平面向量应用教案

合集下载

高中数学教案《平面向量及其应用》

高中数学教案《平面向量及其应用》

教学设计:《平面向量及其应用》一、教学目标1.知识与技能:使学生理解平面向量的基本概念,包括向量的定义、表示方法(有向线段、坐标表示)、向量的模、方向角等;掌握向量的加法、减法、数乘及数量积的运算法则和几何意义;能运用向量知识解决简单的几何与物理问题。

2.过程与方法:通过观察、实验、推理等数学活动,培养学生的空间想象能力和逻辑推理能力;引导学生运用数形结合的思想,理解向量运算的几何背景,提高解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和勇于探索的精神;通过团队合作解决问题,增强学生的沟通能力和团队协作能力。

二、教学重点和难点●重点:平面向量的基本概念、向量的基本运算(加法、减法、数乘、数量积)及其几何意义。

●难点:理解向量数量积的概念、性质及其在解决实际问题中的应用;向量运算的坐标表示法及其应用。

三、教学过程1.导入新课o情境创设:通过展示风力发电机叶片的运动、航海中的航向与速度变化等实例,引出向量的概念,说明向量在现实生活中的应用价值。

o问题引入:提问学生如何描述这些运动中的方向和大小,引导学生思考向量的必要性。

o概念引入:正式给出平面向量的定义,强调其作为“有方向的量”的特性。

2.新知讲授o基本概念讲解:详细解释向量的表示方法(有向线段、坐标表示)、模长、方向角等概念,并通过图示加深理解。

o向量运算教学:●加法与减法:通过“平行四边形法则”和“三角形法则”演示向量的加法与减法,强调其几何意义。

●数乘:讲解数乘的定义,通过伸缩变换的直观演示,理解数乘对向量方向和大小的影响。

●数量积:引入数量积的概念,通过投影长度的计算,讲解其计算公式和性质,强调其在度量角度、判断方向等方面的应用。

3.例题解析o选取典型例题,覆盖向量运算的所有类型,逐步引导学生分析、解题,重点讲解解题思路和方法。

o强调解题过程中向量运算的几何背景,促进学生数形结合思维的发展。

4.学生活动o小组讨论:分组讨论向量在日常生活或专业领域的应用实例,每组选代表分享,增强课堂互动性。

平面向量的概念教案

平面向量的概念教案

平面向量的概念教案一、教学目标:1. 知识与技能:学生能够理解平面向量的概念,掌握平面向量的基本运算法则,并能够熟练进行向量的相加、相减、数量乘法等运算。

2. 过程与方法:通过例题演练,培养学生独立思考、分析问题、解决问题的能力;通过实际应用,加深学生对平面向量概念的理解和运用。

3. 情感态度与价值观:激发学生对数学的兴趣,形成积极的学习态度,提高解决实际问题的能力。

二、教学重点和难点:重点:平面向量的概念及基本运算法则。

难点:向量的数量乘法及在平面向量应用中的解决问题。

三、教学步骤:1. 导入新课:通过提问和引导学生联想等方式,引出向量的概念。

例如:什么是向量?向量有哪些性质?向量在生活中的应用等。

2. 确定学习目标:向学生解释接下来我们要学习平面向量,所以我们需要了解什么是平面向量及其基本性质,以及平面向量的加法、减法和数量乘法等基本运算,掌握这些内容。

3. 学习新知识:向学生详细讲解平面向量的定义、表示方法、平行向量、零向量、共线向量等基本概念和性质。

并讲解平面向量的基本运算法则,如向量的加法、减法、数量乘法等。

4. 练习与巩固:布置练习题,让学生积极参与,巩固学习内容。

5. 拓展应用:引导学生通过实际问题,运用平面向量的概念进行解决问题,提高学生的综合运用能力。

6. 总结归纳:通过本节课学习,对平面向量的概念和基本运算法则进行归纳总结,巩固所学知识。

四、教学手段:1. 教师讲解2. 学生讨论3. 课堂练习4. 实例演练五、教学资源:1. 教科书2. 多媒体课件3. 平面向量的实际应用例题材料六、教学反馈:1. 教师在学习过程中及时纠正学生的错误认识和解题方法。

