第4讲 平面向量的应用
6.4平面向量的应用-【新教材】人教A版(2019)高中数学必修第二册同步讲义(机构专用)

以 DA, DC 为 x, y 轴的正方向建立直角坐标系,利用向量的坐标表示求模长的最小值.
【详解】
由题:以 DA, DC 为 x, y 轴的正方向建立直角坐标系,如图所示:
设 C 0, a, P 0,b, B 1, a, A2,0,0 b a ,
故答案为 D.
巩固练习
3
在△ABC 中,a、b、c 分别是角 A、B、C 的对边,如果 2b=a+c,B=30°,△ABC 的面积是 ,则 b=( )
2
A.1+ 3
B. 1 3 2
C. 2 3 2
D.2+ 3
【答案】A
【分析】
由三角形面积得 ac ,由余弦定理结合已知条件可得 b .
【详解】
由已知 S 1 ac sin B 1 ac sin 30 1 ac 3 , ac 6 ,
,
3
有 b2 a2 c2 2accosB 7 ,故 b= 7 .
由
bsinA
acos
B
π 6
,可得
sinA
3 .因为 a<c,故 cosA 2 .
7
7
因此
sin2 A
2sinAcosA
43 7
, cos2 A
2cos2 A 1
1. 7
所以, sin2A B sin2AcosB cos2AsinB 4 3 1 1 3 3 3 .
2
3
∵M 为边 BC 的中点,b=1,c=2,
∴则 2 AM = AB AC ,两边平方可得 4| AM |2=| AB |2+| AC |2+2 AB
• AC =1+4+2×1×2×
人教课标版高中数学必修4《平面向量应用举例》名师课件

1 2
b).
因此n(a+b)=
1 2
b+m(a-
1b),
2
即(n-m)a+(n+ m 1 )b=0.
2
知识回顾 问题探究 课堂小结 随堂检测
nm0
由解于 得向n=量ma=、13b不.共所线以,AR要=使13上A式C .为0,必须n
m 1 2
0
同理 TC
=1
3
AC .于是 RT
=1
3
AC
.
所以AR=RT=TC.
例3.如图所示,在平行四边形ABCD中,BC=2BA,∠ABC=60°, 作AE⊥BD交BC于E,求 BE 的值.
EC
【解题过程】
方法一:(基向量法)
设 BA =a,BC=b,|a|=1,|b|=2.
a·b=|a||b|cos 60°=1,BD =a+b.
设BE =λBC =λb,则 AE =BE - BA=λb-a.
4
即
,得m=
4 5
,∴
BE EC
5 6
2 3
.
5
【思路点拨】利用向量解决平面几何问题时,有两种思路:一种思路是
选择一组基底,利用基向量表示涉及的向量,一种思路是建立坐标系,
求出题目中涉及到的向量的坐标.这两种思路都是通过向量的计算获得
几何命题的证明.
知识回顾 问题探究 课堂小结 随堂检测
知识梳理
(1)用向量方法解决平面几何问题的“三步曲”: ①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素, 将平面几何问题转化为向量问题; ②通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; ③把运算结果“翻译”成几何关系.
(2)利用向量解决物理问题的基本步骤:①问题转化,即把物理问题 转化为数学问题;②建立模型,即建立以向量为载体的数学模型; ③求解参数,即求向量的模、夹角、数量积等;④回答问题,即把 所得的数学结论回归到物理问题.
平面向量的应用PPT课件

| AB | | AC |
点 P 的轨迹一定通过△ABC 的( B )
A.垂心 B.内心 C.重心 D.外心
第10页/共29页
例3.
1)、在ABC中AB • BC 0,则ABC为
三角形
2)、在ABC中BC
• CA
2
BC
变式:若AC 10,求BD长度
第14页/共29页
3.(【093天】3.津()09在天四津边)形在A四BC边D形中A,BCADB 中= D,CA=B(=1D,C1)=,(1,1),
|
1 BA
|
BA
1
|
BB1CA|BC1
|
3
BDC
BD
|
,3则B四D边,形则AB四C边D 形
ABCD
| BA | 3 | BC | | BD |
的面积是
2
解:由题的知面四积边是形ABCD是菱形,其边长为 2,
A
D
B
C
第15页/共29页
平面向量的应用(3)
第16页/共29页
例 1.已知 ABC 中, AB 2, AC 3, (1)若O为 ABC 的垂心,求 AO BC ; (2)若O为 ABC 的重心,求 AO BC ; (3)若O为 ABC 的外心,求 AO BC .
