锐角三角函数练习题
锐角三角函数练习卷(含答案)

锐角三角函数练习卷(含答案)
一、选择题
1. 设角A为锐角,且sin(A) = 0.6,那么A的近似值是多少?- A)36.87°
- B)45°
- C)53.13°
- D)64.04°
答案:C)53.13°
2. 三角函数tan(A)的值是斜边长与________的比值。
- A)对边长
- B)邻边长
- C)斜边长
- D)角A的弧度
答案:B)邻边长
3. 三角函数cot(A)的值是邻边长与________的比值。
- A)对边长
- B)斜边长
- C)角A的弧度
- D)斜边长的倒数
答案:A)对边长
二、填空题
4. 已知角B是锐角,且cos(B) = 0.8,那么角B的近似值是________度。
答案:37°
5. 已知角C是锐角,且tan(C) = 0.5,那么角C的近似值是________度。
答案:26.57°
三、计算题
6. 已知三角形的两边分别为5和12,夹角为60°,求第三边的长度。
答案:13
7. 已知一个角的弧度为π/3,求sin和cos的值。
答案:sin(π/3) = (√3) / 2, cos(π/3) = 1 / 2
四、证明题
请证明:sin^2(A) + cos^2(A) = 1,其中A是任意角。
证明:
由三角恒等式sin^2(A) + cos^2(A) = 1可得:
sin^2(A) + cos^2(A) = (1 - cos^2(A)) + cos^2(A) = 1
证毕。
锐角三角函数专项练习题

锐角三角函数专项练习题一. 选择题1. 在锐角三角形ABC中,已知∠A=30°,∠B=60°,则∠C 等于:a) 30°b) 60°c) 90°d) 120°2. 在锐角三角形ABC中,已知a=3,b=4,则∠C等于:a) 30°b) 45°c) 60°d) 90°3. 已知在锐角三角形ABC中,a=5,c=13,则∠C等于:a) 30°b) 45°c) 60°d) 90°4. 在锐角三角形ABC中,已知a=8,b=15,则sinC等于:a) 8/17b) 15/17c) 17/8d) 17/155. 在锐角三角形ABC中,已知a=7,b=24,则cosC等于:a) 7/24b) 24/7c) 7/25d) 24/25二. 填空题1. 在锐角三角形ABC中,已知a=4,b=5,则c=____。
2. 在锐角三角形ABC中,已知a=7,c=10,则b=____。
3. 在锐角三角形ABC中,已知b=9,c=15,则a=____。
4. 已知sinA=3/5,∠A为锐角,则cosA=____。
5. 已知cosA=4/5,∠A为锐角,则sinA=____。
三. 计算题1. 在锐角三角形ABC中,已知a=6,b=8,求c。
解:利用勾股定理,c=sqrt(a^2+b^2)c=sqrt(6^2+8^2)=sqrt(36+64)=sqrt(100)=102. 在锐角三角形ABC中,已知a=5,c=13,求∠A。
解:利用余弦定理,cosA=(b^2+c^2-a^2)/(2bc)cosA=(5^2+13^2-5^2)/(2*5*13)= (25+169-25)/(130)=169/130然后,∠A=arccos(169/130)=22.62°3. 在锐角三角形ABC中,已知b=7,c=10,求∠B。
锐角三角函数练习题

锐角三角函数练习题(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1.已知cos α<,锐角α的取值范围是()A .60°<a <90B .0°<a <60°C .30°<a <90°D0°<a <30°2.2sin60°-cos30°·tan45°的结果为( )A 、 3 33.B C D .0 3.等腰直角三角形一个锐角的余弦为( ) A 、12 32B C D .l4.在Rt △ABC 中,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,∠C=90°,则a 3 cosA+b 3 cosB 等于( ) A .abc B .(a+b )c 3 C .c 3 D ().abc a b c+ 5.点M(tan60°,-cos60°)关于x 轴的对称点M ′的坐标是( )1111.(3,); 3,); .(3,) .(3,)2222A B C D ----6.在△ABC 中,∠C =90 °,a 、b ,c 分别为∠A 、∠B 、∠C 的对边,且c2-4ac+4a 2= 0,则sinA+cosA 的值为( ) 131223. 2 B C D +++7.在△ABC 中,∠A 为锐角,已知 cos(90°-A )3sin(90°-B )3,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形8.sin35°·cos55°十cos35°·sin55°=_______ 9. 已知0°<a <4512sin cos =__αα-10.在Rt △ABC 中,∠C=90°,∠A=60°,斜边上的高是 3 ,则a=____, b=______,c =______. 11 .在平面直角坐标系中,已知A(3,0)点B(0,-4),则cos ∠OAB 等于__________12.计算|2|4sin 6012--+1||245(20041)2O O -+- ×(-12 )-3+(4)tan 60πO O -+1301()16(2)(2004)36033π-O +÷-+- )()013222sin 60-︒+-(结果保留根号......)2(tan301)____-=1360|2|2-+-+ sin 30(1tan 60)tan 45sin 60---13 已知:如图 l -1-2,在△ABC 中,BC =8,∠B =60°,∠C =45°, 求BC 边上的高AD.14如图1-l -3,在Rt △ABC 中,∠C=90°,∠A=45°,点D 在AC 上,∠BDC=60°,AD=l ,求BD 、DC 的长.15 如图1-1-4所示,四边形ABCD 中,BC=CD=BD ,∠ADB=90°,cos ∠ABD=45 ,求S ΔABD :S ΔBCD16 如图1-l -6,在四边形ABCD 中.∠B =∠D =90°,∠A=60°,AB=4,AD=5,求 BCCD 的值。
锐角三角函数练习题及答案

锐角三角函数(一)1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2.如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cosα的值等于()A.34 B.43 C.45 D .35图 1 图 2 图3 图4图53.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确4.在Rt△ABC中,∠C=90°,cosA=23,则tanB等于()A.35 B.53 C.255 D.525.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,•tanA=_______.6.如图2,在△ABC中,∠C=90°,BC:AC=1:2,则sinA=_______,cosA=______,tanB=______.7.如图3,在Rt△ABC中,∠C=90°,b=20,c=202,则∠B的度数为_______.8.如图4,在△CDE中,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.9.已知:α是锐角,tanα=724,则sinα=_____,cosα=_______.10.在Rt△ABC中,两边的长分别为3和4,求最小角的正弦值为10.如图5,角α的顶点在直角坐标系的原点,一边在x轴上,•另一边经过点P(2,23),求角α的三个三角函数值.12.如图,在△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=α,AB=3,•BC=4,•求sinα,cosα,tanα的值.解直角三角形一、填空题1. 已知cosA=23,且∠B=900-∠A ,则sinB=__________.2. 在Rt △ABC 中,∠C 为直角,cot(900-A)=1.524,则tan(900-B)=_________.3. ∠A 为锐角,已知sinA=135,那么cos (900-A)=___________.4. 已知sinA=21(∠A 为锐角),则∠A=_________,cosA_______,tanA=__________.5. 用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6. 若cot α=0.3027,cot β=0.3206,则锐角α、β的大小关系是______________. 7. 计算: 2sin450-3tan600=____________. 8. 计算: (sin300+tan450)·cos600=______________.9. 计算: tan450·sin450-4sin300·cos450+6cot600=__________.10. 计算: tan 2300+2sin600-tan450·sin900-tan600+cos 2300=____________. 二、选择题:1. 在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( )A . 43;B . 34;C .53;D . 54.2. 在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( )A .21;B .23;C .1;D .223. 在Rt △ABC 中,∠C 为直角,∠A=300,则sinA+sinB=( )A .1;B .231+;C .221+;D .414. 当锐角A>450时,sinA 的值( )A .小于22; B .大于22; C .小于23; D .大于235. 若∠A 是锐角,且sinA=43,则( )A .00<∠A<300; B .300<∠A<450;C .450<∠A<600;D . 600<∠A<9006. 当∠A 为锐角,且tanA 的值大于33时, ∠A( )A .小于300; B .大于300; C .小于600; D .大于6007. 如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于( )A .43;B .34;C .53;D .548. Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( )A . sinA=135; B .cosA=1312; C . tanA=1213;D . cotA=1259. 已知α为锐角,且21<cos α<22,则α的取值范围是( )A .00<α<300;B .600<α<900;C .450<α<600;D .300<α<450.三、解答题1、 在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、在△ABC 中,∠C 为直角,直角边a=3cm ,b=4cm ,求sinA+sinB+sinC 的值.3、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知b=3, c=14. 求∠A 的四个三角函数.4、在△ABC 中,∠C 为直角,不查表解下列问题: (1)已知a=5,∠B=600.求b ; (2)已知a=52,b=56,求∠A .5、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知a=25,b=215,求c 、∠A 、∠B .6、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1) 已知a =156, b =56,求c; (2) 已知a =20, c =220,求∠B ; (3) 已知c =30, ∠A =60°,求a ;(4) 已知b =15, ∠A =30°,求a .7、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.8、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度DCAB9、会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度。