2. 布置练习题,检验学生学习效果,及时发现学生的问题。

七、教学设计理念:通过让学生参与讨论和思考,培养其分析问题、解决问题的思维能力;通过实例演练,加深学生对平面向量概念的理解和运用;通过应用实际问题,引导学生运用所学知识解决实际问题的能力。

平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)

平面向量基本定理教案(精选10篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作文档、教学教案、企业文案、求职面试、实习范文、法律文书、演讲发言、范文模板、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as work summaries, work plans, experiences, job reports, work reports, resignation reports, contract templates, speeches, lesson plans, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!平面向量基本定理教案(精选10篇)平面向量基本定理教案(精选10篇)作为一名为他人授业解惑的教育工作者,时常需要编写教案,教案是教学活动的依据,有着重要的地位。

向量的教案5篇

向量的教案5篇

向量的教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如合同协议、学习总结、生活总结、工作总结、企划书、教案大全、演讲稿、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, the shop provides you with various types of practical information, such as contract agreement, learning summary, life summary, work summary, plan, teaching plan, speech, composition, work plan, other information, etc. want to know different data formats and writing methods, please pay attention!向量的教案5篇教案不仅仅是一份计划,还是教育实践的反映和指南,教案包含了教材选择和使用的详细说明,以便教师能够有效地传授知识,下面是本店铺为您分享的向量的教案5篇,感谢您的参阅。