9.(2013
浙江卷理
7)设
ABC,
P0
是边
AB
上一定点,满足
P0 B
1 4
AB
,
且对于边 AB 上任一点 P ,恒有 PB • PC P0B • P0C 。则
A. ABC 900 B. BAC 900 C. AB AC D. AC BC
高考数学(理)之平面向量 专题04 平面向量在平面几何、三角函数、解析几何中的应用(解析版)

平面向量04 平面向量在平面几何、三角函数、解析几何中的应用一、具本目标: 一)向量的应用1.会用向量方法解决某些简单的平面几何问题.2.会用向量方法解决简单的力学问题与其他一些实际问题. 二)考点解读与备考:1.近几年常以考查向量的共线、数量积、夹角、模为主,基本稳定为选择题或填空题,难度较低;2.常与平面几何、三角函数、解析几何等相结合,以工具的形式进行考查,常用向量的知识入手.力学方面应用的考查较少.3.备考重点:(1) 理解有关概念是基础,掌握线性运算、坐标运算的方法是关键;(2)解答与平面几何、三角函数、解析几何等交汇问题时,应注意运用数形结合的数学思想,将共线、垂直等问题,通过建立平面直角坐标系,利用坐标运算解题.4.难点:向量与函数、三角函数、解析几何的综合问题.以向量形式为条件,综合考查了函数、三角、数列、曲线等问题.要充分应用向量的公式及相关性质,会用向量的几何意义解决问题,有时运用向量的坐标运算更能方便运算. 二、知识概述:常见的向量法解决简单的平面几何问题: 1.垂直问题:(1)对非零向量a r 与b r ,a b ⊥⇔r r.(2)若非零向量1122(,),(,),a x y b x y a b ==⊥⇔r r r r.2.平行问题:(1)向量a r 与非零向量b r共线,当且仅当存在唯一一个实数λ,使得 .(2)设1122(,),(,)a x y b x y ==r r是平面向量,则向量a r 与非零向量b r 共线⇔ .【考点讲解】3.求角问题:(1)设,a b r r是两个非零向量,夹角记为α,则cos α= .(2)若1122(,),(,)a x y b x y ==r r是平面向量,则cos α= .4.距离(长度)问题:(1)设(,)a x y =r,则22a a ==r r ,即a =r .(2)若1122(,),(,)A x y B x y ,且a AB =r u u u r ,则AB AB ==u u u r.【答案】1.1212(1)0,(2)0.a b x x y y ⋅=+=r r2.(1)a b λ=r r,(2)12210x y x y -=3.(1)a b a b ⋅⋅r r r r.4.(1)22x y +【优秀题型展示】 1. 在平面几何中的应用:已知ABC D 中,(2,1),(3,2),(3,1)A B C ---,BC 边上的高为AD ,求点D 和向量AD u u u r的坐标.【解析】设点D 坐标(x ,y ),由AD 是BC 边上的高可得⊥,且B 、D 、C 共线,∴⎪⎩⎪⎨⎧=⋅//0∴⎩⎨⎧=+---+=--⋅+-0)1)(3()2)(3(0)3,6()1,2(y x y x y x ∴⎩⎨⎧=+---+=+---0)1)(3()2)(3(0)1(3)2(6y x y x y x ∴⎩⎨⎧=+-=-+012032y x y x解得⎩⎨⎧==11y x ∴点D 坐标为(1,1),AD =(-1,2). 【答案】AD =(-1,2)【变式】已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =u u u r u u u r,则顶点D 的坐标为 ( ) A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),【解析】设22(,),(3,1)(1,2)(4,3),(,2),,37222x x D x y BC AD x y y y 祆==镲镲镲=---==-\\眄镲-==镲镲铑u u u r u u u rQ , 【答案】A【变式】已知正方形OABC 的边长为1,点D E 、分别为AB BC 、的中点,求cos DOE ∠的值.【解析】以OA OC 、为坐标轴建立直角坐标系,如图所示.由已知条件,可得114.225⋅==∴∠=⋅u u u r u u u ru u u r u u u r u u u r u u u r (1,),(,1),cos =OD OE OD OE DOE OD OE2.在三角函数中的应用:已知向量3(sin ,)4a x =r ,(cos ,1)b x =-r .设函数()2()f x a b b =+⋅r r r ,已知在ABC ∆中,内角A B C 、、的对边分别为a bc 、、,若a =2b =,sin B =()4cos(2)6f x A π++([0,]3x π∈)的取值范围.【解析】 由正弦定理得或 . 因为,所以4A π=.因为+.所以, ,, 所以. 【答案】()⎥⎦⎤⎢⎣⎡--∈⎪⎭⎫ ⎝⎛++212,12362cos 4πA x f sin ,sin sin 24a b A A A B π===可得所以43π=A a b >()2())4f x a b b x π=+⋅=+r r r 32()⎪⎭⎫⎝⎛++62cos 4πA x f =)4x π+12-0,3x π⎡⎤∈⎢⎥⎣⎦Q 112,4412x πππ⎡⎤∴+∈⎢⎥⎣⎦()21262cos 4123-≤⎪⎭⎫ ⎝⎛++≤-πA x f3.在解析几何中的应用:(1)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为坐标原点,则实数a 的值为________.【解析】如图所示,以OA 、OB 为边作平行四边形OACB , 则由|OA →+OB →|=|OA →-OB →|得, 平行四边形OACB 是矩形,OA →⊥OB →.由图象得,直线y =-x +a 在y 轴上的截距为±2.【答案】±2(2)椭圆的焦点为F F ,点P 为其上的动点,当∠F P F 为钝角时,点P 横坐标的取值范围是 .【解析】法一:F 1(-,0)F 2(,0),设P (3cos ,2sin ).为钝角,.∴=9cos 2-5+4sin 2=5 cos 2-1<0.解得: ∴点P 横坐标的取值范围是(). 14922=+y x ,121255θθ21PF F ∠Θ123cos ,2sin )3cos ,2sin )PF PF θθθθ⋅=-⋅-u u u r u u u u r(θθθ55cos 55<<-θ553,553-ODC BA【答案】() 法二:F 1(-,0)F 2(,0),设P (x,y ).为钝角,∴ ()()125,5,PF PF x y x y •=--⋅-u u u r u u u u r225x y =+-=25109x -<. 解得:353555x -<<.∴点P 横坐标的取值范围是(). 【答案】() 2. 在物理学中的应用:如图所示,用两条成120º的等长的绳子悬挂一个灯具,已知灯具的重量为10N ,则每根绳子的拉力是 .]【解析】 ∵绳子的拉力是一样的(对称) ,∴OA =OB ,∴四边形OADB 为菱形 .∵∠AOB =120º ,∴∠AOD =60º .又OA =OB =AD , ∴三角形OAD 为等边三角形 ,∴OD =OA . 又根据力的平衡得OD =OC =10 , ∴OA =10 ,∴OA =OB =10 . ∴每根绳子的拉力大小是10N. 【答案】10N553,553-5521PF F ∠Θ553,553-553,553-【真题分析】1.【2017年高考全国II 卷理数】已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+u u u r u u u r u u u r的最小值是( )A .2-B .32-C .43- D .1-【解析】如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-u u u r ,(1,)PB x y =---u u u r,(1,)PC x y =--u u u r ,所以(2,2)PB PC x y +=--u u u r u u u r ,22()22)22(PA PB PC x y y x y ⋅+=-=+-u u u r u u u r u u u r233)222-≥-,当(0,2P 时,所求的最小值为32-,故选B . 