锐角三角函数练习题(含答案)

锐角三角函数练习题一、选择题(本大题共10小题,每小题3分,共30分)1.一段公路的坡度为1︰3,某人沿这段公路路面前进100米,那么他上升的最大高度是(D)A.30米B.10米C. 米D. 米2.如图,坡角为的斜坡上两树间的水平距离AC为,则两树间的坡面距离AB为(C)A.B.C.D.3.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m处,那么水塔所在的位置到公路的距离AB是(A)A.250mB.mC.mD.m4.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是(C)A.2 3 B. 3 2 C. 3 4 D. 4 3(第2题)(第3题)(第4题)5.如果∠A是锐角,且,那么∠A=(B)A. 30°B. 45°C. 60°D. 90°6. 等腰三角形的一腰长为,底边长为,则其底角为(A)A. B. C. D.7.若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是(B)A.150 B.C.9 D.78.在△ABC中,∠C=90°,BC=2,,则边AC的长是(A)A.B.3 C.D.9.如图,两条宽度均为40 m的公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是( A )A. (m2)B. (m2)C.1600sinα(m2)D.1600cosα(m2)10.如图,延长Rt△ABC斜边AB到D点,使BD=AB,连结CD,若tan∠BCD=,则tanA =(C)A.1B.C.D.(第9题)(第10题)二、填空题(本大题共4小题,每小题3分,共12分)11.已知为锐角, sin( )=0.625, 则cos =___ 0.625 。
12.如图,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC= ,则梯子长AB = 4 米。
锐角三角函数的经典测试题含答案

CE平行于AB,BC的坡度为i 1: 0.75,坡长0.64,cos40BC 140米,则AB的长为( )(精确0.77,tan40 0.84 )A.78.6米【答案】CB.78.7 米C.78.8 米D.78.9 米锐角三角函数的经典测试题含答案一、选择题1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点 A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=a,则此时大桥主架顶端离水面的高解析】【分析】在Rt△ABD和Rt△ABC中,由三角函数得出BC=atan α,BD=atan β,得出CD=BC+BD=atan α +atan即β可.【详解】∴BC=atan α,BD=atan β,∴CD=BC+BD=atan α+atan β,故选C.点睛】本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC和BD 是解题的关键.2.在课外实践中,小明为了测量江中信号塔A离河边的距离AB ,采取了如下措施:如图在江边D处,测得信号塔A的俯角为40 ,若DE 55米,DE CE,CE 36米,acos α +acos βC.atan α +atan βaD.tanatan在Rt△ABD 和Rt△ABC中,AB= a ,BC BDtan α=,tan β=AB ABB.答案】CA.533B.C.222D.【分析】如下图,先在Rt△CBF中求得BF、CF的长,再利用Rt△ADG 求AG的长,进而得到AB的长度【详解】如下图,过点C作AB的垂线,交AB延长线于点F,延长DE交AB延长线于点G∵BC 的坡度为1:0.75∴设CF为xm,则BF 为0.75xm ∵BC=140m∴在Rt△BCF中,x20.75x 21402,解得:x=112 ∴CF=112m,BF=84m∵DE⊥CE,CE∥AB,∴DG⊥AB,∴△ ADG 是直角三角形∵ DE=55m,CE=FG=36m∴DG=167m,BG=120m 设AB=ym ∵∠ DAB=40°DG 167 ∴tan40 °= 0.84AG y 120 解得:y=78.8 故选: C【点睛】本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值3.如图,在等腰直角△ABC中,∠ C=90°,D为BC的中点,将△ABC折叠,使点A与点D 重合,EF为折痕,则sin∠ BED的值是()35解析】分析】先根据翻折变换的性质得到DEF AEF ,再根据等腰三角形的性质及三角形外角的性质可得到BED CDF ,设CD 1,CF x,则CA CB 2 ,再根据勾股定理即可求解.【详解】解:∵△ DEF是△AEF翻折而成,∴△ DEF≌△ AEF,∠ A=∠ EDF,∵△ ABC是等腰直角三角形,∴∠ EDF=45°,由三角形外角性质得∠ CDF+45°=∠ BED+45°,∴∠ BED=∠ CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2﹣x)2,3解得:x 3,4CFsin BED sin CDFDF故选:B.点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.4.直角三角形纸片的两直角边长分别为6,8,现将VABC如图那样折叠,使点A与点B 重合,折痕为DE ,则tan CBE 的值是()71 C.D.7 3 24 3 【答案】 C【解析】试题分析:根据题意,BE=AE.设BE=x,则CE=8-x.在Rt△BCE中,x2=(8-x)2+62,25 25 7解得x= 25,故CE=8-25 = ,4 4 4CE 7∴tan ∠CBE= .CB 24故选 C. 考点:锐角三角函数.5.如图,从点A看一山坡上的电线杆PQ ,观测点P的仰角是45 ,向前走6m到达B 点,测得顶端点P和杆底端点Q的仰角分别是60 和30°,则该电线杆PQ 的高度()A.24B.7A.6 2 3 B.6 3 C.10 3 D.8 3【答案】A【解析】【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x 表示出AE和BE,列出方程求得x 的值,再在直角△BQE中利用三角函数求得QE的长,则问题求解.【详解】解:延长PQ 交直线AB于点E,设PE=x.在直角△APE中,∠ A=45°,AE=PE=x;∵∠ PBE=60°∴∠ BPE=30°在直角△BPE中,BE= 3 PE= 3 x,33∵AB=AE-BE=6米,则x- x=6,3解得:x=9+3 3.则BE=3 3 +3 .在直角△BEQ中,QE= 3 BE= 3(3 3 +3)=3+ 3.33∴PQ=PE-QE=9+3 3-(3+ 3 )=6+2 3.答:电线杆PQ的高度是(6+2 3 )米.故选:A.【点睛】本题考查解直角三角形的实际应用,解答关键是根据题意构造直角三角形解决问题6.如图,在x轴的上方,直角∠ BOA绕原点O按顺时针方向旋转.若∠ BOA的两边分别与12函数y 、y 的图象交于B、A 两点,则∠ OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D 【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OE ;1设 B 为(a,), A 为OF AF a2 1 2(b,),得到OE=-a,EB= ,OF=b,AF= ,进而得到a2b22 ,此为解决问题的关 b a b2键性结论;运用三角函数的定义证明知tan∠ OAB= 2为定值,即可解决问题.2【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△ OFA,∴BE OE∴OF AF ,12设点 B 为(a,),A 为(b,2),a b12则OE=-a,EB= ,OF=b,AF= 2,a b2可代入比例式求得 a 2b 2 2 ,即 a 2 2 , b 2该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问 题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判 定等知识点来分析、判断、推理或解答.7.如图,要测量小河两岸相对的两点 P ,A 的距离,可以在小河边取 PA 的垂线 PB 上的一解析】 分析】根据正切函数可求小河宽 PA 的长度. 【详解】∵PA ⊥ PB ,PC=100米,∠ PCA=35°,根据勾股定理可得: OB= OE 2EB 2a 212,OA= OF 2 AF 2∴tan ∠OAB=OBOA1 b 22 2 (b 2 b 2) = 2 b b2 b 42 = 22∴∠ OAB 大小是一个定值,因此∠ 故选 DOAB 的大小保持不变 .D . 100tan55 米°a 2a 122 b2b b 42 b 2 b 42点睛】PA 等于( )C . 100tan35米°∴小河宽PA=PCtan∠ PCA=100tan35°米.故选:C.【点睛】此题考查解直角三角形的应用,解题关键在于掌握解直角三角形的一般过程是:① 将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).