教案平面向量的坐标表示

教案平面向量的坐标表示

平面向量的坐标表示教学目标:1. 理解平面向量的概念。

2. 学习平面向量的坐标表示方法。

3. 掌握平面向量的线性运算与坐标表示。

教学重点:1. 平面向量的概念。

2. 坐标表示方法。

3. 线性运算与坐标表示。

教学难点:1. 理解平面向量的坐标表示方法。

2. 掌握平面向量的线性运算与坐标表示。

教学准备:1. 教学PPT。

2. 教学素材。

教学过程:一、导入(5分钟)1. 向量概念的复习。

2. 向量表示方法的学习。

二、平面向量的概念(10分钟)1. 引导学生了解平面向量的定义。

2. 通过实例让学生理解平面向量的概念。

三、坐标表示方法(15分钟)1. 讲解平面向量的坐标表示方法。

2. 让学生通过实例掌握坐标表示方法。

四、线性运算与坐标表示(20分钟)1. 讲解平面向量的线性运算。

2. 让学生通过实例掌握线性运算与坐标表示。

五、巩固练习(10分钟)1. 让学生完成一些有关平面向量的练习题。

2. 引导学生运用所学的知识解决实际问题。

教学反思:本节课通过讲解平面向量的概念、坐标表示方法以及线性运算与坐标表示,让学生掌握平面向量的基本知识。

在教学过程中,要注意引导学生通过实例理解概念和方法,提高学生的实际操作能力。

要加强练习,使学生巩固所学知识。

六、平面向量的几何解释(15分钟)1. 向量起点与终点的表示。

2. 通过图形让学生理解向量的几何解释。

七、向量加法与坐标表示(20分钟)1. 讲解平面向量的加法。

2. 让学生通过实例掌握向量加法与坐标表示。

八、向量减法与坐标表示(15分钟)1. 讲解平面向量的减法。

2. 让学生通过实例掌握向量减法与坐标表示。

九、数乘向量与坐标表示(15分钟)1. 讲解平面向量的数乘。

2. 让学生通过实例掌握数乘向量与坐标表示。

十、向量共线定理(20分钟)1. 讲解向量共线定理。

2. 让学生通过实例理解向量共线定理的应用。

十一、向量垂直与坐标表示(20分钟)1. 讲解平面向量垂直的条件。

2. 让学生通过实例掌握向量垂直与坐标表示。

高中数学备课教案向量的平面向量几何应用

高中数学备课教案向量的平面向量几何应用

高中数学备课教案向量的平面向量几何应用高中数学备课教案:向量的平面向量几何应用一、引言在高中数学中,向量是一个重要的概念,它具有广泛的应用。

其中,平面向量几何应用是向量的一个重要应用领域。

本篇教案将重点介绍向量的平面向量几何应用,并针对备课内容进行详细讲解。

二、向量的概念回顾在开始讲解向量的平面向量几何应用之前,我们首先回顾一下向量的概念。

向量是由大小和方向共同决定的有向线段,通常用有向线段的起点和终点表示。

向量的大小可以通过向量的模、长度或大小来表示,向量的方向可以用角度、单位向量或方向角来表示。

三、平面向量几何应用1. 向量的共线与共面判定向量的平面向量几何应用中,一个重要的问题是如何判断向量的共线与共面关系。

对于两个向量,如果它们的方向相同或相反,则称这两个向量共线;如果三个向量在同一个平面内,则称这三个向量共面。

2. 向量的数量积向量的数量积是向量的一种重要运算。

通过计算两个向量的数量积,我们可以求得它们的夹角、判定两个向量是否垂直、求解平面向量的几何问题等。

通过具体的例题,我们将详细介绍向量的数量积的计算方法及其应用。

3. 平面向量的线性组合平面向量的线性组合是指将若干个向量按照一定的比例相加得到的向量。

线性组合在平面向量几何中具有重要的意义,可以用来表示平面上的任意向量。

4. 平面向量与几何图形的关系在平面向量几何中,向量和几何图形之间有着密切的联系。

例如,可以通过向量的平移、旋转、反射等操作来描述几何图形的变换关系。

通过分析几何图形的性质,我们可以通过向量解决一些与几何图形相关的问题。

5. 平面向量的共面条件在平面向量几何应用中,我们常常需要判断若干个向量是否共面。

通过理论推导和实例演示,我们将介绍平面向量的共面条件以及解决问题的方法。

四、结语通过本教案的学习和讲解,我们详细介绍了向量的平面向量几何应用。

平面向量几何应用是高中数学中一个重要的应用领域,它为我们解决几何问题提供了强有力的工具和方法。

平面向量应用教案设计

平面向量应用教案设计

平面向量应用教案设计。

一、教案设计背景在进行平面向量的教学过程中,应该给学生提供一些实际的、具有应用意义的例子,让学生真正了解向量的物理意义和几何意义。

因此,在设计教案时,要注重培养学生的实际应用能力,帮助学生将理论与实践相结合。

同时,还要根据学生的实际情况,合理设置教学目标和教学内容,有针对性地进行教学。

二、教案设计目标1、了解平面向量的定义、性质及运算法则;2、了解平面向量的几何和物理意义;3、掌握平面向量的加、减、数乘等基本运算;4、理解平面向量在物理学中的应用;5、能运用平面向量解决相关问题。

三、教学内容设计1、平面向量的定义及其基本性质;2、平面向量的加、减、数乘及其性质;3、平面向量在平面直角坐标系中的坐标表示;4、平面向量的应用:(1)向量叉积的物理意义及其应用;(2)向量叉积的计算方法;(3)摩擦力的向量分解;(4)向量投影的应用。

四、教学方法设计1、讲授法在平面向量教学中,讲授法是最基础的教学方法,通过以物理意义为主线的学习方法,结合具体的例子来进行讲解,可以让学生快速掌握向量的相关知识。

2、归纳法平面向量的定义、性质及运算法则较多,采用归纳法可以让学生快速记忆和理解,增加教学效果,提高教学质量。

3、实践法在教学中,可以通过让学生参与实际操作来达到教学效果的提高。

举个例子,通过让学生进行向量相加、相减、数乘等操作,能够有效增强学生的理解和记忆能力。

4、启发式教学法在解决向量应用问题时,可以采用启发式教学法,结合学生的实际情况,帮助学生提高解题的思维能力和应用能力。

五、教学资源准备1、教学材料:课件、示意图、多媒体资料等;2、教学实例:让学生自主选择实际应用实例,进行讨论和分析;3、计算机程序:使用计算机程序来帮助学生更快速、准确地进行计算,增强学生的实际操作能力和计算能力。

六、教学反思与评估在教学过程中,教师应时刻反思自己的教学方法是否合理、有效,及时进行调整和完善。

同时,要通过测试、问答、小组讨论等方式对学生进行评估,了解学生的掌握程度和反馈意见,为下一步的教学改进提供参考。

平面向量的应用(教案)(教师版)

平面向量的应用(教案)(教师版)