【答案】B2.【2018年高考上海卷】在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且||2EF =u u u r ,则AE BF ⋅u u u r u u u r的最小值为___________.【解析】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=u u u r;∴a =b +2,或b =a +2;且()()1,2,AE a BF b ==-u u u r u u u r ,;∴2AE BF ab ⋅=-+u u u r u u u r; 当a =b +2时,()22222AE BF b b b b ⋅=-++⋅=+-u u u r u u u r;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅u u u r u u u r 的最小值为﹣3,同理求出b =a +2时,AE BF ⋅u u u r u u u r的最小值为﹣3.故答案为:﹣3.【答案】-33.【2018年高考江苏卷】在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为___________.【解析】设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u r u u u r ,由0AB CD ⋅=u u u r u u u r 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-,因为0a >,所以 3.a = 【答案】34.【2017年高考全国I 卷理数】已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |=___________. 【解析】方法一:222|2|||44||4421cos60412+=+⋅+=+⨯⨯⨯+=oa b a a b b ,所以|2|+==a b .方法二:利用如下图形,可以判断出2+a b 的模长是以2为边长,一夹角为60°的菱形的对角线的长度,则为【答案】5.【2017年高考江苏卷】如图,在同一个平面内,向量OA u u u r ,OB uuu r ,OC uuu r 的模分别为1,1,2,OA u u u r 与OCuuu r的夹角为α,且tan α=7,OB uuu r 与OC uuu r 的夹角为45°.若OC mOA nOB =+u u u r u u u r u u u r(,)m n ∈R ,则m n +=___________.【解析】由tan 7α=可得sin 10α=,cos 10α=,根据向量的分解,易得cos 45cos sin 45sin 0n m n m αα⎧︒+=⎪⎨︒-=⎪⎩0210n m +=-=⎩,即510570n m n m +=⎧⎨-=⎩,即得57,44m n ==,所以3m n +=. 【答案】36.【2017年高考浙江卷】已知向量a ,b 满足1,2,==a b 则++-a b a b 的最小值是________,最大值是___________.【解析】设向量,a b 的夹角为θ,则-==a b+==a b ++-=a b a b令y =[]21016,20y =+,据此可得:()()maxmin 4++-==++-==a b a ba b a b ,即++-a b a b 的最小值是4,最大值是【答案】4,7. 【2016·江苏卷】如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4, BF →·CF →=-1,则BE →·CE →的值是________.【解析】 设AB →=a ,AC →=b ,则BA →·CA →=(-a )·(-b )=a ·b =4.又∵D 为BC 中点,E ,F 为AD 的两个三等分点,则AD →=12(AB →+AC →)=12a +12b ,AF →=23AD →=13a +13b ,AE →=13AD →=16a +16b ,BF →=BA →+AF →=-a +13a +13b =-23a +13b ,CF →=CA →+AF →=-b +13a +13b =13a -23b ,则BF →·CF →=⎝⎛⎭⎫-23a +13b ·⎝⎛⎭⎫13a -23b =-29a 2-29b 2+59a ·b =-29(a 2+b 2)+59×4=-1. 可得a 2+b 2=292.又BE →=BA →+AE →=-a +16a +16b =-56a +16b ,CE →=CA →+AE →=-b +16a +16b =16a -56b ,则BE →·CE →=⎝⎛⎭⎫-56a +16b ·⎝⎛⎭⎫16a -56b =-536(a 2+b 2)+2636a ·b =-536×292+2636×4=78.【答案】 788.【2017年高考江苏卷】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【解析】(1)因为co ()s ,sin x x =a,(3,=b ,a ∥b,所以3sin x x =. 若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan 3x =-.又[]0πx ∈,,所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅=-=+a b . 因为[]0πx ∈,,所以ππ7π[,]666x +∈,从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,()f x 取到最大值3; 当π6x +=π,即5π6x =时,()f x取到最小值-【答案】(1)5π6x =;(2)0x =时,()f x 取到最大值3;5π6x =时,()f x取到最小值-.1.已知数列{}n a 为等差数列,且满足32015BA a OB a OC =+u u u r u u u r u u u r ,若()AB AC R λλ=∈u u u r u u u r,点O 为直线BC 外一点,则12017a a +=( )A. 0B. 1C. 2D. 4【解析】∵32015BA a OB a OC =+u u u r u u u r u u u r , ∴32015OA OB a OB a OC -=+u u u r u u u r u u u r u u u r, 即()320151OA a OB a OC =++u u u r u u u r u u u r , 又∵()AB AC R λλ=∈u u u r u u u r,∴3201511a a ++=, ∴12017320150a a a a +=+=. 【答案】A2.直角ABC V 中, AD 为斜边BC 边的高,若1AC =u u u r , 3AB =u u u r,则CD AB ⋅=u u u r u u u r ( )【模拟考场】A .910 B . 310 C . 310- D . 910-【解析】依题意BC =22,AC AC CD CB CD CB =⋅==103cos ==BC AB B,所以有9cos 310CD AB CD AB B ⋅=⋅⋅==u u u r u u u r u u u r u u u r . 【答案】A3.已知正三角形ABC 的边长为,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BMuuu r 的最大值是( ) A.B. C. D.