初二数学动点问题练习
(完整)初二数学动点问题归类复习(含例题、练习及答案)(2)

初二数学动点问题归类复习(含例题、练习及答案)所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想本文将初一至二学习过的有关知识,结合动点问题进行归类复习,希望对同学们能有所帮助。
一、等腰三角形类:因动点产生的等腰三角形问题例1:(2013年上海市虹口区中考模拟第25题)如图1,在Rt△ABC中,∠A=90°,AB=6,AC =8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC 上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1 备用图思路点拨1.第(2)题BP=2分两种情况.2.解第(2)题时,画准确的示意图有利于理解题意,观察线段之间的和差关系.3.第(3)题探求等腰三角形PDF时,根据相似三角形的传递性,转化为探求等腰三角形CDQ.解答:(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544ED CD C=⋅∠=⨯=,254EC=.(2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3.由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN.因此△PDM∽△QDN.所以43PM DMQN DN==.所以34QN PM=,43PM QN=.图2 图3 图4 ①如图3,当BP=2,P在BM上时,PM=1.此时3344QN PM==.所以319444CQ CN QN=+=+=.②如图4,当BP=2,P在MB的延长线上时,PM=5.此时31544QN PM ==.所以1531444CQ CN QN =+=+=. (3)如图5,如图2,在Rt △PDQ 中,3tan 4QD DN QPD PD DM ∠===.在Rt △ABC 中,3tan 4BA C CA ∠==.所以∠QPD =∠C .由∠PDQ =90°,∠CDE =90°,可得∠PDF =∠CDQ . 因此△PDF ∽△CDQ .当△PDF 是等腰三角形时,△CDQ 也是等腰三角形.①如图5,当CQ =CD =5时,QN =CQ -CN =5-4=1(如图3所示). 此时4433PM QN ==.所以45333BP BM PM =-=-=. ②如图6,当QC =QD 时,由cos CHC CQ =,可得5425258CQ =÷=. 所以QN =CN -CQ =257488-=(如图2所示). 此时4736PM QN ==.所以725366BP BM PM =+=+=. ③不存在DP =DF 的情况.这是因为∠DFP ≥∠DQP >∠DPQ (如图5,图6所示).图5 图6考点伸展:如图6,当△CDQ 是等腰三角形时,根据等角的余角相等,可以得到△BDP 也是等腰三角形,PB =PD .在△BDP 中可以直接求解256BP =. 二、直角三角形:因动点产生的直角三角形问题 例2:(2008年河南省中考第23题)如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0).(1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M 运动t 秒时,△MON 的面积为S . ① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图1思路点拨:1.第(1)题说明△ABC 是等腰三角形,暗示了两个动点M 、N 同时出发,同时到达终点. 2.不论M 在AO 上还是在OB 上,用含有t 的式子表示OM 边上的高都是相同的,用含有t 的式子表示OM 要分类讨论.3.将S =4代入对应的函数解析式,解关于t 的方程.4.分类讨论△MON 为直角三角形,不存在∠ONM =90°的可能. 解答:(1)直线434+-=x y 与x 轴的交点为B (3,0)、与y 轴的交点C (0,4). Rt △BOC 中,OB =3,OC =4,所以BC =5.点A 的坐标是(-2,0),所以BA =5. 因此BC =BA ,所以△ABC 是等腰三角形.(2)①如图2,图3,过点N 作NH ⊥AB ,垂足为H .在Rt △BNH 中,BN =t ,4sin 5B =,所以45NH t =. 如图2,当M 在AO 上时,OM =2-t ,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-+.定义域为0<t ≤2.如图3,当M 在OB 上时,OM =t -2,此时211424(2)22555S OM NH t t t t =⋅⋅=-⨯=-.定义域为2<t ≤5.图2 图3②把S =4代入22455S t t =-,得224455t t -=. 解得1211t =,2211t =.因此,当点M 在线段OB 上运动时,存在S =4的情形,此时211t = ③如图4,当∠OMN =90°时,在Rt △BNM 中,BN =t ,BM 5t =-,3cos 5B =,所以535tt-=.解得258t=.如图5,当∠OMN=90°时,N与C重合,5t=.不存在∠ONM=90°的可能.所以,当258t=或者5t=时,△MON为直角三角形.图4 图5考点伸展:在本题情景下,如果△MON的边与AC平行,求t的值.如图6,当ON//AC时,t=3;如图7,当MN//AC时,t=2.5.图6 图7三、平行四边形问题:因动点产生的平行四边形问题例3:(2010年山西省中考第26题)在直角梯形OABC中,CB//OA,∠COA=90°,CB=3,OA=6,BA=35.