② 根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.8.某游乐场新推出了一个“极速飞车”的项目.项目有两条斜坡轨道以满足不同的难度需求,游客可以乘坐垂直升降电梯AB 自由上下选择项目难度.其中斜坡轨道BC的坡度(或坡比)为i=1:2,BC=12 米,CD=8 米,∠ D=36°,(其中点A、B、C、D均在同一平面内)则垂直升降电梯AB的高度约为()米.(精确到0.1 米,参考数据:tan36 °≈0,.7c3os36 °≈0,.8s1in36 °≈)0.59A.5.6 B. 6.9 C.11.4 D.13.9【答案】C【解析】【分析】根据勾股定理,可得CE,BE的长,根据正切函数,可得AE 的长,再根据线段的和差,可得答案.【详解】解:如图,延长DC、AB 交于点E,由斜坡轨道BC的坡度(或坡比)为i=1:2,得BE:CE=1:2.设BE=xm,CE=2xm.在Rt △BCE中,由勾股定理,得BE2+CE2=BC2,即x2+(2x)2=(12 )2,解得x=12,BE=12m,CE=24m ,DE =DC+CE =8+24=32m , 由 tan36 °≈ 0.,73得=0.73,解得 AB =0.73 ×3=2 23.36m . 由线段的和差,得AB =AE ﹣BE =23.36﹣12= 11.36 ≈ 11m.4, 故选: C .【点睛】 本题考查解直角三角形的应用,利用勾股定理得出 切函数,线段的和差.9.如图,对折矩形纸片 ABCD ,使 AD 与 BC 重合,得到折痕 EF ,把纸片展平,再一次折叠 纸片,使点 A 落在 EF 上的点 A ′处,并使折痕经过点 B ,得到折痕 BM ,若矩形纸片的宽 AB=4,则折痕 BM 的长为 ( )1BE= AB ,A ′B=AB=,4∠BA ′M=∠A=90°,∠ ABM=∠MBA ′,可得∠2EA ′B=30°,根据直角三角形两锐角互余可得∠ E BA ′=60 °,进而可得∠ ABM=30°,在Rt △ABM中,利用∠ ABM 的余弦求出 BM 的长即可 .【详解】 ∵对折矩形纸片 ABCD ,使 AD 与 BC 重合, AB=4,1∴BE= AB=2,∠ BEF=90°,2∵把纸片展平,再一次折叠纸片,使点 A 落在 EF 上的点 A '处,并使折痕经过点 B , ∴A ′B=AB=4,∠ BA ′M= ∠ A=90°,∠ ABM=∠ MBA ′, ∴∠ EA ′B=30°, ∴∠ EBA ′=60°, ∴∠ ABM=3°0 ,∴在 Rt △ABM 中, AB=BM cos ∠ ABM ,即 4=BM cos30 °,CE ,BE 的长是解题关键,又利用了正A . 8 33【答案】 A 【解析】 【分析】B . 4 33C .8D . 8 3根据折叠性质可得解得: BM= 8 3 ,3故选 A.【点睛】 本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角 三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻 边;余切是角的邻边比对边;熟练掌握相关知识是解题关键 .故选 B .【点睛】 本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质, 线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.如图 1,在△ABC 中,∠ B =90°,∠ C = 30°,动点 P 从点 B 开始沿边 BA 、AC 向点 C 以 恒定的速度移动,动点 Q 从点 B 开始沿边 BC 向点 C 以恒定的速度移动,两点同时到达点 C ,设△BPQ 的面积为 y (cm 2).运动时间为 x ( s ), y 与 x 之间关系如图 2所示,当点 P 恰好为 AC 的中点时, PQ 的长为( )10. 如图,菱形 ABCD 中, AC 交 BD 于点 O ,DE ⊥BC 于点 E ,连接 OE ,∠ DOE =120°,DE A . 33【答案】 B 【解析】 【分析】证明 △OBE 是等边三角形,然后解直角三角形即可. 【详解】∵四边形 ABCD 是菱形,∴ OD=OB ,CD=BC . ∵DE ⊥BC ,∴∠ DEB=90°,∴OE=OD=OB . ∵∠ DOE=120°,∴∠ BOE=60°,∴△ OBE是等边三角形,∴∠ ∵∠ DEB=90°,∴ BD= DE 2 3 .sin60 3B .23 3D . 3 3DBC=60°直角三角形斜边的中3,解:设 AB =a ,∠ C = 30°,则 AC =2a ,BC = 3 a , 设 P 、 Q 同时到达的时间为 T ,则点 P 的速度为 3a ,点 Q 的速度为 3a ,故点 P 、 Q 的速度比为 3: 3, TT 故设点 P 、 Q 的速度分别为: 3v 、 3 v ,由图 2 知,当 x =2 时,y =6 3,此时点 P 到达点 A 的位置,即 AB =2×3v =6v , BQ = 2×3 v = 2 3 v ,11y =AB ×BQ =6v ×2 3 v = 6 3 ,解得: v =1,22故点 P 、Q 的速度分别为: 3, 3,AB =6v =6=a , 则 AC =12,BC =6 3 ,如图当点 P 在 AC 的中点时, PC =6,此时点 P 运动的距离为 AB+AP =12,需要的时间为 12÷3=4, 则 BQ =3 x =4 3 , CQ = BC﹣ BQ =6 3 ﹣4 3 =2 3 , 过点 P 作 PH ⊥BC 于点 H ,PC = 6,则 PH = PCsinC = 6×1 =3,同理 CH =3 3 ,则 HQ = CH ﹣ CQ = 3 3 ﹣2 3 =2PQ = PH 2 HQ 2 = 3 9 =2 3,D . 4 3【答案】【解析】【分析】 点 P 、 Q 的速度比为【详解】3: 3 ,根据 x =2,y =6 3 ,确定 P 、Q 运动的速度,即可求解.C故选: C .【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关 系,进而求解.12.一艘轮船从港口 O 出发,以 15海里 /时的速度沿北偏东 60°的方向航行 4小时后到达 A 处,此时观测到其正西方向 50 海里处有一座小岛 B .若以港口 O 为坐标原点,正东方向为 x 轴的正方向,正北方向为 y 轴的正方向, 1 海里为 1 个单位长度建立平面直角坐标系(如解析】分析】 【详解】解: OA=15×4=60海里,∵∠ AOC=60°,∴∠ CAO=30°,∵sin30°= OCAO 2∴CO=30 海里, ∴AC=30 3 海里, ∴BC=(30 3 -50)海里, ∴B ( 30 3 -50, 30) 故选 A点睛】 本题考查掌握锐角三角函数的应用.13.在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测 角仪,去测量学校内一座假山的高度 CD .如图,嘉淇与假山的水平距离 BD 为 6m ,他的D .(30,30 3 )C .(30 3 ,30)眼睛距地面的高度为1.6m ,嘉淇的视线经过量角器零刻度线OA和假山的最高点C ,此时,铅垂线OE经过量角器的60 刻度线,则假山的高度CD 为()A.2 3 1.6 m B.2 2 1.6 m C.4 3 1.6 m D.2 3m【答案】A【解析】【分析】CK CK根据已知得出AK=BD=6m,再利用tan30 °= ,进而得出CD 的长.AK 6【详解】解:如图,过点 A 作AK CD 于点K∵BD=6 米,李明的眼睛高AB=1.6米,∠ AOE=6°0 ,∴DB=AK,AB=KD=1.6米,∠ CAK=30°,CK CK∴tan30 °= ,AK 6解得:CK=2 3即CD=CK+DK=2 3 +1.6=( 2 3 +1.6)m .故选:A.【点睛】本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.14.如图,△ABC的顶点是正方形网格的格点,则cosA ()答案】 B 【解析】【分析】构造全等三角形,证明 △ABD 是等腰直角三角形,进行作答【详解】过 A 作 AE ⊥ BE ,连接 BD ,过 D 作 DF ⊥BF 于 F. ∵AE=BF ,∠ AEB=∠ DFB ,BE=DF ,∴△ AEB ≌△ BFD ,∴AB=DB.∠ABD=90°,∴△ ABD 是等腰直角三角形,∴cos ∠ DAB= 22 答案选 B.【点睛】 本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题 解题关键 .15. 如图,矩形 ABCD 的对角线 AC 、 BD 相交于点 O ,AB :BC =2:1,且 BE ∥ AC , CE ∥答案】 B解析】分析】DC 交线段 DC 延长线于点 F ,连接 OE 交BC 于点 G .根据邻边相等的平行四边形是菱形即可判断四边形 OBEC 是菱形,则 OE 与 BC 垂直平分,易得 EF=1 x , 2 1 A . 2B . 2 2C . 3 2D . 55C . 62 3D . 10过点 E 作 EF ⊥直线 B . A .4CF=x.再由锐角三角函数定义作答即可.【详解】解:∵矩形ABCD的对角线AC、BD 相交于点O,AB:BC=2:1,∴BC=AD,设AB=2x,则BC=x.如图,过点 E 作EF⊥直线DC交线段DC延长线于点F,连接OE交BC于点G.∵BE∥AC,CE∥BD,∴四边形BOCE是平行四边形,∵四边形ABCD是矩形,∴OB=OC,∴四边形BOCE是菱形.∴OE与BC垂直平分,∴EF=1 AD=1 x,OE∥ AB,22∴四边形AOEB是平行四边形,∴OE=AB=2x,1∴CF=OE=x.2本题考查矩形的性质、平行四边形的判定与性质、菱形的判定与性质以及解直角三角形,解题的关键是熟练掌握矩形的性质和菱形的判定与性质,属于中考常考题型.16.如图,一架飞机在点A处测得水平地面上一个标志物P的俯角为α,水平飞行m 千米∴tan ∠EDC=EFDF2x xA.m cotcot千米B.cot cot千米C.tan tan千米D.tan tan故选:B.点睛】m m m【答案】A【解析】【分析】根据锐角三角函数的概念进行作答.【详解】在P 点做一条直线垂直于直线AB 且交于点O,由锐角三角函数知,AO=PO cotBO=PO cot m,又AB=m=AO-BO= PO cot - PO cot = . 所以答案选 A. cot cot【点睛】本题考查了锐角三角函数的概念,熟练掌握锐角三角函数是本题解题关键17.