【解析】本题考点是向量与平面图形的综合应用.由题意可设D 为三角形的内心,以D 为原点,直线DA 为x 轴建立平面直角坐标系,由已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒u u u r u u u r u u u r. 则()((2,0,1,,1,.A B C --设(),,P x y 由已知1AP =u u u r ,得()2221x y -+=,又11,,,,,22x x PM MC M BM ⎛⎛-+=∴∴= ⎝⎭⎝⎭u u u u r u u u u r u u u u r()(22214x y BM -++∴=u u u u r ,它表示圆()2221x y -+=上点().x y 与点(1,--距离平方的14,()22max149144BM⎫∴==⎪⎭u u u u r ,故选B.【答案】B4.已知曲线C :x =直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=u u u r u u u r r,则m 的取值范围为 .【解析】本题考点是向量线性运算与解析几何中点与直线的位置关系的应用.由0AP AQ +=u u u r u u u r r知A 是PQ的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.3244344943637+433237+【答案】[2,3]5.在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD u u u r=1,则OA OB OD ++u u u r u u u r u u u r 的最大值是_________.【解析】本题的考点是参数方程中的坐标表示, 圆的定义与 三角函数的值域.由题意可知C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程3cos sin D D x y θθ=+⎧⎨=⎩(θ为参数且[)0,2θπ∈),所以设D 的坐标为()[)()3cos ,sin 0,2θθθπ+∈, 则OA OB OD ++=u u u r u u u r u uu r=因为2cos θθ+=所以OA OB OD ++的最大值为1==+故填1【答案】1+6.在△ABC 中,∠ABC =120°,BA =2,BC =3,D ,E 是线段AC 的三等分点,则BD →·BE →的值为________. 【解析】 由题意得BD →·BE →=(BA →+AD →)·(BC →+CE →)=⎝⎛⎭⎫BA →+13AC →·⎝⎛⎭⎫BC →+13CA → =⎣⎡⎦⎤BA →+13(BC →-BA →)·⎣⎡⎦⎤BC →+13(BA →-BC →)=⎝⎛⎭⎫13BC →+23BA →·⎝⎛⎭⎫23BC →+13BA → =29BC →2+59BC →·BA →+29BA →2=29×9+59×2×3×cos 120°+29×4=119. 【答案】1197.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BC =3BE ,DC =λDF . 若AE →·AF →=1,则λ的值为________. 【解析】法一、 如图,AE →=AB →+BE →=AB →+13BC →,AF →=AD →+DF →=AD →+1λDC →=BC →+1λAB →,所以AE →·AF →=⎝⎛⎭⎫AB →+13BC →·⎝⎛⎭⎫BC →+1λAB →=⎝⎛⎭⎫1+13λAB →·BC →+1λAB →2+13BC →2=⎝⎛⎭⎫1+13λ×2×2×cos 120°+4λ+43=1,解得λ=2.法二、 建立如图所示平面直角坐标系.由题意知:A (0,1),C (0,-1),B (-3,0),D (3,0).由BC =3BE ,DC =λDF .可求点E ,F 的坐标分别为E ⎝⎛⎭⎫-233,-13,F ⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ, ∴AE →·AF →=⎝⎛⎭⎫-233,-43·⎝⎛⎭⎫3⎝⎛⎭⎫1-1λ,-1λ-1=-2⎝⎛⎭⎫1-1λ+43⎝⎛⎭⎫1+1λ=1,解得λ=2. 【答案】28.在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.【解析】AB →·AC →=3×2×cos 60°=3,AD →=13AB →+23AC →,则AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.【答案】3119.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =__________;y =__________.【解析】MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →,∴x =12,y =-16.【答案】 12 -1610.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC =60°,动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.【解析】法一 在梯形ABCD 中,AB =2,BC =1,∠ABC =60°,可得DC =1,AE →=AB →+λBC →,AF →=AD →+19λDC →,∴AE →·AF →=(AB →+λBC →)·(AD →+19λDC →)=AB →·AD →+AB →·19λDC →+λBC →·AD →+λBC →·19λDC →=2×1×cos 60°+2×19λ+λ×1×cos 60°+λ·19λ×cos 120°=29λ+λ2+1718≥229λ·λ2+1718=2918,当且仅当29λ=λ2,即λ=23时,取得最小值为2918.法二 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝⎛⎭⎫32,32,D ⎝⎛⎭⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝⎛⎭⎫2-12λ,32λ,F ⎝⎛⎭⎫12+19λ,32,λ>0,所以AE →·AF →=⎝⎛⎭⎫2-12λ⎝⎛⎭⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0, 当且仅当29λ=12λ,即λ=23时取等号,故AE →·AF →的最小值为2918.【答案】291811.已知矩形ABCD 的边AB =2,AD =1.点P ,Q 分别在边BC ,CD 上,且∠P AQ =π4,则AP →·AQ →的最小值为________.【解析】法一(坐标法) 以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴建立平面直角坐标系,则A (0,0),B (2,0),D (0,1).设∠P AB =θ,则AP →=(2,2tan θ),AQ →=⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1,0≤tan θ≤12. 因为AP →·AQ →=(2,2tan θ)·⎝⎛⎭⎫tan ⎝⎛⎭⎫π4-θ,1=2tan ⎝⎛⎭⎫π4-θ+2tan θ=2(1-tan θ)1+tan θ+2tan θ=41+tan θ+2tan θ-2=41+tan θ+2(tan θ+1)-4≥42-4,当且仅当tan θ=2-1时,“=”成立,所以AP →·AQ →的最小值为42-4.