课程。

它涉及了许多基本概念和理论,对于理解和解决各种实际问题具有重要意义。

本文将对大二线性代数的主要知识点进行总结。

1. 向量和矩阵向量是线性代数中最基本的概念之一,可以用于表示空间中的点、矢量和函数等。

向量可以进行加法和数乘等运算,同时具有长度和方向。

矩阵是由若干行和若干列组成的矩形阵列,通常用方括号表示。

矩阵可以进行加法、数乘和矩阵乘法等运算。

矩阵可以表示线性变换和线性方程组等。

2. 行列式行列式是一个数值,它是矩阵中元素的一种特殊组合。

行列式的计算可以用于求解线性方程组、判断矩阵的可逆性和计算变换的缩放因子等。

3. 线性方程组线性方程组是由一组线性方程组成的方程组。

线性方程组的解可以通过高斯消元法、矩阵运算和行列式的方法进行求解。

线性方程组的求解在实际问题中具有广泛的应用,比如求解电路问题、求解物理问题等。

4. 特征值和特征向量矩阵的特征值和特征向量是线性代数中重要的概念。

特征值表示线性变换过程中的缩放因子,特征向量表示在该缩放过程中保持不变的方向。

求解特征值和特征向量可以用于分析矩阵的性质和解决实际问题。

5. 向量空间和线性变换向量空间是由一组向量和定义在其上的运算构成的数学结构。

线性变换是向量空间之间的一种映射关系,它保持向量运算和标量乘法等性质。

向量空间和线性变换是研究线性代数的重要内容,对于分析和解决实际问题具有重要意义。

6. 正交性和内积空间正交性是指向量之间的垂直关系,内积空间是具有内积运算的向量空间。

正交性和内积空间在物理学、工程学和信号处理等领域有广泛的应用,比如信号的傅里叶变换、正交编码等。

以上是大二线性代数的主要知识点总结。

线性代数的应用非常广泛,几乎涉及到所有科学和工程领域。

为了更好地理解和应用线性代数,我们需要通过练习和实践来加深对这些知识点的理解。

希望通过本文的总结,能够对大二线性代数的学习有所帮助。

线性代数知识点全归纳

线性代数知识点全归纳

线性代数知识点全归纳2 线性代数知识点1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n行列式;2. 代数余子式的性质: ①、ijA 和ija 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为A ;3. 代数余子式和余子式的关系:(1)(1)i j i j ijij ij ijMA A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D-=-;将D 顺时针或逆时针旋转90o,所得行列式为2D ,则(1)22(1)n n D D-=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =;35. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积;④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:AO A C A BCB O B==、(1)m n CA OA A BBO B C==-g⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n kk k E A S λλλ-=-=+-∑,其中kS 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1. A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n=(是满秩矩阵)4⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是nR 的一组基; ⇔A是nR 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3. 1**111**()()()()()()T T T T AA A A A A ----=== ***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12sA AA A =L ;5Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭O;②、111A O A O O B O B ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CA B -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :;2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采6用初等行变换)①、 若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B-,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭Oλλλ,左乘矩阵A ,iλ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11k k k -⎛⎫⎛⎫⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:7①、0()min(,)m nr Am n ⨯≤≤;②、()()Tr A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论); Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律; ②、型如101001a c b ⎛⎫⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C ab C ab Ca bC b C a b -----=+=++++++=∑L L ;注:Ⅰ、()na b +展开后有1n +项;8Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m n nn n n n n m n CC C m m n mⅢ、组合的性质:11112---+-===+==∑nmn mm m m r nr r nnn nnnn n r CCCC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵: ①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A AA X X λλλ- == ⇒ =;③、*1AA A -=、1*n AA-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;910. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程: ①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax ba a a xb ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭LL M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x xaa a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M );④、1122nna x a x a xβ+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1. m 个n 维列向量所组成的向量组A :12,,,mαααL 构成n m ⨯矩阵1012(,,,)m A =L ααα;m个n 维行向量所组成的向量组B :12,,,T T T mβββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组) ②、向量的线性表出 Ax b⇔=是否有解;(线性方程组)③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m nA ⨯与l nB ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()Tr A A r A =;(101P 例15)5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行); ③、,,αβγ线性相关⇔,,αβγ共面;6. 线性相关与无关的两套定理:11若12,,,sαααL 线性相关,则121,,,,ss αααα+L 必线性相关;若12,,,sαααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤;向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B⇔=有解;()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,lP P P L ,使12lA P P P =L ;①、矩阵行等价:~rA B PA B⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆);③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m nA ⨯与l nB ⨯:12①、若A 与B 行等价,则A 与B 的行秩相等; ②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m ss n m nAB C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n rrBb b b ⨯L 可由向量组12:,,,n ssAa a a ⨯L 线性表示为:1212(,,,)(,,,)r s b b b a a a K=L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m nA ⨯,存在n mQ ⨯,mAQ E = ()r A m ⇔=、Q 的列向量13线性无关;②、对矩阵m nA ⨯,存在n mP ⨯,nPA E =()r A n⇔=、P 的行向量线性无关;14.12,,,sαααL 线性相关⇔存在一组不全为0的数12,,,sk k k L ,使得1122s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0ss x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r sααα<L ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n rξξξ-L 为0Ax =的一个基础解系,则*12,,,,n rηξξξ-L 线性无关;5、相似矩阵和二次型1. 正交矩阵TA A E ⇔=或1TAA -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1TAA -=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;14注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)ra a a L11b a =;1222111[,][,]b a b a b b b =-gL L L121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=TC AC B,其中可逆;⇔T x Ax与Tx Bx 有相同的正、负惯性指数;③、A 与B 相似 1-⇔=PAP B;5. 相似一定合同、合同未必相似; 若C 为正交矩阵,则TC AC B =⇒A B:,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型Tx Ax 为正定:15A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使TC AC E =;A⇔的所有特征值均为正数; A⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。