平面向量的应用(教案)【第一课时】教学重难点教学目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、 垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用 会用向量方法解决物理中的速度、力学问题数学建模、数学运算一、问题导入预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题? 2.如何用向量方法解决物理问题? 二、新知探究 探究点1:向量在几何中的应用角度一:平面几何中的垂直问题例1:如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE . 证明:法一:设AD →=a ,AB →=b , 则|a |=|b |,a·b =0,又DE →=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a ,所以AF →·DE →=⎝⎛⎭⎫b +12a ·⎝⎛⎭⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0. 故AF →⊥DE →,即AF ⊥DE .法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF →·DE →=(2,1)·(1,-2)=2-2=0, 所以AF →⊥DE →,即AF ⊥DE .角度二:平面几何中的平行(或共线)问题:如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AF FB =12.求证:点E ,O ,F在同一直线上.证明:设AB →=m ,AD →=n , 由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点,所以FO →=F A →+AO →=13BA →+12AC →=-13m +12(m +n )=16m +12n ,OE →=OC →+CE →=12AC →+13CD →=12(m +n )-13m =16m +12n . 所以FO →=OE →.又O 为FO →和OE →的公共点,故点E ,O ,F 在同一直线上. 角度三:平面几何中的长度问题:如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC 的长. 解:设AD →=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD →|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2,所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.用向量方法解决平面几何问题的步骤向量在物理中的应用:(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25 km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度. 因为AB →+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC →|=|AB →|=12.5.|AD →|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s . 因为AB →=(7,0)-(20,15)=(-13,-15).所以W 1=F 1·AB →=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦), W 2=F 2·AB →=(6,-5)·(-13,-15) =6×(-13)+(-5)×(-15)=-3(焦).用向量方法解决物理问题的“三步曲”三、课堂总结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F 与位移s 的数量积,即W =F·s =|F ||s |cos θ(θ为F 与s 的夹角). 四、课堂检测1.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( ) A .10 m/s B .226 m/s C .4 6 m/sD .12 m/s解析:选B .由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如图. 所以小船在静水中的速度大小 |v |=102+22=226(m/s ).2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( ) A .(-1,-2) B .(1,-2) C .(-1,2)D .(1,2)解析:选D .由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2).3.设P ,Q 分别是梯形ABCD 的对角线AC 与BD 的中点,AB ∥DC ,试用向量证明:PQ ∥AB . 证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD →-AC →)=AB →+12[(AD →-AB →)-(AD →+DC →)]=AB →+12(CD →-AB →)=12(CD →+AB →)=12(-λ+1)AB →, 所以PQ →∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【第二课时】一、问题导入预习教材内容,思考以下问题: 1.余弦定理的内容是什么? 2.余弦定理有哪些推论? 二、新知探究已知两边及一角解三角形:(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( )A .42B .30C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝⎛⎭⎫-35=32,所以AB =42,故选A . (2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝⎛⎭⎫b =-13舍去.故选D . 答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值?解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 规律方法:解决“已知两边及一角”解三角问题的步骤(1)用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出此边长. (2)再用余弦定理和三角形内角和定理求出其他两角. 探究点2:已知三边(三边关系)解三角形:(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90° B .120° C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19, 所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°. 答案:(1)B (2)B已知三角形的三边解三角形的方法先利用余弦定理的推论求出一个角的余弦,从而求出第一个角;再利用余弦定理的推论求出第二个角;最后利用三角形的内角和定理求出第三个角.注意:若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边求解. 