如图,在边长为8的菱形ABCD中,∠ DAB=60°,以点D为圆心,菱形的高画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是解析】分析】由菱形的性质得出AD=AB=8,∠ ADC=12°0 ,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠ DAB=60°,∴AD=AB=8,∠ ADC=18°0 -60°=120 °,∵DF是菱形的高,∴DF⊥ AB,∴DF=AD?sin60 °=834 3,2∴图中阴影部分的面积=菱形ABCD 的面积- 扇形DEFG的面积=8 4 3120 (4 3)32 3 16.360故选: C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.DF 为半径C.32 3 16 D.18 3 答案】C18.如图,一艘轮船从位于灯塔 C 的北偏东 60°方向,距离灯塔 60 nmile 的小岛 A 出发, 沿正南方向航行一段时间后,到达位于灯塔小岛 A 的距离是 ( AB 的长.【详解】 CDcos ∠ ACD= ,AC∴CD=AC?cos ∠ACD=6×0 3 30 3 .2在 Rt △DCB 中,∵∠ BCD=∠ B=45°,∴CD=BD=30 3 ,∴AB=AD+BD=30+30 3 .答:此时轮船所在的 B 处与灯塔 P 的距离是( 30+30 3 )nmile .故选 D .【点睛】此题主要考查了解直角三角形的应用 -方向角问题,求三角形的边或高的问题一般可以转化 C 的南偏东 45°方向上的 B 处,这时轮船 B 与A . 30 3 n mile 【答案】 D【解析】【分析】过点 C 作 CD ⊥AB , B . 60 n mile C .120 nmile D . (30 30 3) n mile则在 Rt △ACD 中易得A D 的长,再在直角 △BCD 中求出 BD ,相加可得 在 Rt △ACD中, AC=60.为解直角三角形的问题,解决的方法就是作高线.19.已知 B 港口位于 A 观测点北偏东 45°方向,且其到 A 观测点正北风向的距离 BM 的长 为 10 2 km ,一艘货轮从 B 港口沿如图所示的 BC 方向航行 4 7 km 到达 C 处,测得 C 处 位于 A 观测点北偏东 75°方向,则此时货轮与 A 观测点之间的距离 【答案】 A【解析】【分析】【详解】解:∵∠ MAB=4°5 , BM=10 2 ,∴AB= BM 2 MA 2 = (10 2)2 (10 2)2 =20km , 过点 B 作 BD ⊥AC ,交 AC 的延长线于 D , 在 Rt △ADB 中,∠ BAD=∠MAC ﹣∠ MAB=7°5 ﹣45°=30°, BDtan ∠ BAD=AD∴AD= 3 BD , BD 2 +AD 2 =AB 2,即BD 2+( 3 BD )2=202,∴ BD=10,∴ AD=10 3 ,在 Rt △BCD 中, BD 2+CD 2=BC 2, BC=4 3 ,∴ CD=2 3 , ∴AC=AD ﹣ CD=10 3 ﹣ 2 3 =8 3 km ,答:此时货轮与 A 观测点之间的距离 AC 的长为 8 3 km . 故选 A .【考点】解直角三角形的应用 -方向角问题.AC 的长为( )B . 9 3C . 6 3D . 7 320.如图,一艘轮船位于灯塔 P 的北偏东 60°方向,与灯塔 P 的距离为 30 海里的 A 处,轮 船沿正南方向航行一段时间后,到达位于灯塔 P 的南偏东 30°方向上的 B 处,则此时轮船 所在位置 B 与灯塔 P 之间的距离为 ( )【答案】 D【解析】 【分析】 根据题意得出:∠ B=30°,AP=30 海里,∠ 案.【详解】 解:由题意可得:∠ B=30°, AP=30海里,∠ APB=90°, 故AB=2AP=60(海里),则此时轮船所在位置 B 处与灯塔 P 之间的距离为: BP= AB 2 AP 2 故选:D .【点睛】 此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键. B . 45 海里 C .20 3 海里 D .30 3 海里APB=90°,再利用勾股定理得出 BP 的长,求出答 30 3 (海里)。
中考数学总复习《锐角三角函数》专题训练(附带答案)
中考数学总复习《锐角三角函数》专题训练(附带答案) 学校:___________班级:___________姓名:___________考号:___________命题点1直角三角形的边角关系及简单应用1(2022广西北部湾经济区)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是() A.12sin α米B.12cos α米C.12sinα米 D.12cosα米(第1题) (第2题)2(2022福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44 cm,则高AD约为(参考数据:sin 27°≈0.45,cos 27°≈0.89,tan27°≈0.51)()A.9.90 cmB.11.22 cmC.19.58 cmD. 22.44 cm3(2022随州)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=a,则建筑物AB的高度为()A.atanα-tanβB.atanβ-tanαC.atanαtanβtanα-tanβD.atanαtanβtanβ-tanα(第3题) (第4题)4(2022乐山)如图,在Rt △ABC 中,∠C=90°,BC=√5,点D 是AC 上一点,连接BD.若tan A=12,tan ∠ABD=13,则CD 的长为 ( )A.2√5B.3C.√5D.25(2022益阳)如图,在Rt △ABC 中,∠C=90°,若sin A=45,则cos B= .(第5题) (第6题)6(2022常州)如图,在四边形ABCD 中,∠A=∠ABC=90°,DB 平分∠ADC.若AD=1,CD=3,则sin ∠ABD= .7(2022广州)如图,AB 是☉O 的直径,点C 在☉O 上,且AC=8,BC=6.(1)尺规作图:过点O 作AC 的垂线,交AC ⏜于点D ,连接CD (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O 到AC 的距离及sin ∠ACD 的值.命题点2解直角三角形的实际应用 角度1背靠背型8(2022安徽)如图,为了测量河对岸A ,B 两点间的距离,数学兴趣小组在河岸南侧选定观测点C ,测得A ,B 均在C 的北偏东37°方向上,沿正东方向行走90米至观测点D ,测得A 在D 的正北方向上,B 在D 的北偏西53°方向上.求A ,B 两点间的距离.参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.9(2022抚顺)如图,B港口在A港口的南偏西25°方向上,距离A港口100海里处.一艘货轮航行到C处,发现A港口在货轮的北偏西25°方向,B港口在货轮的北偏西70°方向.求此时货轮与A港口的距离(结果取整数.参考数据:sin 50°≈0.766,cos 50°≈0.643,tan 50°≈1.192,√2≈1.414)角度2母子型10(2022天津)如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上.从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32 m,求这座山AB的高度(结果取整数).(参考数据:tan 35°≈0.70,tan 42°≈0.90)11(2022连云港)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C的仰角∠CAE=45°,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10 m;小亮在点G处竖立标杆FG,小亮所在位置点D、标杆顶F、最高点C在一条直线上,FG=1.5 m,GD=2 m.(1)求阿育王塔的高度CE;(2)求小亮与阿育王塔之间的距离ED.(注:结果精确到0.01 m.参考数据:sin 53°≈0.799,cos 53°≈0.602,tan 53°≈1.327)角度3拥抱型12(2021自贡)如图,在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1米.参考数据:tan 37°≈0.75,tan 53°≈1.33,√3≈1.73)角度4实物型13(2022吉林)动感单车是一种新型的运动器械.图(1)是一辆动感单车的实物图,图(2)是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70 cm,∠BCD的度数为58°.当AB长度调至34 cm时,求点A到CD的距离AE的长度(结果精确到1 cm).(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan58°≈1.60)图(1)图(2)14(2022成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10 cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是点A的对应点),用眼舒适度较为理想,求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1 cm.参考数据:sin 72°≈0.95,cos 72°≈0.31,tan 72°≈3.08)角度5其他类型15(2022山西)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:如图,无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60 m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24 m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB 与CD 之间的距离AC 的长(结果精确到1 m.参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75,√3≈1.73).分类训练15 锐角三角函数1.A2.B 【解析】 ∵AB=AC ,AD ⊥BC ,∴BD=CD=12BC=22 cm .在Rt △ABD 中,tan ∠ABD=ADBD ,∴AD=BD ·tan ∠ABD=22×tan 27°≈22×0.51=11.22(cm). 3.D 【解析】 设AB=x.在Rt △ABD 中,tan β=AB BD =x BD ,∴BD=xtanβ,∴BC=CD+BD=a+xtanβ.在Rt △ABC 中,tan α=ABBC =xa+xtanβ,∴x=atanαtanβtanβ-tan α.4.C 【解析】 如图,过点D 作DE ⊥AB 于点E.∵tan A=DE AE =12,tan ∠ABD=DE BE =13,∴AE=2DE ,BE=3DE ,∴2DE+3DE=5DE=AB.