分别以OA、OC边所在直线为x轴、y轴建立如图1所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.图1 图2思路点拨:1.第(1)题和第(2)题蕴含了OB与DF垂直的结论,为第(3)题讨论菱形提供了计算基础.2.讨论菱形要进行两次(两级)分类,先按照DO为边和对角线分类,再进行二级分类,DO与DM、DO与DN为邻边.解答:(1)如图2,作BH⊥x轴,垂足为H,那么四边形BCOH为矩形,OH=CB=3.在Rt△ABH中,AH=3,BA=35,所以BH=6.因此点B的坐标为(3,6).(2) 因为OE=2EB,所以223E Bx x==,243E By y==,E(2,4).设直线DE的解析式为y=kx+b,代入D(0,5),E(2,4),得5,2 4.bk b=⎧⎨+=⎩解得12k=-,5b=.所以直线DE的解析式为152y x=-+.(3) 由152y x=-+,知直线DE与x轴交于点F(10,0),OF=10,DF=55.①如图3,当DO为菱形的对角线时,MN与DO互相垂直平分,点M是DF的中点.此时点M的坐标为(5,52),点N的坐标为(-5,52).②如图4,当DO、DN为菱形的邻边时,点N与点O关于点E对称,此时点N的坐标为(4,8).③如图5,当DO、DM为菱形的邻边时,NO=5,延长MN交x轴于P.由△NPO∽△DOF,得NP PO NODO OF DF==,即51055NP PO==.解得5NP=,25PO=.此时点N的坐标为(25,5)-.图3 图4考点伸展如果第(3)题没有限定点N在x轴上方的平面内,那么菱形还有如图6的情形.图5 图6四、相似三角形:因动点产生的相似三角形问题例4:(2013年苏州中考28题)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.思路点拨:(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG 相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在.解答:(1)若四边形EBFB′为正方形,则BE=BF,即:10﹣t=3t,解得t=2.5;(2)分两种情况,讨论如下:①若△EBF∽△FCG,则有,即,解得:t=2.8;②若△EBF∽△GCF,则有,即,解得:t=﹣14﹣2(不合题意,舍去)或t=﹣14+2.∴当t=2.8s或t=(﹣14+2)s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似.(3)假设存在实数t,使得点B′与点O重合.如图,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=3t,FM=BC﹣BF=6﹣3t,OM=5,由勾股定理得:OM2+FM2=OF2,即:52+(6﹣3t)2=(3t)2解得:t=;过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=10﹣t,EN=BE﹣BN=10﹣t﹣5=5﹣t,ON=6,由勾股定理得:ON 2+EN 2=OE 2,即:62+(5﹣t )2=(10﹣t )2解得:t =3.9.∵≠3.9,∴不存在实数t ,使得点B ′与点O 重合.考点伸展:本题为运动型综合题,考查了矩形性质、轴对称、相似三角形的判定性质、勾股定理、解方程等知识点.题目并不复杂,但需要仔细分析题意,认真作答.第(2)问中,需要分类讨论,避免漏解;第(3)问是存在型问题,可以先假设存在,然后通过推导出互相矛盾的结论,从而判定不存在. 拓展练习:1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
初二数学动点问题练习(含答案) 2 修改版

动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD 边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C 同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形EDBC 是平行四边形 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2, ∴∠A =300.∴AB =4,AC 3∴AO =12AC3 .在Rt △AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形O E CDA α lOCA (备用图)4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.C B AE D 图1 N M A B C D E M N 图2A CB E D N M 图35、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确.证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ).AE EF ∴=.A D F CGE B 图1 AD FGE B 图3A DF CG EB 图2AD F C GE B M A DF CG E B N6、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.求(1)△PAB为等腰三角形的t值;(2)△PAB为直角三角形的t值;(3)若AB=5且∠ABM=45 °,其他条件不变,直接写出△PAB为直角三角形的t值7、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动 ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQv t ===厘米/秒。