法二(基底法) 设BP =x ,DQ =y ,由已知得,tan ∠P AB =x2,tan ∠QAD =y ,由已知得∠P AB +∠QAD =π4,所以tan ∠P AB +tan ∠QAD 1-tan ∠P AB tan ∠QAD =1,所以x +2y 2=1-xy2,x +2y =2-xy ≥2x ·2y ,解得0<xy ≤6-42,当且仅当x =2y 时,“=”成立.AP →·AQ →=22·(4+x 2)(1+y 2)=22·(xy )2+(x +2y )2-4xy +4=22·(xy )2+(2-xy )2-4xy +4=(xy )2-4xy +4=2-xy ≥42-4. 【答案】 42-412.设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =________.【解析】 ∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3.【答案】 ±313.在△ABC 中,已知AB =1,AC =2,∠A =60°,若点P 满足AP →=AB →+λAC →,且BP →·CP →=1,则实数λ的值为________.【解析】 由AB =1,AC =2,∠A =60°,得BC 2=AB 2+AC 2-2AB ·AC ·cos A =3,即BC = 3.又AC 2=AB 2+BC 2,所以∠B =90°.以点A 为坐标原点,AB →,BC →的方向分别为x 轴,y 轴的正方向建立平面直角坐标系,则B (1,0),C (1,3).由AP →=AB →+λAC →,得P (1+λ,3λ),则BP →·CP →=(λ,3λ)·(λ,3λ-3)=λ2+3λ(λ-1)=1,即4λ2-3λ-1=0,解得λ=-14或λ=1.【答案】 -14或114.证明:同一平面内,互成120°的三个大小相等的共点力的合力为零.【证明】如图,用r a ,r b ,r c 表示这3个共点力,且r a ,r b ,rc 互成120°,模相等,按照向量的加法运算法则,有:r a +r b +r c = r a +(r b +r c )=r a +u u u rOD .又由三角形的知识知:三角形OBD 为等边三角形, 故r a 与u u u r OD 共线且模相等,所以:u u u r OD = -r a ,即有:r a +r b +r c =0r .15.在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈u u u r u u u r u u u r.(1)若23m n ==,求||OP u u u r ;(2)用,x y 表示m n -,并求m n -的最大值.【解析】(1)(1,1),(2,3),(3,2)A B C Q (1,2)AB ∴=u u u r ,(2,1)AC =u u u r.Q OP mAB nAC =+u u u r u u u r u u u r ,又23m n ==.22(2,2)33OP AB AC ∴=+=u u u r u u u r u u u r,|OP ∴u u u r(2)OP mAB nAC =+u u u r u u u r u u u rQ (,)(2,2)x y m n m n ∴=++即22x m ny m n=+⎧⎨=+⎩,两式相减得:m n y x -=-.令y x t -=,由图可知,当直线y x t =+过点(2,3)B 时,t 取得最大值1,故m n -的最大值为1.【答案】(1)(2)m n y x -=-,1.16.如图,在直角梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =AB =4,CD =1,动点P 在边BC 上,且满足AP →=mAB →+nAD →(m ,n 均为正实数),求1m +1n的最小值.【解析】 如图,建立平面直角坐标系,得A (0,0),B (4,0),D (0,4),C (1,4),则AB →=(4,0),AD →=(0,4).设AP →=(x ,y ),则BC 所在直线为4x +3y =16. 由AP →=mAB →+nAD →,即(x ,y )=m (4,0)+n (0,4),得x =4m ,y =4n (m ,n >0), 所以16m +12n =16,即m +34n =1,那么1m +1n =⎝⎛⎭⎫1m +1n ⎝⎛⎭⎫m +34n =74+3n 4m +m n ≥74+23n 4m ·m n =74+3=7+434(当且仅当3n 2=4m 2时取等号). 17.已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎫0,π2,且m ⊥n . (1)求cos 2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎫0,π2,求角β的值. 【解析】 (1)由m ⊥n ,得2cos α-sin α=0,sin α=2cos α,代入cos 2α+sin 2α=1,得5cos 2α=1, 又α∈⎝⎛⎭⎫0,π2,则cos α=55,cos 2α=2cos 2α-1=-35. (2)由α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,得α-β∈⎝⎛⎭⎫-π2,π2.因为sin(α-β)=1010,所以cos(α-β)=31010,而sin α=1-cos 2α=255, 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=255×31010-55×1010=22.因为β∈⎝⎛⎭⎫0,π2,所以β=π4.。
推荐高中数学必修4平面向量优质课件:平面向量应用举例 精品

1 2
,又|
AC
|2=|a+b|2=a2+2a·b+b2
=1+4+2a·b=6,∴| AC |= 6,即AC= 6.
[例3] 在水流速度为4 3 km/h的河水中,一艘船以12 km/h的实际航行速度垂直于对岸行驶,求这艘船的航行速 度的大小与方向.
[解] 如图所示,设 AB 表示水流速度, AC 表示船垂直 于对岸行驶的速度,以 AB 为一边, AC 为一对角线作▱ ABCD,则 AD就是船的航行速度.
[对点训练] 如图,平行四边形 ABCD 中,已知 AD=1,AB=2, 对角线 BD=2,求对角线 AC 的长.
解:设 AD=a, AB=b,则BD=a-b, AC =a+b,
而| BD |=|a-b|= a2-2a·b+b2= 1+4-2a·b= 5-2a·b
=2,
∴5-2a·b=4,∴a·b=
[对点训练] 已知力 F(斜向上)与水平方向的夹角为 30°,大小为 50 N, 一个质量为 8 kg 的木块受力 F 的作用在动摩擦因数 μ=0.02 的水平面上运动了 20 m.问力 F 和摩擦力 f 所做的功分别为 多少?(g=10 m/s2)
解:如图所示,设木块的位移为s,则 WF=F·s=|F||s|cos 30°=50×20× 23=500 3(J). 将力F分解,它在铅垂方向上的分力F1的大小为 |F1|=|F|sin 30°=50×12=25(N), 所以摩擦力f的大小为 |f|=|μ(G-F1)|=(80-25)×0.02=1.1(N), 因此Wf=f·s=|f||s|cos 180° =1.1×20×(-1)=-22(J). 即F和f所做的功分别为500 3 J和-22 J.
对于线段的垂直问题,可以联想到两个向量垂直的条件 (向量的数量积为0),而对于这一条件的应用,可以考虑向量 关系式的形式,也可以考虑坐标的形式.
第4讲 平面向量的应用概论

=(-N→P)2-N→F2=N→P2-1, 故P→E·P→F的最小值为 12-4 3.
变式训练 3 已知圆 C:(x-3)2+(y-3)2=4 及点 A(1,1),M 是圆 C 上 的任意一点,点 N 在线段 MA 的延长线上,且M→A=2A→N,求点 N 的
的垂线,垂足为点 A,且与另一条渐近线交于点 B,若F→B=
2F→A,则此双曲线的离心率为( D )
A. 2
B. 3
C. 5
D.2
设∠FOA=α,∵OA⊥FB,且F→B=2F→A,∴OA 为 FB 的中垂 线,对称性得 α=600, (ba)2=3,∴c2-a2a2=3,∴e=ac=2.