在Rt △ABC 中,tan A=12,BC=√5,∴BC AC =√5AC =12,∴AC=2√5,∴AB=√AC 2+BC 2=5,∴DE=1,∴AE=2,∴AD=√AE 2+DE 2=√22+12=√5,∴CD=AC-AD=√5,故选C .5.456.√66 【解析】 如图,过点D 作DE ⊥BC ,垂足为E ,则四边形ABED 是矩形,∴BE=AD=1,DE=AB ,∠ADB=∠CBD.∵DB 平分∠ADC ,∴∠ADB=∠CDB ,∴∠CBD=∠CDB ,∴CB=CD=3,∴CE=BC-BE=3-1=2,∴DE=√CD 2-CE 2=√32-22=√5,∴BD=√DE 2+BE 2=√(√5)2+12=√6,∴sin ∠ABD=AD BD =√6=√66.7.【答案】 (1)作图如图所示.(2)设(1)中AC 的垂线交AC 于点F ,则OF ⊥AC∴AF=CF=12AC=4. 又点O 是AB 的中点∴OF 是△ABC 的中位线∴OF=12BC=3,即点O 到AC 的距离为3. ∵AB 是☉O 的直径 ∴∠ACB=90°∴AB=√AC 2+BC 2=√82+62=10 ∴OD=5∴DF=OD-OF=5-3=2∴在Rt △CDF 中,CD=√DF 2+CF 2=√22+42=2√5 ∴sin ∠ACD=DFCD =2√5=√55.8.【答案】如图,由题意知,∠ECA=37°,CD=90,∠ADC=90°,∠ADB=53°,AD∥EC∴∠BCD=53°,∠BDC=∠ADC-∠ADB=37°,∠A=37°∴∠BCD+∠BDC=90°∴∠CBD=90°,即AC⊥BD.在Rt△CBD中,BD=CD cos∠BDC=90cos 37°≈90×0.80=72.在Rt△ABD中,AB=BDtanA =72tan37°≈720.75=96.答:A,B两点间的距离为96 m.9.【答案】如图,过点B作BH⊥AC于点H,根据题意,得∠BAC=25°+25°=50°,∠BCA=70°-25°=45°.在Rt△ABH中,AB=100,∠BAH=50°,sin∠BAH=BHAB ,cos∠BAH=AHAB∴BH=AB·sin∠BAC≈100×0.766=76.6,AH=AB·cos∠BAC≈100×0.643=64.3.在Rt△BHC中,∠BCH=45°∴CH=BH=76.6∴AC=AH+CH=64.3+76.6≈141.答:货轮距离A港口约141海里.10.【答案】根据题意,得BC=32,∠APC=42°,∠APB=35°.在Rt△PAC中,tan∠APC=ACPA∴PA=ACtan∠APC.在Rt△PAB中,tan∠APB=ABPA∴PA=ABtan∠APB.∵AC=AB+BC∴AB+BCtan∠APC =AB tan∠APB∴AB=BC·tan∠APBtan∠APC-tan∠APB =32×tan35°tan42°−tan35°≈32×0.700.90−0.70=112(m).答:这座山AB的高度约为112 m.11.【答案】(1)在Rt△CAE中,∵∠CAE=45°∴CE=AE.∵AB=10∴BE=AE-10=CE-10.在Rt△CEB中,由tan 53°=CEBE =CE CE-10得tan 53°(CE-10)=CE,∴CE≈40.58.答:阿育王塔的高度约为40.58 m.(2)由题意知Rt△FGD∽Rt△CED∴FGCE =GDED,即 1.540.58=2ED,∴ED≈54.11.答:小亮与阿育王塔之间的距离约为54.11 m.归纳总结解直角三角形实际应用的一般步骤①审题:根据题意画出图形,建立数学模型.②构造直角三角形:将已知条件转化到示意图中,把实际问题转化为解直角三角形问题.③列关系式:选择合适的边角关系式,使运算简便、准确.④检验:得出数学问题的答案并检验答案是否符合实际意义,同时还要注意结果有无对精确度的要求.12.【答案】在Rt△BAD中,tan∠BDA=ABAD,∠BDA=53°∴AD=ABtan53°≈18.05(米).在Rt△CAD中,tan∠CAD=CDAD,∠CAD=30°第 11 页 共 11页 ∴CD=AD ·tan ∠CAD=√33AD ≈10.4(米).故办公楼的高度约为10.4米.13.【答案】 在Rt △ACE 中,∠AEC=90°,∠C=58°,AC=AB+BC=34+70=104 ∴AE=AC sin C=104×sin 58°≈104×0.85≈88.答:点A 到CD 的距离AE 的长度约为88 cm .14.【答案】 在Rt △ACO 中,∠AOC=180°-∠AOB=30°,AC=10 cm∴OA=2AC=20 cm .在Rt △A'DO 中,∠A'OD=180°-∠A'OB=72°,OA'=OA=20 cm∴A'D=A'O sin ∠A'OD ≈20×0.95=19(cm).答:顶部边缘A'处离桌面的高度A'D 的长约为19 cm .15.【答案】 分别延长AB ,CD 与直线OF 交于点G ,点H ,如图则∠AGO=∠EHO=90°.又∵∠GAC=90°,∴四边形ACHG 是矩形∴GH=AC.由题意,得AG=60,OF=24,∠AOG=70°,∠EOF=30°,∠EFH=60°.在Rt △AGO 中,∠AGO=90°,tan ∠AOG=AG OG ∴OG=AG tan∠AOG =60tan70°≈602.75≈21.8.∵∠EFH 是△EOF 的外角∴∠FEO=∠EFH-∠EOF=60°-30°=30°∴∠EOF=∠FEO ,∴EF=OF=24.在Rt △EHF 中,∠EHF=90°,cos ∠EFH=FH EF ∴FH=EF ·cos ∠EFH=24×cos 60°=12∴AC=GH=GO+OF+FH=21.8+24+12≈58(m).答:楼AB 与CD 之间的距离AC 的长约为58 m.。
锐角三角函数基础题1-30
锐角三角函数基础题1-30一、选择题(共12小题)1.(2014•兰州)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于().C D.2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D米米.C D.4.(2014•广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=().C D.5.(2014•湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()7.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为().C D.2D.9.(2014•义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()10.(2014•凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()m m.C D.C D.二、填空题(共12小题)(除非特别说明,请填准确值)13.(2014•新疆)如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=_________.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)14.(2014•常州)若∠α=30°,则∠α的余角等于_________度,sinα的值为_________.15.(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是_________.16.(2014•攀枝花)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=_________.17.(2014•来宾)如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为_________.18.(2014•天水)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC 的顶点都在方格的格点上,则cosA=_________.19.(2014•本溪)在△ABC中,∠B=45°,cosA=,则∠C的度数是_________.20.(2014•怀化)如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角为_________.21.(2014•白银)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_________.22.(2014•齐齐哈尔)在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是_________.23.(2014•南昌)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为_________.24.(2014•铜仁)cos60°=_________.三、解答题(共6小题)(选答题,不自动判卷)25.(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)26.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)27.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.28.(2014•眉山)如图,甲建筑物的高AB为40m,AB⊥BC,DC⊥BC,某数学学习小组开展测量乙建筑物高度的实践活动,从B点测得D点的仰角为60°,从A点测得D点的仰角为45°.求乙建筑物的高DC.29.(2014•乌鲁木齐)如图,在电线杆上的E处引拉线EC和EB固定电线杆,在离电线杆6米的A处安置测角仪(点A,C,F在一直线上),在D处测得电线杆上E处的仰角为37°,已知测角仪的高AD为1.5米,AC为3米,求拉线EC的长.(精确到0.1米)30.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)锐角三角函数基础题1-30参考答案与试题解析一、选择题(共12小题)1.(2014•兰州)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cosA的值等于().C D.AB=cosA=2.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D米米CM=BC=50BM=CM=50.C D.AB==13=.4.(2014•广州)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=().C D.tanA==.5.(2014•湖州)如图,已知Rt△ABC中,∠C=90°,AC=4,tanA=,则BC的长是()tanA=,代入求出即可.tanA=,sinA=,cosA=.,7.