探究点3: 判断三角形的形状:在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状. 解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得 b 2+c 2-b 2⎝⎛⎭⎫a 2+b 2-c 22ab 2-c 2⎝⎛⎭⎫a 2+c 2-b 22ac 2=2bc ×a 2+c 2-b 22ac ×a 2+b 2-c 22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a2=a 2.所以A =90°.所以△ABC 是直角三角形. 规律方法:(1)利用余弦定理判断三角形形状的两种途径①化边的关系:将条件中的角的关系,利用余弦定理化为边的关系,再变形条件判断. ②化角的关系:将条件转化为角与角之间的关系,通过三角变换得出关系进行判断. (2)判断三角形时经常用到以下结论①△ABC 为直角三角形⇔a 2=b 2+c 2或c 2=a 2+b 2或b 2=a 2+c 2. ②△ABC 为锐角三角形⇔a 2+b 2>c 2,且b 2+c 2>a 2,且c 2+a 2>b 2. ③△ABC 为钝角三角形⇔a 2+b 2<c 2或b 2+c 2<a 2或c 2+a 2<b 2. ④若sin 2A =sin 2B ,则A =B 或A +B =π2.三、课堂总结 1.余弦定理cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac;cos C =a 2+b 2-c 22ab .3.三角形的元素与解三角形 (1)三角形的元素三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的元素. (2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形. 四、课堂检测1.在△ABC 中,已知a =5,b =7,c =8,则A +C =( ) A .90° B .120° C .135°D .150°解析:选B .cos B =a 2+c 2-b 22ac =25+64-492×5×8=12.所以B =60°,所以A +C =120°.2.在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,则角A 等于( ) A .30° B .60° C .120°D .150°解析:选B .因为(b +c )2-a 2=b 2+c 2+2bc -a 2=3bc , 所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12,所以A =60°.3.若△ABC 的内角A ,B ,C 所对的边a ,b ,c 满足(a +b )2-c 2=4,且C =60°,则ab =________. 解析:因为C =60°,所以c 2=a 2+b 2-2ab cos 60°, 即c 2=a 2+b 2-ab .① 又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43.答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca +c ·c 2-a 2-b 22ab=0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2.根据勾股定理知△ABC 是直角三角形.【第三课时】一、问题导入预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么? 2.正弦定理的内容是什么? 二、新知探究已知两角及一边解三角形:在△ABC 中,已知c =10,A =45°,C =30°,解这个三角形. 【解】因为A =45°,C =30°,所以B =180°-(A +C )=105°. 由a sin A =c sin C 得a =c sin A sin C =10×sin 45°sin 30°=102. 因为sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b =c sin B sin C =10×sin (A +C )sin 30°=20×2+64=52+56.已知三角形的两角和任一边解三角形的思路(1)若所给边是已知角的对边时,可由正弦定理求另一角所对的边,再由三角形内角和定理求出第三个角. (2)若所给边不是已知角的对边时,先由三角形内角和定理求出第三个角,再由正弦定理求另外两边.已知两边及其中一边的对角解三角形已知△ABC 中的下列条件,解三角形: (1)a =10,b =20,A =60°; (2)a =2,c=6,C =π3.解:(1)因为b sin B =asin A,所以sin B =b sin A a =20sin 60°10=3>1,所以三角形无解.(2)因为a sin A =c sin C ,所以sin A =a sin C c =22.因为c >a ,所以C >A .所以A =π4.所以B =5π12,b = c sin Bsin C =6·sin 5π12sin π3=3+1.互动探究:变条件:若本例(2)中C =π3改为A =π4,其他条件不变,求C ,B, b .解:因为a sin A =c sin C ,所以sin C =c sin A a =32.所以C =π3或2π3.当C =π3时,B =5π12,b =a sin B sin A =3+1.当C =2π3时,B =π12,b =a sin B sin A=3-1.(1)已知两边及其中一边的对角解三角形的思路 ①首先由正弦定理求出另一边对角的正弦值;②如果已知的角为大边所对的角时,由三角形中大边对大角,大角对大边的法则能判断另一边所对的角为锐角,由正弦值可求锐角;③如果已知的角为小边所对的角时,则不能判断另一边所对的角为锐角,这时由正弦值可求两个角,要分类讨论.(2)已知两边及其中一边的对角判断三角形解的个数的方法①应用三角形中大边对大角的性质以及正弦函数的值域判断解的个数;②在△ABC 中,已知a ,b 和A ,以点C 为圆心,以边长a 为半径画弧,此弧与除去顶点A 的射线AB 的公共点的个数即为三角形解的个数,解的个数见下表:判断三角形的形状:已知在△ABC 中,角A ,B 所对的边分别是a 和b ,若a cos B =b cos A ,则△ABC 一定是( )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A互动探究:变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.判断三角形形状的两种途径注意:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.三、课堂总结1.正弦定理对正弦定理的理解(1)适用范围:正弦定理对任意的三角形都成立.(2)结构形式:分子为三角形的边长,分母为相应边所对角的正弦的连等式.