线性代数知识点总结(免费)_

线性代数知识点总结(免费)_

《线性代数知识点总结(免费)_》摘要:(是非奇异矩阵),②、矩阵列等价:(右乘,可逆),、的行向量线性无关1、行列式 1. 行列式共有个元素,展开后有项,可分解为行列式; 2. 代数余子式的性质:①、和的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0;③、某行(列)的元素乘以该行(列)元素的代数余子式为; 3. 代数余子式和余子式的关系: 4. 设行列式:将上、下翻转或左右翻转,所得行列式为,则;将顺时针或逆时针旋转,所得行列式为,则;将主对角线翻转后(转置),所得行列式为,则;将主副角线翻转后,所得行列式为,则; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积;③、上、下三角行列式():主对角元素的乘积;④、和:副对角元素的乘积;⑤、拉普拉斯展开式:、⑥、范德蒙行列式:大指标减小指标的连乘积;⑦、特征值; 6. 对于阶行列式,恒有:,其中为阶主子式; 7. 证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值; 2、矩阵 1. 是阶可逆矩阵:(是非奇异矩阵);(是满秩矩阵)的行(列)向量组线性无关;齐次方程组有非零解;,总有唯一解;与等价;可表示成若干个初等矩阵的乘积;的特征值全不为0;是正定矩阵;的行(列)向量组是的一组基;是中某两组基的过渡矩阵; 2. 对于阶矩阵:无条件恒成立; 3. 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均、可逆:若,则:Ⅰ、;Ⅱ、;②、;(主对角分块)③、;(副对角分块)④、;(拉普拉斯)⑤、;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:;等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵、,若; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若,则可逆,且;②、对矩阵做初等行变化,当变为时,就变成,即:;③、求解线形方程组:对于个未知数个方程,如果,则可逆,且; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素;③、对调两行或两列,符号,且,例如:;④、倍乘某行或某列,符号,且,例如:;⑤、倍加某行或某列,符号,且,如:;5. 矩阵秩的基本性质:①、;②、;③、若,则;④、若、可逆,则;(可逆矩阵不影响矩阵的秩)⑤、;(※)⑥、;(※)⑦、;(※)⑧、如果是矩阵,是矩阵,且,则:(※)Ⅰ、的列向量全部是齐次方程组解(转置运算后的结论);Ⅱ、⑨、若、均为阶方阵,则; 6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;②、型如的矩阵:利用二项展开式;二项展开式:;注:Ⅰ、展开后有项;Ⅱ、Ⅲ、组合的性质:;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:;②、伴随矩阵的特征值:;③、、 8. 关于矩阵秩的描述:①、,中有阶子式不为0,阶子式全部为0;(两句话)②、,中有阶子式全部为0;③、,中有阶子式不为0; 9. 线性方程组:,其中为矩阵,则:①、与方程的个数相同,即方程组有个方程;②、与方程组得未知数个数相同,方程组为元方程; 10. 线性方程组的求解:①、对增广矩阵进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解;③、特解:自由变量赋初值后求得; 11. 