初二数学-八年级数学动点问题专项训练

b 向右匀速运动,直到 EG 与 BC 重合.运动过程中 △GEF 与矩形 ABCD 重合部分的面积(S )随时间(t )变化的图动点问题专项训练1.如图,在矩形 ABCD 中,AB=2, BC = 1 ,动点 P 从点 B 出发,沿路线 B → C → D 作匀速运动,那么 △ A BP 的 面积 S 与点 P 运动的路程 x 之间的函数图象大致是( )SSS S33DAC P B1O 113 x O 13 xO213 x O 13 xA .B .C .D .2.如图 1,在直角梯形 ABCD 中,动点 P 从点 B 出发,沿 BC ,CD 运动至点 D 停止.设点 P 运动的路程为 x ,△ABP 的 面积为 y ,如果 y 关于 x 的函数图象如图 2 所示,则△BCD 的面积是( ) A .3 B .4 C .5 D .6DC PAB O 25 x图 1图 2△3.如图, ABC 和的△DEF 是等腰直角三角形,∠C=∠F=90°,AB=2.DE=4.点 B 与点 D 重合,点 A,B(D),E 在同一条直 线上,将△ABC 沿 D → E 方向平移,至点 A 与点 E 重合时停止.设点 B,D 之间的距离为 △x , ABC 与△DEF 重叠部分的面积为 y ,则准确反映 y 与 x 之间对应关系的图象是()4.如图,点 G 、D 、C 在直线 a 上,点 E 、F 、A 、B 在直线 b 上,若 a ∥b ,Rt △GEF 从如图所示的位置出发,沿直线....象大致是()G DC as s s sEFAB b(第 4 题Ot O t O t O tA B C D5.(20XX 年牡丹江)如图,平面直角坐标系中,在边长为 1 的正方形 ABCD 的边上有一 动s stOt .(第 6 题图).O C 8。
点 P 沿 A → B → C → D → A 运动一周,则 P 的纵坐标 y 与点 P 走过的路程 s 之间的函数关系用图象表示大致是()yy2 2 11 y2 1 y2 1O 1 2 3 4sO 1 2 3 4s O 1 2 3 4 s O 1 2 3 4sABC D6.如图 1,在矩形 ABCD 中,动点 P 从点 B 出发,沿 BC 、CD 、DA 运动至点 A 停止,设点 P 运动的路程为 x ,△ABP 的 面积为 y ,如果 y 关于 x 的函数图象如图 2 所示,则矩形 ABCD 的面积是( )A .10 8.16 C. 20 D .367.如图,三个大小相同的正方形拼成六边形 ABCDEF ,一动点 P 从点 A 出发沿着 A → B → C → D → E 方向匀速 运动,最后到达点 E .运动过程中 ∆PEF 的面积( s )随时间(t )变化的图象大致是( )s sPA · B.C DO8.如图.,点 A 、B 、C 、D 为圆 O 的四等分点,动点 P 从圆心 O 出发,沿 O-C-D-O 的路线作匀速运动.设运动时间为 t 秒,∠APB 的度数为 y 度,则下列图象中表示 y 与 t 之间函数关系最恰当的是9. 13.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图4 所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为 20,若 2≤x ≤10,则 y 与 x 的函数图象是:10.如图,AB 是半圆 O 的直径,点 P 从点 O 出发,沿 O A - AB - BO 的路径运动一周.设OP 为 s ,运动时间为t ,则QC ,即 6﹣x = (6+x ),解得 x =2。
八年级数学动点问题习题整理归纳

1如图:已知正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,求DN+MN的最小值。
2如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,几秒后四边形ABQP是平行四边形?设t秒后,四边形APQB为平行四边形(1分)则AP=t,QC=2t,BQ=6-2t (4分)因为AD//BC所以AP//BQ根据一组对边平行且相等的四边形是平行四边形知:AP=BQ即可(8分)即:t= 6-2t所以t=2(10分)当t=2时,AP=BQ=2<BC<AD ,符合综上,2秒后四边形ABQP是平行四边形3如图,梯形ABCD中AD//BC,∠B=90 °AB=14cm,AD=15cm,BC=21cm,点M从A点开始,沿AD边向D运动,速度为1cm/s,点N从点C开始沿CB边向点B运动,速度为2cm/s,设四边形MNCD的面积为S。
(1)写出面积S与时间t之间的函数关系式。
(2)t为何值时,四边形MNCD是平行四边形?(3)t为何值时,四边形MNCD是等腰梯形?【解析】(1)根据题意得:AM=tcm,CN=2tcm,则MD=AD-AM=15-t(cm),∴S=(MD+CN)•AD=×(15-t+2t)×14=7t+105(cm2);∴面积S与时间t之间的函数关系式为:S=7t+105;(2)∵点M的速度为1cm/s,点N的速度为2cm/s,∴MD=AD-AM=15-t,CN=2t,四边形MNCD是平行四边形时,MD=CN,∴15-t=2t,解得t=5;∴当t=5时,四边形MNCD是平行四边形;(3)如图,过点D作DE⊥BC于E,∵AD∥BC,∠B=90°,∴四边形ABED是矩形,∴BE=AD=15cm,∴CE=BC-BE=21-15=6cm,四边形MNCD是等腰梯形时,CN=2CE+MD,∴2t=2×6+15-t,解得t=9.∴当t=9时,四边形MNCD是等腰梯形.4如图,在直角梯形ABCD中,∠ABC=90°,DC//AB,BC=3,DC=4,AD=5.动点P从B点出发,由B→C→D→A沿边运动,则△ABP的最大面积为()A.10B.12C.14D.16如图,在Rt△ABC 中,∠C=90 °,AC=4cm,BC=6cm,动点P从点C沿CA以1cm/s的速度向A运动,同时动点Q从点C沿CB,以2cm/s的速度向点B运动,其中一个动点到达终点时,另一个动点也停止运动。