(3)揭示规律:正弦定理指出的是三角形中三条边与其对应角的正弦之间的一个关系式,它描述了三角形中边与角的一种数量关系.2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、课堂检测1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c=()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C=180°,所以A=30°,B =60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【第四课时】一、问题导入预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、新知探究测量距离问题:海上A ,B 两个小岛相距10海里,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 岛与C 岛间的距离是________.解析:如图,在△ABC 中,∠C =180°-(∠B +∠A )=45°, 由正弦定理,可得BC sin 60°=ABsin 45°,所以BC =32×10=56(海里). 答案:56海里变条件:在本例中,若“从B 岛望C 岛和A 岛成75°的视角”改为“A ,C 两岛相距20海里”,其他条件不变,又如何求B 岛与C 岛间的距离呢?解:由已知在△ABC 中,AB =10,AC =20,∠BAC =60°,即已知两边和两边的夹角,利用余弦定理求解即可. BC 2=AB 2+AC 2-2AB ·AC ·cos 60°=102+202-2×10×20×12=300.故BC =103.即B ,C 间的距离为103海里.测量距离问题的解题思路求解测量距离问题的方法是:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.构造数学模型时,尽量把已知元素放在同一个三角形中.测量高度问题:如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m . 解析:由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°. 又AB =600 m ,故由正弦定理得600sin 45°=BCsin 30°,解得BC =300 2 m .在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m ). 答案:1006 互动探究:变问法:在本例条件下,汽车在沿直线AB 方向行驶的过程中,若测得观察山顶D 点的最大仰角为α,求tan α的值.解:如图,过点C ,作CE ⊥AB ,垂足为E ,则∠DEC =α,由例题可知, ∠CBE =75°,BC =3002, 所以CE =BC ·sin ∠CBE=3002sin 75° =3002×2+64=150+1503.所以tan α=DC CE =1006150+1503=32-63.测量高度问题的解题思路高度的测量主要是一些底部不能到达或者无法直接测量的物体的高度问题.常用正弦定理或余弦定理计算出物体的顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.这类物体高度的测量是在与地面垂直的竖直平面内构造三角形或者在空间构造三棱锥,再依据条件利用正、余弦定理解其中的一个或者几个三角形,从而求出所需测量物体的高度.测量角度问题:岛A 观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A 正南方向B 处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C 处,随即以每小时103海里的速度前往拦截. (1)问:海监船接到通知时,在距离岛A 多少海里处?(2)假设海监船在D 处恰好追上可疑船只,求它的航行方向及其航行的时间. 解:(1)根据题意得∠BAC =45°,∠ABC =75°,BC =10, 所以∠ACB =180°-75°-45°=60°, 在△ABC 中,由AB sin ∠ACB =BCsin ∠BAC ,得AB =BC sin ∠ACB sin ∠BAC=10sin 60°sin 45°=10×3222=56. 所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t 小时,则BD =103t ,CD =10t , 又因为∠BCD =180°-∠ACB =180°-60°=120°, 所以BD 2=BC 2+CD 2-2BC ·CD cos 120°, 所以300t 2=100+100t 2-2×10×10t ·⎝⎛⎭⎫-12, 所以2t 2-t -1=0,解得t =1或t =-12(舍去).所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°,所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时)测量角度问题的基本思路(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,在图形中标出相关的角和距离. (2)根据实际选择正弦定理或余弦定理解三角形,然后将解得的结果转化为实际问题的解. 三、课堂总结 1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线 实际测量中的有关名称、术语南偏西60°(指以正南方向为始边,转向目标方向线形成的角)1.若P 在Q 的北偏东44°50′方向上,则Q 在P 的( ) A .东偏北45°10′方向上 B .东偏北45°50′方向上 C .南偏西44°50′方向上 D .西偏南45°50′方向上解析:选C .如图所示.2.如图,D ,C ,B 三点在地面同一直线上,从地面上C ,D 两点望山顶A ,测得它们的仰角分别为45°和30°,已知CD =200米,点C 位于BD 上,则山高AB 等于( )A .1002米B .50(3+1)米C .100(3+1)米D .200米解析:选C .设AB =x 米,在Rt △ACB 中,∠ACB =45°, 所以BC =AB =x .在Rt △ABD 中,∠D =30°,则BD =3AB =3x . 因为BD -BC =CD ,所以3x -x =200, 解得x =100(3+1).故选C .3.已知台风中心位于城市A 东偏北α(α为锐角)度的150公里处,以v 公里/小时沿正西方向快速移动,2.5小时后到达距城市A 西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v =( )A .60B .80C .100D .125解析:选C .画出图象如图所示,由余弦定理得(2.5v )2=2002+1502+2×200×150cos (α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34 cos β,sin 2 α+cos 2 α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos (α+β)=1225-1225=0,代入①解得v =100.4.某巡逻艇在A 处发现在北偏东45°距A 处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°, 在△ABC 中,由正弦定理得123t sin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.坚持希望一天,一个瞎子和一个瘸子结伴去寻找那种仙果,他们一直走呀走,途中他们翻山越岭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量应用教案
一、引言
平面向量是数学中的重要概念之一,它在解决各种几何和物理问题
中有着广泛的应用。