由个未知数个方程的方程组构成元线性方程:①、;②、(向量方程,为矩阵,个方程,个未知数)③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数) 4、向量组的线性相关性 1. 个维列向量所组成的向量组:构成矩阵;个维行向量所组成的向量组:构成矩阵;含有有限个向量的有序向量组与矩阵一一对应; 2. ①、向量组的线性相关、无关有、无非零解;(齐次线性方程组)②、向量的线性表出是否有解;(线性方程组)③、向量组的相互线性表示是否有解;(矩阵方程) 3. 矩阵与行向量组等价的充分必要条件是:齐次方程组和同解;(例14) 4. ;(例15) 5. 维向量线性相关的几何意义:①、线性相关;②、线性相关坐标成比例或共线(平行);③、线性相关共面; 6. 线性相关与无关的两套定理:若线性相关,则必线性相关;若线性无关,则必线性无关;(向量的个数加加减减,二者为对偶)若维向量组的每个向量上添上个分量,构成维向量组:若线性无关,则也线性无关;反之若线性相关,则也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定; 7. 向量组(个数为)能由向量组(个数为)线性表示,且线性无关,则(二版定理7);向量组能由向量组线性表示,则;(定理3)向量组能由向量组线性表示有解;(定理2)向量组能由向量组等价(定理2推论) 8. 方阵可逆存在有限个初等矩阵,使;①、矩阵行等价:(左乘,可逆)与同解②、矩阵列等价:(右乘,可逆);③、矩阵等价:(、可逆); 9. 对于矩阵与:①、若与行等价,则与的行秩相等;②、若与行等价,则与同解,且与的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩;④、矩阵的行秩等于列秩; 10. 若,则:①、的列向量组能由的列向量组线性表示,为系数矩阵;②、的行向量组能由的行向量组线性表示,为系数矩阵;(转置) 11. 齐次方程组的解一定是的解,考试中可以直接作为定理使用,而无需证明;①、只有零解只有零解;②、有非零解一定存在非零解; 12. 设向量组可由向量组线性表示为:(题19结论)()其中为,且线性无关,则组线性无关;(与的列向量组具有相同线性相关性)(必要性:;充分性:反证法)注:当时,为方阵,可当作定理使用;13. ①、对矩阵,存在,、的列向量线性无关;()②、对矩阵,存在,、的行向量线性无关; 14. 线性相关存在一组不全为0的数,使得成立;(定义)有非零解,即有非零解;,系数矩阵的秩小于未知数的个数; 15. 设的矩阵的秩为,则元齐次线性方程组的解集的秩为:; 16. 若为的一个解,为的一个基础解系,则线性无关;(题33结论) 5、相似矩阵和二次型 1. 正交矩阵或(定义),性质:①、的列向量都是单位向量,且两两正交,即;②、若为正交矩阵,则也为正交阵,且;③、若、正交阵,则也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:; ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、与等价经过初等变换得到;,、可逆;,、同型;②、与合同,其中可逆;与有相同的正、负惯性指数;③、与相似; 5. 相似一定合同、合同未必相似;若为正交矩阵,则,(合同、相似的约束条件不同,相似的更严格); 6. 为对称阵,则为二次型矩阵; 7. 元二次型为正定:的正惯性指数为;与合同,即存在可逆矩阵,使;的所有特征值均为正数;的各阶顺序主子式均大于0;;(必要条件)。