题型一 应用平面向量的几何意义解 【例 1】 题平面上的两个向量O→A,O→B满足|O→A|=a,|O→B|=b,
AB = 5,则AC CB (....A.....)A. 5 , B. 5 ,C.0, D. 5 3 .
22
2
4、a、b为非零向量,“a b”是“函数f (x) (xa b) (xb a)
为一次函数”的( B )条件
A.充分不必要, B.必要不充分,C.充分必要, D.既不充分也不必要.
5、过双曲线xa22-by22=1(a>0,b>0)的一个焦点 F 作一条渐近线
第4讲 平面向量的应用
1.向量在平面几何中的应用
平面向量在平面几何中的应用主要是用向量的线性运算及数量积
解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角
等问题.
(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定
理:a∥b⇔_a__=__λ_b_(_b_≠__0_)__⇔___x_1_y_2_-___x__2_y_1_=___0.
平面向量的应用
平面向量的应用平面向量是解决平面几何问题的重要工具之一。
它可以用于求解平面上的距离、角度、垂直、平行等关系,为各种几何问题的解决提供了方便和简洁的方法。
本文将介绍平面向量在几种常见问题中的应用,包括向量的加减法、向量共线垂直性质、向量的数量积和向量的模、方向投影等内容。
一、向量的加减法向量的加减法是平面向量最基本的操作。
当我们要求两个向量的和或差时,可以通过将它们的对应分量相加或相减来得到结果。
例如,有向量 $\overrightarrow{AB} = \langle x_1, y_1 \rangle$ 和$\overrightarrow{CD} = \langle x_2, y_2 \rangle$,它们的和为$\overrightarrow{AB} + \overrightarrow{CD} = \langle x_1 + x_2, y_1 +y_2 \rangle$,差为 $\overrightarrow{AB} - \overrightarrow{CD} = \langle x_1 - x_2, y_1 - y_2 \rangle$。
二、向量共线与垂直性质对于两个非零向量 $\overrightarrow{AB}$ 和 $\overrightarrow{CD}$,如果它们的方向相同或相反,则称这两个向量共线。
向量共线的判断可以通过它们的方向比较或通过计算它们的比值来得到。
如果两个向量的方向垂直,则称这两个向量垂直。
两个向量垂直的判断可以通过它们的数量积的结果是否为零来确定。
三、向量的数量积向量的数量积也称为点积或内积,用符号 $\cdot$ 表示。
对于向量$\overrightarrow{AB} = \langle x_1, y_1 \rangle$ 和 $\overrightarrow{CD} = \langle x_2, y_2 \rangle$,它们的数量积为 $x_1 \cdot x_2 + y_1 \cdot y_2$。
第四章 平面向量 4.4 平面向量应用举例
[方法与技巧]1.向量的坐标运算将向量与代数有机结合起来,这就为向量和函数的结合提供了前提,运用向量的有关知识可以解决某些函数问题.2.以向量为载体求相关变量的取值范围,是向量与函数、不等式、三角函数等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解不等式或求函数值域,是解决这类问题的一般方法. [失误与防范]1.注意向量夹角和三角形内角的关系,两者并不等价. 2.注意向量共线和两直线平行的关系.3.利用向量解决解析几何中的平行与垂直,可有效解决因斜率不存在使问题漏解的情况.典例 已知A ,B ,C ,D 是函数y =sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2一个周期内的图象上的四个点,如图所示,A ⎝⎛⎭⎫-π6,0,B 为y 轴上的点,C 为图象上的最低点,E 为该函数图象的一个对称中心,B 与D 关于点E 对称,CD →在x 轴上的投影为π12,则ω, φ的值为( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=12,φ=π3D .ω=12,φ=π6解析 由E 为该函数图象的一个对称中心,作点C 的对称点为M ,作MF ⊥x 轴,垂足为F ,如图.B 与D 关于点E 对称,CD →在x 轴上的投影为π12,知OF =π12.又A ⎝⎛⎭⎫-π6,0,所以AF =T 4=π2ω=π4,所以ω=2.同时函数y =sin(ωx +φ)图象可以看作是由y =sin ωx 的图象向左平移得到,故可知φω=φ2=π6,即φ=π3.答案 A温馨提醒 对于在图形中给出解题信息的题目,要抓住图形的特点,通过图形的对称性、周期性以及图形中点的位置关系提炼条件,尽快建立图形和欲求结论间的联系.题型一 向量在平面几何中的应用例1 已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .内心 B .外心 C .重心 D .垂心答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心. 引申探究在本例中,若动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈(0,+∞),则点P 的轨迹一定通过△ABC的________________________________________________________________________. 答案 内心解析 由条件,得OP →-OA →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,即AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,而AB →|AB →|和AC →|AC →|分别表示平行于AB →,AC →的单位向量,故AB →|AB →|+AC →|AC →|平分∠BAC ,即AP →平分∠BAC ,所以点P 的轨迹必过△ABC 的内心.思维升华 解决向量与平面几何综合问题,可先利用基向量或坐标系建立向量与平面图形的联系,然后通过向量运算研究几何元素之间的关系.(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE→=1,则AB =________.(2)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形B .梯形C .正方形D .菱形答案 (1)12(2)D解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →,又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →)=AD →2-12AD →·AB →+AD →·AB →-12AB →2=|AD →|2+12|AD →||AB →|cos 60°-12|AB →|2=1+12×12|AB →|-12|AB →|2=1.∴⎝⎛⎭⎫12-|AB →||AB →|=0,又|AB →|≠0,∴|AB →|=12. (2)AB →+CD →=0⇒AB →=-CD →=DC →⇒平面四边形ABCD 是平行四边形,(AB →-AD →)·AC →=DB →·AC →=0⇒DB →⊥AC →,所以平行四边形ABCD 是菱形. 题型二 向量在解析几何中的应用例2 (1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx=________. 答案 (1)2x +y -3=0 (2)±3解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3.思维升华 向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题关键是利用向量的意义、运算,脱去“向量外衣”;(2)工具作用,利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题.