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为().C D.sinA=,=12x=.2D.×9.(2014•义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()=10.(2014•凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()m m:tanA=10AB=.C D=.C D..二、填空题(共12小题)(除非特别说明,请填准确值)13.(2014•新疆)如图,在Rt△ABC中,∠C=90°,∠B=37°,BC=32,则AC=24.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75),然后把,即=14.(2014•常州)若∠α=30°,则∠α的余角等于60度,sinα的值为.,.15.(2014•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.tanA=)求出即可.tanA=,故答案为:sinA=,cosA=.16.(2014•攀枝花)在△ABC中,如果∠A、∠B满足|tanA﹣1|+(cosB﹣)2=0,那么∠C=75°.cosB=,求出∠)cosB=17.(2014•来宾)如图,Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为4.cosB=cosB=,AB==.18.(2014•天水)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点.△ABC的顶点都在方格的格点上,则cosA=.解:如图,,故答案为:19.(2014•本溪)在△ABC中,∠B=45°,cosA=,则∠C的度数是75°.cosA=,20.(2014•怀化)如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角为30°.sinA==,21.(2014•白银)△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.,cosB=22.(2014•齐齐哈尔)在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,CD=4,AC=6,则sinB的值是.==故答案为:23.(2014•南昌)在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为6或2或4.==2=42.24.(2014•铜仁)cos60°=..故答案为:三、解答题(共6小题)(选答题,不自动判卷)25.(2014•河北)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75))=37,26.(2014•抚州)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,求C、D两点间的距离;(2)当∠CED由60°变为120°时,点A向左移动了多少cm?(结果精确到0.1cm)(3)设DG=xcm,当∠CED的变化范围为60°~120°(包括端点值)时,求x的取值范围.(结果精确到0.1cm)(参考数据≈1.732,可使用科学计算器)CEH=×=10(CD=20cm20≈DEI=,×=10 DG=2DI=2027.(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.BAD=BAD==×=9AC==13sinC==28.(2014•眉山)如图,甲建筑物的高AB为40m,AB⊥BC,DC⊥BC,某数学学习小组开展测量乙建筑物高度的实践活动,从B点测得D点的仰角为60°,从A点测得D点的仰角为45°.求乙建筑物的高DC.40+x=x+40=60+2060+2029.(2014•乌鲁木齐)如图,在电线杆上的E处引拉线EC和EB固定电线杆,在离电线杆6米的A处安置测角仪(点A,C,F在一直线上),在D处测得电线杆上E处的仰角为37°,已知测角仪的高AD为1.5米,AC为3米,求拉线EC的长.(精确到0.1米)CE=≈30.(2014•南昌)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)cmcmcmcmAB=BD+AD=20。
锐角三角函数检测卷及答案
锐角三角函数单元检测时间:100分钟班级: 姓名: 分数:一、单选题1.已知△ABC 中, ∠C =90°,tan A =12,D 是 AC 上一点, ∠CBD =∠A , 则 cos∠CDB 的值为( )A .12B C D .22.如图,正方形ABCD 中,点E 在边CD 上,且3CD DE =,将ADE 沿AE 对折至AFE △.延长EF 交边BC 于点G ,连接AG 、CF .下列结论:∠ABG AFG △△≌;∠45GAE ∠=︒;∠BG GC =;∠AG CF ∥;∠GCF 是等边三角形,其中正确结论有( )个.A .2B .3C .4D .53.如图,将边长6cm 的正方形纸片沿虚线剪开,剪成两个全等梯形.已知裁剪线与正方形的一边夹角为60°,则梯形纸片中较短的底边长为( )A .(3cm B .(3﹣cm C .(6cm D .(6﹣cm4.三角函数sin40cos16tan50︒︒︒、、之间的大小关系是( ) A .tan50cos16sin40︒>︒>︒ B .cos16sin40tan50︒>︒>︒ C .cos16tan50sin40︒>︒>︒D .tan50sin40cos16︒>︒>︒5.如图,在网格中,小正方形的边长为1,点A 、B 、C 都在格点上,则sin A 的值为( )A B .35C .45D 6.如图,已知窗户高AB m =米,窗户外面上方0.2米的点C 处安装水平遮阳板CD n =米,当太阳光线与水平线成α角时,光线刚好不能直接射入室内,则m n ,的关系式是( )A .n =m tan α-0.2B .n =m tan α+0.2C .m =n tan α-0.2D .m =n tan α+0.27.如图,已知楼高AB 为50m ,铁塔基与楼房房基间的水平距离BD 为50m ,塔高DC ,下列结论中,正确的是( )A .由楼顶望塔顶仰角为60°B .由楼顶望塔基俯角为60°C .由楼顶望塔顶仰角为30°D .由楼顶望塔基俯角为30°8.先化简,再求代数式的值:222111a a a a a +⎛⎫+÷ ⎪+--⎝⎭=( ),其中tan602sin30a =︒-︒.ABCD 9.数学活动小组到某广场测量标志性建筑AB 的高度.如图,他们在地面上C 点测得最高点A 的仰角为22°,再向前70m 至D 点,又测得最高点A 的仰角为58°,点C ,D ,B 在同一直线上,则该建筑物AB 的高度约为( )(精确到1m .参考数据:sin 220.37︒≈,tan220.40︒≈,sin580.85︒≈,tan58 1.60︒≈)A .28mB .34mC .37mD .46m10.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1AB 的高度为( )(精确到0.1)A .30.4B .36.4C .39.4D .45.411.如图所示一座楼梯的示意图,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =6米,楼梯宽度4米,则地毯的面积至少需要( )A .24sin θ米2 B .24cos θ米2 C .2424tan θ⎛⎫+⎪⎝⎭米2D .()2424tan θ+米212.如图,在长方形ABCD 中,5AB =,3AD =,点E 在AB 上,点F 在BC 上.若2AE =,1CF =,则()sin 12∠+∠=( )A .12B C D 13.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则∠AOB 的正弦值是( )A B C .13D .1214.式子2cos30tan 45︒-︒ )A .0B .C .2D .2-15.如图,网格中的每个小正方形的顶点称为格点,边长均为1,ABC 的顶点均在格点上,则∠ABC 的正弦值为( )A .12B C .35D 16.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,B ,则cos BOD ∠的值等于( )A .14B .13C D 17.如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC 的顶点均是格点,则cos BAC ∠的值是( )A B C D .4518.如图,在Rt ABC 中,90C ∠=︒,BC =D 是AC 上一点,连接BD .若1tan 2A ∠=,1tan 3ABD ∠=,则CD 的长为( )A .B .3CD .219.在直角三角形ABC 中,90,4,C AB BC =∠=︒=3tan 2A的值是( )AB .C .D .320.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,若4CF =,3tan 4EFC ∠=,则折痕AE =( )A .B .C .8D .1021.已知:如图,在平面直角坐标系中,有菱形OABC ,点A 的坐标为(10,0),对角线OB 、AC 相交于点D ,双曲线y=kx(x >0)经过点D ,交BC 的延长线于点E ,且OB •AC =160,有下列四个结论:∠双曲线的解析式为y =40x (x >0);∠点E 的坐标是(4,8);∠sin∠COA =45;∠AC +OB 其中正确的结论有( ) A .1个B .2个C .3个D .4个22.如图,在矩形纸片ABCD 中,5AB =,3BC =,将BCD △沿BD 折叠到BED 位置,DE 交AB 于点F ,则cos ADF ∠的值为( )A .817B .715C .1517D .81523.如图,一棵大树被台风拦腰刮断,树根A 到刮断点P 的距离是4米,折断部分PB 与地面成40︒的夹角,那么原来这棵树的高度是( )A .44cos 40+︒⎛⎫ ⎪⎝⎭米B .44sin 40+︒⎛⎫ ⎪⎝⎭米C .()44sin 40+︒米D .()44tan 40+︒米24.中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tan α=( )A .2B .32C .12D 25.如图,在正方形方格纸中,每个小正方形的边长都相等,A 、B 、C 、D 都在格点处,AB 与CD 相交于点P ,则cos∠APC 的值为( )A B C .25D 26.如图,已知菱形ABCD 的边长为4,E 是BC 的中点,AF 平分EAD ∠交CD 于点F , FG AD ∥ 交AE 于点G ,若1cos 4B =,则FG 的长是( )A .3B .83C D .52第II 卷(非选择题)二、解答题27.