最新初二数学八年级数学动点问题专项训练

动点问题专项训练1.如图,△ABC 是边长为6的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE ⊥AB 于E ,连接PQ 交AB 于D .(1)当∠BQD =30°时,求AP 的长;(2)当运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长;如果变化请说明理由.【答案】解:(1)∵△ABC 是边长为6的等边三角形,∴∠ACB =60°。
∵∠BQD =30°,∴∠QCP =90°。
设AP =x ,则PC =6﹣x ,QB =x ,∴QC =QB +C =6+x 。
∵在Rt △QCP 中,∠BQD =30°,∴PC =12QC ,即6﹣x =12(6+x ),解得x =2。
∴当∠BQD =30°时,AP =2。
(2)当点P 、Q 运动时,线段DE 的长度不会改变。
理由如下:作QF ⊥AB ,交直线AB 的延长线于点F ,连接QE ,PF 。
∵PE ⊥AB 于E ,∴∠DFQ =∠AEP =90°。
∵点P 、Q 做匀速运动且速度相同,∴AP =BQ 。
∵△ABC 是等边三角形,∴∠A =∠ABC =∠FBQ =60°。
∴在△APE 和△BQF 中,∵∠A =∠FBQ ,AP =BQ ,∠AEP =∠BFQ =90°,∴△APE ≌△BQF (AAS )。
∴AE =BF ,PE =QF 且PE ∥QF 。
∴四边形PEQF 是平行四边形。
∴DE =12EF 。
∵EB +AE =BE +BF =AB ,∴DE =12AB 。
又∵等边△ABC 的边长为6,∴DE =3。
∴当点P 、Q 运动时,线段DE 的长度不会改变。
2. 如图,已知一次函数1y kx b =+的图象与x 轴相交于点A ,与反比例函数2c y x =的图象相交于B (-1,5)、C (25,d )两点.点P (m ,n )是一次函数1y kx b =+的图象上的动点. (1)求k 、b 的值;(2)设31m 2-<<,过点P 作x 轴的平行线与函数2c y x=的图象相交于点D .试问△P AD 的面积是否存在最大值?若存在,请求出面积的最大值及此时点P 的坐标;若不存在,请说明理由;(3)设m 1a =-,如果在两个实数m 与n 之间(不包括m 和n )有且只有一个整数,求实数a 的取值范围.【答案】解:(1)将点B 的坐标代入2c y x =,得c 51=- ,解得c=5-。
初二动点问题(含答案)

动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 数形结合思想 转化思想1、如图1,梯形ABCD 中,AD ∥ BC ,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P 从A 开始沿AD 边以1cm/秒的速度移动,点Q 从C 开始沿CB 向点B 以2 cm/秒的速度移动,如果P ,Q 分别从A ,C 同时出发,设移动时间为t 秒。
当t= 时,四边形是平行四边形;6 当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD 的边长为4,点M 在边DC 上,且DM=1,N 为对角线AC 上任意一点,则DN+MN 的最小值为 53、如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由. 解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC 是菱形.∵∠α=∠ACB=900,∴BC //ED . ∵CE //AB , ∴四边形EDBC 是平行四边形 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2, ∴∠A =300.∴AB =4,AC =23. ∴AO =12AC=3 .在Rt △AOD 中,∠A =300,∴AD =2.∴BD =2. ∴BD =BC . 又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形4、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.O E CDA α lOCA (备用图) CB AE D 图1 N M A B C D EM N 图2A CB E D N M 图3(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD FC G E B 图1 AD FG B 图3A D FC GE B 图2A D F C GB M A D FC G E B N7、在等腰梯形ABCD中,AD‖BC,E为AB的中点,过点E作EF‖BC交CD于点F.AB=4,BC=6, ∠B=60°。
初二数学动点问题练习