线性代数知识点全面总结基本功课

6、若A为反对称矩阵,则AT=-A 。
*
教书育人
三、重要公式、法则。
1、矩阵的加法与数乘
A + B = B + A ; (A + B ) + C = A + ( B + C ); A + O = O + A = A; A + (-A) = O; k(lA) = (kl)A ; (k+l)A = kA+ lA ; k( A + B )= kA + kB ; 1A = A, OA = O 。
的系数行列式D ≠0 , 原方程组有惟一解
*
教书育人
4、齐次线性方程组的克拉默法则。
若齐次线性方程组有非零解,则它的系数行列式必为 零。
*
教书育人
三、重要公式
*
教书育人
*
教书育人
*
教书育人
四、典型例题
1、3~4阶的行列式
2、简单的n阶行列式
3、用公式
*
教书育人
可逆矩阵与初等变换
概念
求法
证法
如果AB=BA=E,则A可逆, B是A的逆矩阵.
用定义
用伴随矩阵
分块对角矩阵
|A| ≠ 0 , A可逆 .
|A| = 0 , A不可逆 .
AB = E , A与B互逆.
反证法.
*
教书育人
二、重要定理
1、设A、B是n阶矩阵,则|AB|=|A||B|。
2、若A是可逆矩阵,则A的逆矩阵惟一。
概念
特殊矩阵
m×n个数aij (i = 1,2,…,m ; j =1,2,…,n)
构成的数表
单位矩阵: 主对角线元素都是1,其余元素都是零的 n 阶方阵 E

线性代数期末复习知识点资料整理总结

行列式1.行列式的性质性质1行列式与它的转置行列式相等TD D =.性质2互换行列式的两行(列),行列式变号.推论1如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a =推论2如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+性质5把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1已知,那么()A.-24B.-12C.-6D.12答案B解析2.余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3.行列式按行(列)展开法则定理1行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++ 或 1122j j j j nj njD a A a A a A =+++ ()1,2,,;1,2i n j n ==定理2行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++= 或,11220.j j j j nj nj a A a A a A i j +++=≠ ()1,2,,;1,2i n j n == 例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____;213122322333a A a A a A ++=___0___.4.行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =-(3)对角行列式1212n nλλλλλλ=,n(m 1)21212nn(1)λλλλλλ-=- (4)三角行列式1111121n 2122222n1122nnn1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素33=1,按该行展开,D=3333,不用忘记B 。

线性代数知识点总结

一、行列式1.排列:由个不同数码1,2,……,组成的有序数组12……n。

2.逆序:在一个级排列12……n中,如果有较大的数t排在较小的数s前面,则称与构成一个逆序。

一个级排列中逆序的总数称为它的逆序数,逆序数是奇数称为奇排列,是偶数或0称为偶排列。

3.定理1:任意一个排列经过一个对换后奇偶性改变。

定理2:个数码(>1)共有!个级排列,其中奇偶排列各占一半。

4.用2个元素(=1,2, ……)组成的记号称为阶行列式,其中横排称为行,纵排称为列。

称为第行第列的元素,阶行列式表示所有可能取自不同的行,不同的列的个元素乘积的代数和,一般项可以写为其中12…n 构成一个级排列,当12…n取遍所有的级排列时,则得到阶行列式表示的代数和中所有的项。

5.主对角线:行列式中从左上角到右下角的对角线。

6.主对角线右上方元素全为0的行列式为下三角行列式,左下方元素全为0为上三角行列式,主对角线左上方和右上方元素全为0,主对角线上元素不全为0的行列式为对角行列式,它们的值均等于主对角线上元素的乘积。