已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是( ) A .5 B .6 C .10 D .12 答案 B解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1,∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →·PF →最小值是HE →·HF →,HC =CM -1=5-1=4,HE =HC 2-CE 2=16-4=23, sin ∠CHE =CE CH =12,∴cos ∠EHF =cos 2∠CHE =1-2sin 2∠CHE =12,HE →·HF →=|HE →|·|HF →|cos ∠EHF =23×23×12=6,故选B.题型三 向量的综合应用例3 (1)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是( ) A .1 B.13C.14D.18(2)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是________.答案 (1)D (2)3 解析 (1)因为OA →=(x,1),OB →=(2,y ),所以OA →·OB →=2x +y ,令z =2x +y ,依题意,不等式组所表示的可行域如图中阴影部分所示,观察图象可知,当目标函数z =2x +y 过点C (1,1)时,z max =2×1+1=3,目标函数z =2x +y 过点F (a ,a )时,z min =2a +a =3a ,所以3=8×3a ,解得a =18,故选D.(2)由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3. 思维升华 利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.(1)设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|·cos B +AC →|AC →|·cos C ,λ∈[0,+∞),则点P 的轨迹经过△ABC 的( ) A .外心 B .内心 C .重心D .垂心(2)已知在平面直角坐标系中,O (0,0),M (1,1),N (0,1),Q (2,3),动点P (x ,y )满足不等式0≤OP →·OM →≤1,0≤OP →·ON →≤1,则z =OQ →·OP →的最大值为________. 答案 (1)D (2)3解析 (1)∵BC →·⎝⎛⎭⎪⎫AB →|AB →|cos B +AC →|AC →|cos C =-|BC →|+|BC →|=0,∴BC →与λ⎝⎛⎭⎪⎫AB →|AB →|cos B +AC →|AC →|cos C 垂直. ∵OP →=OA →+λ⎝⎛⎭⎪⎫AB →|AB →|cos B +AC →|AC →|cos C , ∴点P 在BC 的高线上,即点P 的轨迹过△ABC 的垂心. (2)∵OP →=(x ,y ),OM →=(1,1),ON →=(0,1),OQ →=(2,3), ∴OP →·OM →=x +y ,OP →·ON →=y ,OQ →·OP →=2x +3y ,即在⎩⎪⎨⎪⎧0≤x +y ≤1,0≤y ≤1条件下,求z =2x +3y 的最大值,由线性规划知识得,当x =0,y =1时,z max =3.。
数学课件第四节 平面向量应用举例
2019/8/15
8
(2015·广东卷)在平面直角坐标系 xOy 中,已知向量 m=
22,-
22,n=(sin
x,cos
x),x∈0,π2
.
(1)若 m⊥n,求 tan x 的值;
(2)若 m 与 n 的夹角为π3 ,求 x 的值. 解:(1)若 m⊥n,则 m·n=0.
由向量数量积的坐标公式得
2 2 sin
x-
2 2 cos
x=0,
∴tan x=1.
2019/8/∴m·n=|m|·|n|cos 3 ,
即
2 2 sin
x-
2 2 cos
x=12,
∴sinx-π4 =12.
又∵x∈0,π2 ,∴x-π4 ∈-π4 ,π4 ,
λ|A→BA→|cBos
B+|A→CA→|cCos
C,λ
∈(0,+∞),则如何选择?
解析:由条件,得A→P=λ|A→BA→|cBos
B+|A→CA→|cCos
C,
从而A→P·B→C=λ|AA→→BB·|coB→sCB+|A→A→CC|c·Bo→sCC
=λ·|A→B|·|B→C|A|→cBos|c(os1B80°-B)+λ·|A→C|A|→·C||Bc→oCs|cCos C=0,所以
2019/8/15
5
【 探 究 迁 移 1 】 在 本 例 中 , 若 动 点 P 满 足 O→P = O→A + λ|AA→→BB|+|AA→→CC|,λ ∈(0,+∞),则如何选择?
解 析 : 由 条 件 , 得 O→P - O→A = λ |AA→→BB|+|AA→ →CC| , 即 A→P =
A→P⊥B→C,则动点 P 的轨迹一定通过△ABC 的垂心.
人教版高中数学必修26.4平面向量的应用 教案
6.4平面向量的应用教学设计证明:如图,因为平面几何问题转化为向问题中的几何元素,将几何与向量的联系,用解:第一步,建立平面D(1,1),P(x,1-x),E(0,1-x),F(x,0)(1,),(,DP x x EF x x ∴=--=DP EF DP EF∴⊥∴⊥(1)(1)DP EF x x x x =---小结:①建立坐标系;②写出用到的点的坐标及向量坐标;③进行坐标运算;④还原为几何问题。
几何问题代数化数形结合思想2、如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC 的长.解 设AD →=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD →|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2, ∴5-2a ·b =4,∴a ·b =12.又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,∴|AC →|=6,即AC = 6.方法总结:向量在平面几何中常见的应用 (1)证明线段平行或点共线问题,以及相似问题,常用平行向量基本定理a ∥b ⇔a =λb (λ∈R ,b ≠0)⇔x 1y 2-x 2y 1=0(a =(x 1,y 1),b =(x 2,y 2))(2)证明线段垂直问题,如证明四边形是矩形、正方形,判断两直线(或线段)是否垂直等,常用向量垂直的条件:a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0(a =(x 1,y 1),b =(x 2,y 2))(3)求线段的长度或说明线段相等,常用公式:|a |=a 2=x 2+y 2(a =(x ,y ))或AB =|AB →|=x 1-x 22+y 1-y 22(A (x 1,y 1),B (x 2,y 2)) 知识探究(二):向量在物理中的应用举例下面,我们再来感受下向量在物理中的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B.向东北走 3 2 km D.向东北走 3 3 km
→ 要求 a+b, 可利用向量和的三角形法则来求解, 如图所示, 适当选取比例尺作OA → =b=“向北走 3 km”,则OB → =OA → +AB → =a+b. =a=“向东走 3 km”,AB → |= 32+32=3 2(km), |OB → 与OB → 的夹角是 45° 又OA ,所以 a+b 表示向东北走 3 2 km. 答案 B → +DC → -2DA → )· → -AC → )=0,则 2.平面上有四个互异点 A、B、C、D,已知(DB (AB △ABC 的形状是( A.直角三角形 C.等腰三角形 ). B.等腰直角三角形 D.无法确定
基础梳理 1.向量在平面几何中的应用 平面向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何 中的平行、垂直、平移、全等、相似、长度、夹角等问题. (1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a∥b⇔a= λb(b≠0)⇔x1y2-x2y1=0. (2)证明垂直问题,常用数量积的运算性质 a⊥b⇔a· b=0⇔x1x2+y1y2=0. (3)求夹角问题,利用夹角公式 a· b cos θ=|a||b|= x1x2+y1y2 2 2(θ x1+y2 x2 1 2+y2 为 a 与 b 的夹角).