动点问题练习题1、已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.1、线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.2、如图,在梯形ABCD 中,35AD BC AD DC ==∥,,动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 点出发沿线段CD 以每秒1个单位长度的速度向终点D (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △3、如图,在平面直角坐标系中,四边形OABC (6,0),点B 的坐标为(4,3),点C 在y A 点;动点N 在AB 上运动,从A 点出发到B 1个单位长度,当其中一个点到达终点时,t (秒). (1)求线段AB 的长;当t 为何值时,MN ∥OC ? (2)设△CMN 的面积为S ,求S 与t 并指出自变量t 的取值范围;S 是否有最小值?若有最小值,最小值是多少? (3)连接AC ,那么是否存在这样的t ,使MN 与AC 若存在,求出这时的t 值;若不存在,请说明理由.2、如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒).(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式;(2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由;(4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.3、(山东济宁)如图,A 、B 分别为x 轴和y 轴正半轴上的点。
初二动点问题(含答案)
初二动点问题(含答案)动态问题所谓动点型问题是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目。
解决这类问题的关键是从动中求静,灵活运用有关数学知识解决问题。
关键:从动中求静。
数学思想:分类思想、数形结合思想、转化思想。
类型:1.利用图形想到三角形全等、相似及三角函数。
2.分析题目,了解有几个动点,动点的路程、速度(动点怎么动)。
3.结合图形和题目,得出已知或能间接求出的数据。
4.分情况讨论,把每种可能情况列出来,不要漏。
5.动点一般在中考都是压轴题,步骤不重要,重要的是思路。
6.动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样。
如果后面的题难了,可以反过去看看前面问题的结论。
例题:1.如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2cm/秒的速度移动。
如果P、Q分别从A、C同时出发,设移动时间为t秒。
当t=时,四边形是平行四边形。
当t=时,四边形是等腰梯形。
2.如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为1,B=60°,BC=2.点O是AC的中点,过点O的直线为l。
3.如图,在直角三角形ABC中,∠ACB=90°。
从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D。
过点C作CE∥AB交直线l于点E,设直线l的旋转角为α。
1)当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由。
删除问题明显的第四个例题。
对于其他例题,可以稍作改写,使其更加清晰易懂。
25、在正方形ABCD中,点E是边BC的中点,且∠AEF 为直角,EF交正方形外角∠DCG的平行线CF于点F。
初二数学期末复习《一次函数的应用—动点问题》(附练习及答案)
课 题一次函数的应用——动点问题教学目标1.学会结合几何图形的性质,在平面直角坐标系中列函数关系式。
2.通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,提高解决问题的能力。
重点、难点理解在平面直角坐标系中,动点问题列函数关系式的方法。
小结:1用函数知识求解动点问题,需要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要注意数与形结合。
2.以一次函数为背景的问题,要充分运用方程、转化、函数以及数形结合等思想来研究解决,注意自变量的取值范围例题1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.例题2:如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为524个平方单位?当堂巩固:如图,直线6y kx =+与x 轴、y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。
(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。
课后检测: 1、如果一次函数y=-x+1的图象与x 轴、y 轴分别交于点A 点、B 点,点M 在x 轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,那么这样的点M 有( )。
初二数学动点问题练习题
初二数学动点问题练习题 1. 题目描述: 一辆汽车匀速行驶,从A地到B地全程100公里,行驶时间为2小时。假设汽车在行驶过程中遇到了一个马路上的动点C,请回答以下问题。
1) 动点C与A地的距离为30公里,汽车在经过C点前后所需的时间各为多少?
2) 假设动点C与B地的距离为40公里,汽车将在何时与动点C相遇?