7.行列式性质1 行列式转置,值不变,即D T=D8.性质2 交换行列式的两行(列),行列式的值变号,即D1=D。

9.性质3 用数乘行列式的某一行(列),等于数乘此行列式 ,即D1=D。

10.性质4 若将行列式中某一行(列)的每一个元素写成两个数的和,则此行列式可以写成两个行列式的和,这两个行列式分别以这两个数为所在行(列)对应位置的元素,其他位置的元素与原行列式相同,即D=D1+D211.推论:①若行列式中有两行(列)的对应元素相同,则此行列式值为0。

②若行列式中有两行(列)的对应元素成比例,则此行列式值为0。

③若行列式某行(列)的所有元素有公因子,则公因子可提到行列式外面。

④将行列式某一行(列)的所有元素同乘以数后加到另一行(列)对应位置的元素上,行列式值不变。

12.余子式M:在阶行列式D=||中去掉元素所在的第行第列后,余下的-1阶行列式。

线性代数知识点总结

线性代数知识点总结一、行列式1、N阶行列式中元素aij的第一个下标i 为行指标(横行),第二个下标j 为列指标(竖列)。

即aij位于行列式的第i 行第j 列。

2、在一个排列中,若数较大的数码排在较小的数码之前则称这两个数组成此排列的一个逆序。

一个排列中所有逆序的总数称为此排列的逆序数。

记为 (每个元素的逆序数之总和即为所求排列的逆序数)逆序数为奇数的为奇排列,偶数为偶排列。

3、上/下三角行列式主对角线以下/上元素都是0,上/下三角行列式的值为主对角线上所有元素乘积。

(详见课本p4)4、(1)行列式与它的转置行列式相等既D=D T。

(把D的各行换成同序号的列的运算就是行列式的转置行列式)(2)行列式中行与列具有同等的地位,因此行列式的性质凡是对行成立的对列也同样成立。

(3)互换行列式的两行(列),行列式变号。

推论:如果行列式有两行(列)完全相同,则此行列式为零。

(4)行列式的某一行(列)中所有的元素都乘以同一数k等于用数k乘此行列式。

因此行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。

(5)行列式中如果有两行(列)元素成比例,则此行列式为零。

(6)若行列式的某一列(行)的元素都是两数之和那么可以把改行列式表达成两个行列式之和。

(详见课本p8)(7)把行列式的某一列(行)的各元素乘以同一数k 然后加到另一列(行)对应的元素上去,行列式的值不变。

(8)计算行列式常用方法:(1)利用定义(详见课本p3);(2)利用性质把行列式化为上三角形行列式,从而算得行列式的值. 5、在n 阶行列式中,把元素a ij 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素a ij 的余子式,记作M ij叫做元素a ij 的代数余子式=-M ij6、行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即7、行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零既8、一个n 阶行列式,如果其中第i 行所有元素除a ij 外都为零,那末这行列式等于a ij 与它的代数余子式的乘积既D=a ij A ij 二、矩阵及其运算主对角线全为1其余的位置全是0的矩阵称为单位阵()ij ji ij M A +-=144434241343332312423222114131211a a a a a a a a a a a a a a a a D =44424134323114121123a a a a a a a a a M =()2332231M A +-=in in i i i i A a A a A a D +++=L 2211()n i ,,2,1L =.,02211j i A a A a A a jn in j i j i ≠=+++L ⎪⎪⎪⎪⎪⎭⎫⎝⎛==100010001L L L L L L L n E E(1) 两个矩阵的行数相等,列数相等时,称为同型矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. 1、行列式 1. n行列式共有2n个元素,展开后有!n项,可分解为2n行列式; 2. 代数余子式的性质: ①、ijA和ija的大小无关;

②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A; 3. 代数余子式和余子式的关系:(1)(1)ijijijijijijMAAM 4. 设n行列式D: 将D上、下翻转或左右翻转,所得行列式为1D,则(1)21(1)nnDD;