本教案将介绍平面向量在几何和物理中的具体应用,帮助学生更好地理解和掌握平面向量的使用方法。

二、平面向量的表示与性质
1. 平面向量的表示方法
平面上的向量可以使用有序数对或者坐标表示。

例如,向量AB可
以表示为➡️ AB 或者 (x, y)。

其中,向量的起点为A,终点为B。

向量
的模长可以通过勾股定理计算得到。

2. 平面向量的性质
平面向量具有位移性、共线性和反箭头性质等基本性质。

在计算中,我们可以通过向量加法、数乘和平移等运算来处理各种向量问题。

三、平面向量的应用
1. 几何应用
1.1 平行四边形的性质
平行四边形的两条对角线互相平分,即向量AC = -向量BD,向量AD = -向量BC。

这个性质在解决平行四边形相关问题时非常有用。

1.2 向量和三角形面积
三角形ABC的面积可以通过向量积的大小来计算,即S△ABC =
1/2 |AB × AC|。

这个公式对于求解三角形面积问题非常方便。

2. 物理应用
2.1 力的合成与分解
力的合成是指将多个力的作用效果等效为一个力的过程。

我们可以利用平面向量的加法来求解力的合成问题。

而力的分解是指将一个力
拆解为多个分力的过程,这可以通过平面向量的减法来实现。

2.2 力的平衡与不平衡
多个力在平面上的合力为零时,称为力的平衡。

我们可以使用平面向量的加法和减法来求解力的平衡问题。

相反,当多个力在平面上的
合力不为零时,称为力的不平衡。

这种情况下,平面向量的合力将导
致物体加速度的出现。

四、案例分析
通过以下案例,我们来具体应用平面向量解决几何和物理问题。

案例1:求解平行四边形的对角线交点坐标。

已知平行四边形ABCD的顶点坐标分别为A(-2, 1),B(1, 3),C(4, 1)和D(1, -1),求对角线AC和BD的交点坐标。

解析:
向量AC = (4, 1) - (-2, 1) = (6, 0)
向量BD = (1, -1) - (1, 3) = (0, -4)
由于对角线互相平分,所以交点坐标为平行四边形对角线的中点。

交点坐标为(-2, 1) + 1/2(6, 0) = (1, 1)
案例2:求解力的合成问题。

已知力F1 = (3, 2) N,力F2 = (-1, 4) N,请求解两个力合成后的结果力F。

解析:
力F = F1 + F2 = (3, 2) + (-1, 4) = (2, 6) N
案例3:求解三角形面积问题。

已知三角形ABC的顶点坐标分别为A(1, 2),B(3, 4)和C(5, 1),求解三角形ABC的面积。

解析:
向量AB = (3, 4) - (1, 2) = (2, 2)
向量AC = (5, 1) - (1, 2) = (4, -1)
S△ABC = 1/2 |(2, 2) × (4, -1)| = 1/2 |(0, 10)| = 5 平方单位
五、总结
本教案简要介绍了平面向量的表示与性质,以及在几何和物理中的具体应用。

通过案例分析,我们发现平面向量在解决各种问题中具有
很高的实用性和灵活性。

希望学生能够通过本教案更好地理解和掌握平面向量的应用方法,提高解决实际问题的能力。

相关文档
最新文档