2. 解题过程: 根据题目给出的信息,我们来逐步解决上述两个问题。 1) 动点C与A地的距离为30公里,汽车在经过C点前后所需的时间各为多少?
首先,我们可以先求出汽车的行驶速度。由于汽车匀速行驶,我们可以用速度等于位移除以时间的公式来计算速度。假设汽车的速度为v,则v=100公里/2小时,即v=50公里/小时。
现在,我们已经知道了汽车的速度,我们可以通过距离等于速度乘以时间的公式来求解汽车在经过C点之前和之后所需的时间。
设汽车在经过C点之前所需的时间为t1小时,则距离C点的路程为:30公里 = 50公里/小时 × t1小时 解方程可得:t1 = 30/50 = 0.6小时 同理,设汽车在经过C点之后所需的时间为t2小时,则距离B点的路程为:70公里 = 50公里/小时 × t2小时
解方程可得:t2 = 70/50 = 1.4小时 因此,汽车在经过C点前后所需的时间分别为0.6小时和1.4小时。 2) 假设动点C与B地的距离为40公里,汽车将在何时与动点C相遇?
设汽车和动点C相遇时的时间为t小时,则汽车在行驶过程中分别与A点和C点所需的时间分别为2 - t小时和t小时。
根据题目给出的信息,我们可以得到以下两个方程: 距离C点的路程:30公里 = 50公里/小时 × (2 - t)小时 距离B点的路程:40公里 = 50公里/小时 × t小时 解方程组可得:t = 40 / (50/小时 + 50/小时) = 40 / (100/小时) = 0.4小时
因此,汽车将在0.4小时后与动点C相遇。 3. 总结: 通过解题过程,我们得到了以下结论: 1) 汽车在经过C点前需0.6小时,经过C点后需1.4小时。 2) 汽车将在0.4小时后与动点C相遇。 以上是初二数学动点问题练习题的解答过程。通过这道题目的解答,我们可以更好地理解动点问题的求解方法,提高我们的数学解题能力。希望这篇文章对你的学习有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学动点问题练习 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】 O M A N B C
y
x
动点问题练习题 1、已知:等边三角形ABC的边长为4厘米,长为1厘米的线段MN在ABC△的边AB上沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点M与点A重合,点N到达点B时运动终止),过点MN、分别作AB边的垂线,与ABC△的其它边交于PQ、两点,线段MN运动的时间为t秒. 1、线段MN在运动的过程中,t为何值时,四边形MNQP恰为矩形?并求出该矩形的面积;
(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间t变化的函数关系式,并写出自变量t的取值范围. 2、如图,在梯形ABCD中,354245ADBCADDCABB∥,,,,∠.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C
点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒. (1)求BC的长. (2)当MNAB∥时,求t的值. (3)试探究:t为何值时,MNC△为等腰三角形. 3、如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒). (1)求线段AB的长;当t为何值时,MN∥OC
C P Q
B A M N
A D
C B M
N (2)设△CMN的面积为S,求S与t之间的函数解析式, 并指出自变量t的取值范围;S是否有最小值?
若有是多少? (3)连接AC,那么是否存在这样的t,使MN与AC互相垂直? 若存在,求出这时的t值;若不存在,请说明理由. 2、如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒). (1)设四边形PCQD的面积为y,求y与t的函数关系式; (2)t为何值时,四边形PQBA是梯形
(3)是否存在时刻t,使得PD∥AB若存在,求出t的值;若不存在,请说明理由; (4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由. 3、(山东济宁)如图,A、B分别为x轴和y轴正半轴上的点。OA、OB的长分别是方程x2-14x+48=0的两根
A P
C Q B
D (OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC方向移动。 (1)设△APB和△OPB的面积分别为S1、S2,求S1∶S2
的值; (2)求直线BC的解析式; (3)设PA-PO=m,P点的移动时间为t。 ①当0<t≤54时,试求出m的取值范围; ②当t>54时,你认为m的取值范围如何(只要求写出结论)
4、在ABC中,,4,5,DBCCD3cm,CRtACcmBCcm点在上,且以=现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以s的速度沿BC向终点C移动。过点P作PE∥BC交AD于点E,连结EQ。设动点运动时间为x秒。 (1)用含x的代数式表示AE、DE的长度; (2)当点Q在BD(不包括点B、D)上移动时,设EDQ的面积为2()ycm,求y与
月份x的函数关系式,并写出自变量x的取值范围; (3)当x为何值时,EDQ为直角三角形。 5、在直角梯形ABCD中,90C,高6CDcm(如图1)。动点,PQ同时从点
B出发,点P沿,,BAADDC运动到点C停止,点Q沿BC运动到点C停止,两点运动时的速度都是1/cms。而当点P到达点A时,点Q正好到达点C。设,PQ同时从点B出发,经过的时间为ts时,BPQ的面积为2ycm(如图2)。分别以,ty为横、纵坐
标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN。 (1)分别求出梯形中,BAAD的长度; (2)写出图3中,MN两点的坐标;
O A B C P x
y (3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中y关于t的函数关系的大致图象。
6如图1,在平面直角坐标系中,已知点(043)A,,点B在x正半轴上,且30ABO∠.动点P在线段AB上从点A向点B以每秒3个单位的速度运动,设运动时间为t秒.在x轴上取两点MN,作等边PMN△. (1)求直线AB的解析式; (2)求等边PMN△的边长(用t的代数式表示),并求出当等边PMN△的顶点M运动到与原点O重合时t的值; (3)如果取OB的中点D,以OD为边在RtAOB△内部作如图2所示的矩形ODCE,点C在线段AB上.设等边PMN△和矩形ODCE重叠部分的面积为S,请求出当02t≤≤秒时S与t的函数关系式,并求出S的最大值.