将D顺时针或逆时针旋转90,所得行列式为2D,则(1)22(1)nnDD; 将D主对角线翻转后(转置),所得行列式为3D,则3DD; 将D主副角线翻转后,所得行列式为4D,则4DD; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积;

②、副对角行列式:副对角元素的乘积(1)2(1)nn; ③、上、下三角行列式(◥◣):主对角元素的乘积;

④、◤和◢:副对角元素的乘积(1)2(1)nn; ⑤、拉普拉斯展开式:AOACABCBOB、(1)mnCAOAABBOBC ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;

6. 对于n阶行列式A,恒有:1(1)nnknkkkEAS,其中kS为k阶主子式; 7. 证明0A的方法: ①、AA;

②、反证法; ③、构造齐次方程组0Ax,证明其有非零解; ④、利用秩,证明()rAn; ⑤、证明0是其特征值; 2、矩阵 1. A是n阶可逆矩阵: 0A(是非奇异矩阵);

()rAn

(是满秩矩阵)

A

的行(列)向量组线性无关;

齐次方程组0Ax有非零解; nbR

,Axb总有唯一解; .

A与E等价; A

可表示成若干个初等矩阵的乘积;

A的特征值全不为0; TAA

是正定矩阵;

A的行(列)向量组是nR的一组基; A

是nR中某两组基的过渡矩阵;

2. 对于n阶矩阵A:**AAAAAE 无条件恒成立; 3. 1**111**()()()()()()TTTTAAAAAA ***111()()()TTTABBAABBAABBA

4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均A、B可逆:

若12sAAAA,则:

Ⅰ、12sAAAA; Ⅱ、111121sAAAA;

②、111AOAOOBOB;(主对角分块) ③、111OAOBBOAO;(副对角分块) ④、11111ACAACBOBOB;(拉普拉斯) ⑤、11111AOAOCBBCAB;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个mn矩阵A,总可经过初等变换化为标准形,其标准形是唯一确定的:rmnEOFOO; 等价类:所有与A等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A、B,若()()rArBAB; 2. 行最简形矩阵: ①、只能通过初等行变换获得;

②、每行首个非0元素必须为1; ③、每行首个非0元素所在列的其他元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、 若(,)(,)rAEEX,则A可逆,且1XA; .

②、对矩阵(,)AB做初等行变化,当A变为E时,B就变成1AB,即:1(,)(,)cABEAB; ③、求解线形方程组:对于n个未知数n个方程Axb,如果(,)(,)rAbEx,则A可逆,且1xAb; 4. 初等矩阵和对角矩阵的概念: ①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;

②、12n,左乘矩阵A,i乘A的各行元素;右乘,i乘A的各列元素;

③、对调两行或两列,符号(,)Eij,且1(,)(,)EijEij,例如:1111111; ④、倍乘某行或某列,符号(())Eik,且11(())(())EikEik,例如:1111(0)11kkk; ⑤、倍加某行或某列,符号(())Eijk,且1(())(())EijkEijk,如:11111(0)11kkk; 5. 矩阵秩的基本性质: ①、0()min(,)mnrAmn;

②、()()TrArA; ③、若AB,则()()rArB; ④、若P、Q可逆,则()()()()rArPArAQrPAQ;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()rArBrABrArB;(※) ⑥、()()()rABrArB;(※) ⑦、()min((),())rABrArB;(※) ⑧、如果A是mn矩阵,B是ns矩阵,且0AB,则:(※) Ⅰ、B的列向量全部是齐次方程组0AX解(转置运算后的结论); Ⅱ、()()rArBn ⑨、若A、B均为n阶方阵,则()()()rABrArBn; 6. 三种特殊矩阵的方幂: ①、秩为1的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;

②、型如101001acb的矩阵:利用二项展开式;

二项展开式:01111110()nnnnmnmmnnnnmmnmnnnnnnmabCaCabCabCabCbCab; 注:Ⅰ、()nab展开后有1n项; Ⅱ、0(1)(1)!1123!()!mnnnnnnnmnCCCmmnm .