如图,山坡上有一棵与水平面垂直的大树AB ,且90BHE ∠=︒,一场台风过后,大树被刮倾斜后折断()A C D --倒在山坡上,树的顶部恰好接触到坡面().AB AC CD =+已知山坡的坡角30AEF ∠=︒,量得树干倾斜角45BAC ∠=︒,大树被折断部分CD 和坡面所成的角60ADC ∠=︒,4AD =米.(1)求CAD ∠的度数;(2)求这棵大树折断前AB 的高度.(结果保留根号)28.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB 进行实地测量.如图所示,他在地面上点C 处测得隧道一端点A 在他的北偏东15︒方向上,他沿西北方向前进D ,此时测得点A 在他的东北方向上,端点B 在他的北偏西60︒方向上,(点A 、B 、C 、D 在同一平面内)(1)求点D 与点A 的距离;(2)求隧道AB 的长度.(结果保留根号) 29.(1)已知:对于锐角α满足sin 1cos tan21cos sin ααααα-==+,求tan15°的值;(2)如图,△ABC 中,∠C =90°,∠BAC =30°,延长CA 到D ,使AD =AB ,连接BD ,请利用这个图形求tan15°的值.30.某市政府为了方便市民绿色出行,推出了共享单车服务.图∠是某品牌共享单车放在水平地面上的实物图,图∠是其示意图,其中AB 、CD 都与地面l 平行,车轮半径为32cm ,∠BCD =64°,BC =60cm ,坐垫E 与点B 的距离BE 为15cm .(1)求坐垫E 到地面的距离;(2)根据经验,当坐垫E 到CD 的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm ,现将坐垫E 调整至坐骑舒适高度位置E ',求E E '的长.(结果精确到0.1cm ,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05) 31.计算:1202203(1)|2cos308|(3)π--︒--- 32.在遵义市科技馆楼前,在A 点观测楼顶K 的仰角为30°,然后将观测点沿石梯向楼的水平方向移动了28m ,上升4m ,到达最上一层平台,用高为1.4m 的测角仪,在C 点观测楼顶K 的仰角为45°.(1)求:A ,C 间的距离;(结果保留根号)(2)求:科技馆的楼高KF 的值.1.7)33.计算:212)4cos30|32-⎛⎫--+- ⎪⎝⎭.34.如图,是学生小金家附近的一块三角形绿化区的示意图;为增强体质,他每天早晨都沿着绿化区周边小路AB ,BC ,CA 跑步(小路的宽度不计),观测得点B 在点A 的南偏东30°方向上,点C 在点A 的南偏东60°的方向上,点B 在点C 的北偏西75°方向上,AC 间距离为400米.小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(结果精确到1 1.4≈ 1.7≈)35.图1是笔记本电脑放在散热支架上的实物图,实物图的侧面可抽象成图2,结点B ,C ,D 处可转动,支撑架AB =BC =CD =28cm ,面板DE =28cm ,若DE 始终与AB 平行.(1)直接写出∠ABC ,∠BCD ,∠CDE 之间的数量关系;(2)若ABC BCD CDE ∠=∠=∠,电脑显示屏宽EF =26cm .且105DEF ∠=︒,求笔记本电脑显示屏的端点F 到AB 的距离.(结果精确到0.1cm .参考数据sin750.97︒≈,cos750.26︒≈ 1.73≈)36.有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB =50cm ,拉杆BC 的伸长距离最大时可达35cm ,点A 、B 、C 在同一条直线上,在箱体底端装有圆形的滚筒∠A ,∠A 与水平地面切于点D ,在拉杆伸长至最大的情况下,当点B 距离水平地面38cm 时,点C 到水平面的距离CE 为59cm .设AF ∥MN .(1)求∠A 的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C 端拉旅行箱时,CE 为80cm ,∠CAF =60°.求此时拉杆BC 的伸长距离.37.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离; (2)求OD 长.(结果精确到0.1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈ 2.24≈)38.深圳是沿海城市,每年都会受到几次台风侵袭,台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风景,有极强的破坏力.某次,据气象观察,距深圳正南200千米的处有一台风中心,中心最大风力为12级,每远离台风中心30千米,风力就会减弱一级,该台风中心正以20千米/时的速度沿北偏东43°方向向移动,且台风中心风力不变,若城市受到风力达到或超过六级,则称受台风影响. (1)此次台风会不会影响深圳?为什么?(2)若受到影响,那么受到台风影响的最大风力为几级?(3)若受到影响,那么此次台风影响深圳共持续多长时间?(结果可带根号表示)(sin43°≈34,cos42°≈2940,tan42°≈910)39.如图,港口B 位于港口A 的南偏西45︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向港口B 的南偏东45︒方向的D 处,它沿正北方向航行21km 到达E 处,此时测得灯塔C 在E 的南偏西70︒方向上,E 处距离港口A 有多远?(结果用含非特殊角的三角函数及根式表示即可)40.因东坡文化远近闻名的遗爱湖公园,“国庆黄金周”期间,游人络绎不绝,现有一艘游船载着游客在遗爱湖中游览,当船在A 处时,船上游客发现岸上P 1处的临皋亭和P 2处的遗爱亭都在东北方向;当游船向正东方向行驶600m 到达B 处时,游客发现遗爱亭在北偏西15°方向;当游船继续向正东方向行驶400m 到达C 处时,游客发现临皋亭在北偏西60°方向.则临皋亭P 1处与遗爱亭P 2处之间的距离为 _____.(计算结果保留根号)41.如图,线段EF 与MN 表示某一段河的两岸,EF 平行MN .综合实践课上,同学们需要在河岸MN 上测量这段河的宽度(EF 与MN 之间的距离),已知河对岸EF 上有建筑物C 、D ,且CD =30米,同学们首先在河岸MN 上选取点A 处,用测角仪测得C 建筑物位于A 北偏东45°方向,再沿河岸走10米到达B 处,测得D 建筑物位于B 北偏东55°方向,请你根据所测数据求出该段河的宽度,(用非特殊角的三角函数或根式表示即可)42.图1是某小型汽车的示意图,图2是其后备厢的箱盖打开过程侧面简化示意图,五边形ABCDE 表示该车的后备厢的厢体侧面,在打开后备厢的过程中,箱盖AED 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖AED 落在AE D ''的位置.若90EAB ABC BCD ∠=∠=∠=︒,150AED ∠=︒,AE =80厘米,ED =40厘米,DC =25厘米,且后备厢底部BC 离地面的高CN =25厘米.(1)求点D 到地面MN 的距离(结果保留根号);(2)求箱盖打开60°时的宽D ,D 1.73≈ 2.91116.3,结果取整数).43.如图是一种手机三脚架,它通过改变锁扣C 在主轴AB 上的位置调节三脚架的高度,其它支架长度固定不变,已知支脚DE =AB .底座CD ∠AB ,BG ∠AB ,且CD =BG ,F 是DE 上的固定点,且EF :DF =2:3.(1)当点B ,G ,E 三点在同一直线上(如图1所示)时,测得tan∠BED =2.设BC =5a ,则FG =__(用含a 的代数式表示);(2)在(1)的条件下,若将点C 向下移动24cm ,则点B ,G ,F 三点在同一直线上(如图2),此时点A 离地面的高度是__cm .44.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC =OD =10分米,展开角∠COD =60°,晾衣臂OA =OB =10分米,晾衣臂支架HG =FE =6分米,且HO =FO =4分米.(参考数据:)(1)当90AOC ∠=︒时,求点A 离地面的距离AM 约为多少分米;(结果精确到0.1)(2)当OB 从水平状态旋转到OB '(在CO 延长线上)时,点E 绕点F 随之旋转至OB '上的点E '处,求B E BE ''-为多少分米.45.海绵拖把一般由长杆、U 型挤压器、海绵及连杆(含拉杆)装置组成(如图),拉动拉杆可带动海绵进入挤压器的两压杆间,起到挤水的作用.图1,图2,图3是其挤水原理示意图,A 、B 是拖把上的两个固定点,拉杆AP 一端固定在点A ,点P 与点B 重合(如图1),拉动点P 可使拉杆绕着点A 转动,此时点C 沿着AB 所在直线上下移动(如图2).已知AB =10cm ,连杆PC 为40cm ,FG =4cm ,MN =8cm .当P 点转动到射线BA 上时(如图3),FG 落在MN 上,此时点D 与点E 重合,点I 与点H 重合.(1)求ME 的长;(2)转动AP ,当∠P AC =53°时,∠求点C 的上升高度;∠求点D 与点I 之间的距离(结果精确到0.1).(sin53°≈45,cos53°≈35≈2.45) 参考答案:1.B【分析】由已知条件CBD A ∠=∠,可得1tan tan 2CBD A ∠==,设CD a =,由题意可得1tan 2CD CBD BC ∠==,即可算出2BC a =,在t ΔR CBD 中,根据勾股定理可得BD 答案.【详解】解:CBD A ,1tan tan 2CBD A ∴∠==, 设CD a =,1tan 2CD CBD BC ∴∠==, 2BC a ∴=, 在Rt ΔCBD 中,BD ,cosCD CDB BD ∴∠===. 故选:B 【点睛】本题主要考查了解直角三角形,熟练掌握解直角三角形的方法进行求解是解决本题的关键.2.C【分析】根据翻折变换的性质和正方形的性质可证ABG AFG △△≌;在直角ECG 中,根据勾股定理可证BG GC =;通过证明===∠∠∠∠AGB AGF GFC GCF ,由平行线的判定可得AG CF ∥;由于BG CG =,得到tan 2AGB ∠=,求得60AGB ∠≠︒,根据平行线的性质得到60FCG AGB ∠=∠≠︒,求得GCF 不是等边三角形.