两条主线 (1)向量兼具代数的抽象与严谨和几何的直观与形象,向量本身是一个数形结合 的产物,在利用向量解决问题时,要注意数与形的结合、代数与几何的结合、形 象思维与逻辑思维的结合. (2)要注意变换思维方式,能从不同角度看问题,要善于应用向量的有关性质解 题. 双基自测 1.(人教 A 版教材习题改编)某人先位移向量 a:“向东走 3 km”,接着再位移 向量 b:“向北走 3 km”,则 a+b 表示( A.向东南走 3 2 km C.向东南走 3 3 km )由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的加法 和减法相似,可以用向量的知识来解决. (2)物理学中的功是一个标量,这是力 F 与位移 s 的数量积.即 W=F· s=|F||s|cos θ(θ 为 F 与 s 的夹角).
一个手段 实现平面向量与三角函数、 平面向量与解析几何之间的转化的主要手段是向量的 坐标运算.
[审题视点] 由数量积公式求出 OA 与 OB 夹角的余弦,进而得正弦,再由公式 S 1 =2absin θ,求面积. a· b 解析 ∵cos∠BOA=|a||b|, 则 sin∠BOA= 1 ∴S△OAB=2|a||b| 1 =2 |a|2|b|2-a· b2. 答案 C 平面向量的数量积是解决平面几何中相关问题的有力工具:利用|a|可以 a· b 求线段的长度,利用 cos θ=|a||b|(θ 为 a 与 b 的夹角)可以求角,利用 a· b=0 可以 证明垂直,利用 a=λb(b≠0)可以判定平行. 【训练 1】 设 a,b,c 为同一平面内具有相同起点的任意三个非零向量,且满 足 a 与 b 不共线,a⊥c,|a|=|c|,则|b· c|的值一定等于( A.以 a,b 为邻边的平行四边形的面积 B.以 b,c 为邻边的平行四边形的面积 C.以 a,b 为两边的三角形的面积 D.以 b,c 为两边的三角形的面积 ). a· b2 1-|a|2|b|2, a· b2 1-|a|2|b|2
A.等边三角形 C.等腰非等边三角形
→ → → AC → 1 AB AC AB → + 解析 由 · BC=0 知△ABC 为等腰三角形, AB=AC.由 · =2知, → → → | |AC →| |AB |AB| |AC| → ,AC → 〉=60° 〈AB ,所以△ABC 为等边三角形,故选 A. 答案 A 5.(2012· 武汉联考)平面直角坐标系 xOy 中,若定点 A(1,2)与动点 P(x,y)满足 →· → =4,则点 P 的轨迹方程是______________________________________. OP OA → → 解析 由OP· OA=4,得(x,y)· (1,2)=4, 即 x+2y=4. 答案 x+2y-4=0
第4讲
【2013 年高考会这样考】
平面向量的应用
1.考查利用向量方法解决某些简单的平面几何问题. 2.考查利用向量方法解决简单的力学问题与其他一些实际问题. 【复习指导】 复习中重点把握好向量平行、 垂直的条件及其数量积的运算,重视平面向量体现 出的数形结合的思想方法,体验向量在解题过程中的工具性特点.
考向一
平面向量在平面几何中的应用
→ =a,OB → =b,则△OAB 【例 1】►(2010· 辽宁)平面上 O,A,B 三点不共线,设OA 的面积等于( ). B. |a|2|b|2+a· b2 1 D.2 |a|2|b|2+a· b2
A. |a|2|b|2-a· b2 1 C.2 |a|2|b|2-a· b2
答案 C 3.(2012· 银川模拟)已知向量 a=(cos θ,sin θ),b=( 3,-1),则|2a-b|的最大 值,最小值分别是( A.4,0 C.2,0 B.16,0 D.16,4 ).
解析 设 a 与 b 夹角为 θ, ∵|2a-b|2=4a2-4a· b+b2=8-4|a||b|cos θ=8-8cos θ, ∵θ∈[0,π],∴cos θ∈[-1,1], ∴8-8cos θ∈[0,16],即|2a-b|2∈[0,16], ∴|2a-b|∈[0,4]. 答案 A → → → AC → 1 AB AC AB → → → + 4.在△ABC 中,已知向量AB与AC满足 · BC=0 且 · =2,则 → → → | |AC →| |AB |AB| |AC| △ABC 为( ). B.直角三角形 D.三边均不相等的三角形
→ +DC → -2DA → )· → -AC → )=0,得[(DB → -DA → )+(DC → -DA → ]· → -AC → )= 解析 由(DB (AB (AB → +AC → )· → -AC → )=0. 0,所以(AB (AB → |2-|AC → |2=0,∴|AB → |=|AC → |, 所以|AB 故△ABC 是等腰三角形.