Ⅲ、组合的性质:11110 2nmnmmmmrnrrnnnnnnnnrCCCCCCrCnC; ③、利用特征值和相似对角化: 7. 伴随矩阵:

①、伴随矩阵的秩:*()()1()10()1nrAnrArAnrAn;

②、伴随矩阵的特征值:*1*(,)AAAXXAAAAXX; ③、*1AAA、1*nAA 8. 关于A矩阵秩的描述: ①、()rAn,A中有n阶子式不为0,1n阶子式全部为0;(两句话)

②、()rAn,A中有n阶子式全部为0; ③、()rAn,A中有n阶子式不为0; 9. 线性方程组:Axb,其中A为mn矩阵,则: ①、m与方程的个数相同,即方程组Axb有m个方程;

②、n与方程组得未知数个数相同,方程组Axb为n元方程; 10. 线性方程组Axb的求解: ①、对增广矩阵B进行初等行变换(只能使用初等行变换);

②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得; 11. 由n个未知数m个方程的方程组构成n元线性方程:

①、11112211211222221122nnnnmmnmnnaxaxaxbaxaxaxbaxaxaxb;

②、1112111212222212nnmmmnmmaaaxbaaaxbAxbaaaxb(向量方程,A为mn矩阵,m个方程,n个未知数) ③、1212nnxxaaax(全部按列分块,其中12nbbb); ④、1122nnaxaxax(线性表出) ⑤、有解的充要条件:()(,)rArAn(n为未知数的个数或维数) 4、向量组的线性相关性 1. m个n维列向量所组成的向量组A:12,,,m构成nm矩阵12(,,,)mA; .

m个n维行向量所组成的向量组B:12,,,TTTm构成mn矩阵12TTTmB; 含有有限个向量的有序向量组与矩阵一一对应; 2. ①、向量组的线性相关、无关 0Ax有、无非零解;(齐次线性方程组) ②、向量的线性表出 Axb是否有解;(线性方程组) ③、向量组的相互线性表示 AXB是否有解;(矩阵方程) 3. 矩阵mnA与lnB行向量组等价的充分必要条件是:齐次方程组0Ax和0Bx同解;(101P例14) 4. ()()TrAArA;(101P例15) 5. n维向量线性相关的几何意义: ①、线性相关 0;

②、,线性相关 ,坐标成比例或共线(平行); ③、,,线性相关 ,,共面; 6. 线性相关与无关的两套定理: 若12,,,s线性相关,则121,,,,ss必线性相关;

若12,,,s线性无关,则121,,,s必线性无关;(向量的个数加加减减,二者为对偶) 若r维向量组A的每个向量上添上nr个分量,构成n维向量组B: 若A线性无关,则B也线性无关;反之若B线性相关,则A也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定; 7. 向量组A(个数为r)能由向量组B(个数为s)线性表示,且A线性无关,则rs(二版74P

定理7); 向量组A能由向量组B线性表示,则()()rArB;(86P定理3) 向量组A能由向量组B线性表示 AXB有解; ()(,)rArAB(85P定理2) 向量组A能由向量组B等价()()(,)rArBrAB(85P定理2推论) 8. 方阵A可逆存在有限个初等矩阵12,,,lPPP,使12lAPPP; ①、矩阵行等价:~rABPAB(左乘,P可逆)0Ax与0Bx同解 ②、矩阵列等价:~cABAQB(右乘,Q可逆); ③、矩阵等价:~ABPAQB(P、Q可逆); 9. 对于矩阵mnA与lnB: ①、若A与B行等价,则A与B的行秩相等; ②、若A与B行等价,则0Ax与0Bx同解,且A与B的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A的行秩等于列秩; 10. 若mssnmnABC,则: ①、C的列向量组能由A的列向量组线性表示,B为系数矩阵; ②、C的行向量组能由B的行向量组线性表示,TA为系数矩阵;(转置) 11. 齐次方程组0Bx的解一定是0ABx的解,考试中可以直接作为定理使用,而无需证明;

相关文档
最新文档