7、两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且BC、DF在一条直线上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不动,让Rt△DEF沿CB向左平移,直到点F和点B重合为止.设FC=x,两个三角形重叠阴影部分的面积为y. (1)如图2,求当x=21时,y的值是多少?
(2)如图3,当点E移动到AB上时,求x、y的值; (3)求y与x之间的函数关系式;
CBAD
(图1) CBADPQ(图2)
O
yt30
(图3)
(图(图 8、如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成11ACD和22BCD两个三角形(如图2所示).将纸片11ACD沿直线2DB(AB)方向平移(点12,,,ADDB始终在同一直线上),当点1D于点B重合
时,停止平移.在平移过程中,11CD与2BC交于点E,1AC与222CDBC、分别交于点
F、P. (1)当11ACD平移到如图3所示的位置时,猜想图中的1DE与2DF的数量关系,并
证明你的猜想; (2)设平移距离21DD为x,11ACD与22BCD重叠部分面积为y,请写出y与x的函
数关系式,以及自变量的取值范围; (3)对于(2)中的结论是否存在这样的x的值;使得重叠部分的面积等于原ABC
面积的14若不存在,请说明理由.
9. 梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。 已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t秒,问: (1)t为何值时,四边形PQCD是平行四边形?
(2)在某个时刻,四边形PQCD可能是菱形吗为什么 (3)t为何值时,四边形PQCD是直角梯形? (4)t为何值时,四边形PQCD是等腰梯形
CBDA图1
PEF
AD1BC1D2
C2
图3 C2D2C1BD1A图2
ABCDP
Q A F D P E B Q C
FDBC
D'A A
M O F N E
B C D
10. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点 P从A开始沿折线A—B—C—D以4cm/s的速度运动,点Q从C 开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时 出发,当其中一点到达点D时,另一点也随之停止运动,设运动 时间为t(s),t为何值时,四边形APQD也为矩形? 11. 如图,在等腰梯形ABCD中,AB∥DC,cmBCAD5,AB=12 cm,CD=6cm , 点P
从A开始沿AB边向B以每秒3cm的速度移动,点Q从C开始沿CD边向D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。设运动时间为t秒。
(1)求证:当t=23时,四边形APQD是平行四边形; (2)PQ是否可能平分对角线BD若能,求出当t为何值时PQ平分BD;若不能,请说明理由; (3)若△DPQ是以PQ为腰的等腰三角形,求t的值。 12. 如图所示,△ABC中,点O是AC边上的一个动点,过O作直线MNBCABCAEOFOB如图,矩形ABCD中,AB=8,BC=4,
将矩形沿AC折叠,点D落在点D’处,求重叠部分⊿AFC的面积.
14. 如图所示,有四个动点P、Q、E、F分别从正方形
ABCD的四个顶点出发,沿着AB、BC、CD、DA以同样的速度向B、C、D、A各点移动。 (1)试判断四边形PQEF是正方形并证明。 (2)PE是否总过某一定点,并说明理由。 (3)四边形PQEF的顶点位于何处时, 其面积最小,最大各是多少
A B C D Q P