【详解】解:由翻折变换可知,AD AF =,DAE FAE ∠=∠,DE FE =,D AFE ∠=∠,∠18090AFG AFE B ∠=︒-∠=︒=∠,在Rt ABG 和Rt AFG 中,AF AB AG AG =⎧⎨=⎩, ∠()≌Rt ABG Rt AFG HL ,因此∠正确;∠BAG FAG ∠=∠,又∠90BAG FAG DAE FAE ∠+∠+∠+∠=︒, ∠190452GAE FAG FAE ∠=∠+=︒∠⨯=︒,因此∠正确; 由翻折变换可知,DE EF =,由全等三角形可知BG GF =,设正方形的边长为a ,BG x =,13DE EF a ==,则CG a x =-,13GE x a =+,1233EC a a a =-=, 在Rt ECG 中,由勾股定理得,222EC GC EG +=, 即()22221=33a a x x a ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭,解得12x a =, 即1122BG a BC ==, ∠BG CG =,因此∠正确;∠BG CG FG ==,∠GCF GFC ∠=∠,由三角形全等可得,AGB AGF ∠=∠,又∠180AGB AGF FGC FGC GCF GFC ∠+∠+∠=︒=∠+∠+∠,∠ABG FCG ∠=∠,∠AG FC ∥,因此∠正确,∠BG CG =, ∠12BG AB =, ∠tan 2AGB ∠=,∠60AGB ∠≠︒,∠AG FC ∥,∠60FCG AGB ∠=∠≠︒,∠GCF 不是等边三角形,因此∠不正确;故选:C .【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,求一个角的正切值,此题综合性较强,难度较大,解题的关键是注意数形结合思想应用.3.A【分析】过M 点作ME ∠AD 于E 点,根据四边形ABCD 是正方形,有AD =CD =6,∠C =∠D =90°,由裁剪的两个梯形全等,可得AN =MC ;再证明四边形MCDE 是矩形,即有MC =ED ,ME =CD =6,进而有AN =ED ,在Rt ∠MNE 中,解直角三角形可得NE =3AN =【详解】如图,过M 点作ME ∠AD 于E 点,∠四边形ABCD 是正方形,边长为6,∠AD =CD =6,∠C =∠D =90°,∠裁剪的两个梯形全等,∠AN =MC ,∠ME ∠AD ,∠四边形MCDE 是矩形,∠MC =ED ,ME =CD =6,∠AN =ED ,根据题意有∠MNE =60°,∠在Rt ∠MNE 中,62tan tan 60ME NE MNE ===∠∠∠6AN ED AD NE +=-=-∠3AN =即梯形中较短的底为3cm ),故选:A .【点睛】本题主要考查了正方形的、矩形的判定与性质、解直角三角形的应用等知识,根据梯形全等得出AN =MC 是解答本题的关键.4.A【分析】首先把sin 40cos16︒︒、转换成相同的锐角三角函数;再根据正弦值是随着角的增大而增大,进行分析,可以知道1sin74sin 40︒︒>>,又根据正切值随着角度增大而增大,因此tan50tan 451︒︒=>,即可得出正确选项.【详解】解:∠()sin cos 90αα=︒-(090α≤≤︒),∠()cos16sin 9016sin74︒=︒-︒=︒,sin901︒=∠1sin74sin 40︒︒>>,∠tan50tan 451︒︒=>,∠tan50sin74sin 40︒>︒>︒,∠tan50cos16sin40︒>︒>︒,故选:A .【点睛】本题考查三角函数值的大小比较,掌握正余弦的转换方法:一个角的正弦值等于它的余角的余弦值;以及正余弦值、正切值的变化规律是本题的关键.5.C【分析】过点B 作BD AC ⊥于点D ,连接BC ,利用面积法求出BD 的长,然后由sin BD A AB=即可获得答案. 【详解】解:过点B 作BD AC ⊥于点D ,连接BC ,如下图,∠小正方形的边长为1,∠AB AC == ∠111333*********ABC S=⨯-⨯⨯-⨯⨯-⨯⨯=,∠11422ABC S AC BD BD =⋅==,∠BD =∠4sin5BD A AB ===. 故选:C .【点睛】本题主要考查了利用三角函数解直角三角形、勾股定理的应用等知识,解题关键是正确作出直角三角形并熟记正弦函数的定义.6.C【分析】根据CB =CA +AB 求出CB 的长,再利用三角函数求出m 的值即可.【详解】解:∠窗子高AB =m 米,窗子外面上方0.2米的点C 处安装水平遮阳板CD =n 米,∠CB =CA +AB =(m +0.2)米,∠光线与水平线成α角,∠∠BDC =α,∠tan∠BDC =CB CD, ∠CB =n •tan α,∠m =n tan α-0.2,故选:C .【点睛】本题主要考查三角函数的应用,熟练利用三角函数解直角三角形是解题的关键.7.C【分析】求CE ,进而求得∠CAE 的正切值即可求得∠CAE 的度数;同理可求得∠EAD 的正切值,得到∠EAD 的度数.【详解】解:过点A 作水平线AE ,则∠EAD 为楼顶望塔基俯角,∠CAE 为由楼顶望塔顶仰角.∠AB =50m∠DE =50m∠CE =CD 50(m)∠tan∠CAE =CE :AE =CE :BD ∠∠CAE =30°.故C 正确,D 错误;∠tan∠EAD =DE :AE =50:BD =1,∠∠EAD =45°.故A 、B 错误;故选:C .【点睛】本题考查解直角三角形的应用,熟练掌握正切的定义,特殊角的三角函数值是解题的关键.8.A【分析】先将题目中的式子化简,再根据锐角三角函数求得a 的值,代入化简后的式子即可解答本题. 【详解】解:222111a a a a a +⎛⎫+÷ ⎪+--⎝⎭ ()()()212111a a a a a a-++-=⨯+-()()3111a a a a a -=⨯+- 31a =+, 当tan602sin30a =︒-︒1212=⨯=时,原式= 故选:A .【点睛】本题考查分式的化简求值、特殊角的三角函数值,解题的关键是明确它们各自的计算方法.9.C【分析】在Rt △ABD 中,解直角三角形求出58DB AB =,在Rt △ABC 中,解直角三角形可求出AB . 【详解】解:在Rt △ABD 中,tan∠ADB =AB DB , ∠5tan 58 1.68AB AB DB AB =≈=︒, 在Rt △ABC 中,tan∠ACB =AB CB , ∠tan 220.45708AB AB ︒=≈+, 解得:112373AB =≈m , 故选:C .【点睛】本题考查了解直角三角形的应用,熟练掌握正切函数的定义是解题的关键.10.C【分析】延长AB 交DC 于H ,作EG ∠AB 于G ,则GH =DE =15米,EG =DH ,设BH =x 米,则CH米,在Rt ∠BCH中,BC =12米,由勾股定理得出方程,解方程求出BH =6米,CHBG 、EG 的长度,证明∠AEG 是等腰直角三角形,得出AG =EG =()(米),即可得出大楼AB 的高度.【详解】解:如图,延长AB 交DC 于H ,作EG ∠AB 于G ,则GH =DE =15米,EG =DH ,∠梯坎坡度i =1∠BH :CH =1设BH =x 米,则CH米,)2=122,由勾股定理得:x2+解得:x=6,∠BH=6米,CH=∠BG=GH﹣BH=15﹣6=9(米),EG=DH=CH+CD=()(米),∠∠α=45°,∠∠EAG=90°﹣45°=45°,∠∠AEG是等腰直角三角形,∠AG=EG=()(米),∠AB=AG+BG=(米);故选:C.【点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.11.D【分析】在Rt△ABC中,利用锐角三角函数求出BC,然后根据平移的性质可得在楼梯上铺的地毯长,从而求出地毯的面积.【详解】解:在Rt△ABC中,AC=6,∠BAC=θ,∠tanθ=BC,AC∠BC=AC tanθ=6tanθ(米),∠在楼梯上铺的地毯长=BC+AC=(6+6tanθ)米,∠地毯的面积=4(6+6tanθ)=(24+24tanθ)平方米,故选:D.【点睛】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的计算是解题的关键.12.B【分析】连接EF,求证∠DEF是等腰直角三角形,得∠EDF=45°,所以1+245∠∠=,即可求解.【详解】解:连接EF,∠四边形ABCD是长方形,∠∠A=∠B=∠C=∠ADC=90°,BC=AD=3,CD=AB=5,∠22222=+=+=,DE AD AE3213∠AB=5,∠BE=AB-AE=3,∠CF=1,∠BF=BC-CF=2,在在Rt∠EBF中,∠22222=+=+=,EF BE BF3213∠EF=DE在Rt∠CDF中,∠22222=+=+=,DF DC CF5126∠26=13+13,即:222=+,DF DE EF∠∠DEF=90°,∠∠EDF=∠DFE=45°,∠1+2=45∠∠∠-∠=,ADC EDF∠()2∠+∠=sin12sin45=2故选B.【点睛】本题考查长方形的性质、勾股定理及其逆定理、正弦函数,根据勾股定理的逆定理证明出∠DEF是等腰直角三角形是解题的关键.13.B【分析】过点B作BC∠OA于点C.先利用勾股定理求出BO、AO的长,再利用∠AOB的面积求出BC的长,最后在直角∠BCO中求出∠AOB的正弦值.【详解】解:过点B作BC∠OA于点C.BO=,AO==,∠S △AOB 12=×2×2=2, ∠12AO •BC =2,∠BC==sinBC AOB BO ∴∠=== 故选:B .【点睛】本题考查了解直角三角形,构造直角三角形,利用∠的面积求出OA 边上的高是解决本题的关键. 14.A【分析】根据特殊角的三角函数值计算即可.【详解】解:原式21=-11)=-11==0故选:A .【点睛】本题考查特殊角的三角函数值及二次根式的混合运算,解题关键是熟练掌握特殊角的三角函数值. 15.D【分析】根据勾股定理计算得出AB AC BC CE BE =====可得出AE BC ⊥,由勾股定理得AE =从而可得出sin ABC ∠= 【详解】解:如图,连接AE ,由勾股定理得,AB AC ∠AB AC =又BC CE BE ===∠点E 为BC 的中点,∠AE BC ⊥,∠AE ==∠sin AE ABC AB ∠== 故选:D【点睛】本题考查了解直角三角形、勾股定理,利用勾股定理求出AE 的长度是解题的关键.16.D【分析】根据网格的特点找到格点E ,使得AE CD ∥,则BOD A ∠=∠,构造Rt AEF ,即可求解.【详解】如图,5DG CG ==,90G ∠=︒,45CDG ∴∠=︒,1AG GE ==,45AEG ∴∠=︒,∴AE CD ∥,∴BOD A ∠=∠,2,AE AF EF ===22218220,20AE EF AF +=+==, 222AE EF AF ∴+=, ∠∠AEF 是直角三角形,∠AEF =90°,cos cosAE BOD A AF ∴∠=== 故选D 【点睛】本题考查了勾股定理与网格,勾股定理的逆定理,求余弦,构造直角三角形是解题的关键.17.C【分析】过点C 作AB 的垂线,构造直角三角形,利用勾股定理求解即可.【详解】解:过点C 作AB 的垂线交AB 于一点D ,如图所示,∠每个小正方形的边长为1,∠5AC BC AB ===,设AD x =,则5BD x =-,在Rt ACD △中,222DC AC AD =-,在Rt BCD 中,222DC BC BD =-,∠2210(5)5x x --=-,解得2x =,∠cosAD BAC AC ∠== 故选:C .【点睛】本题考查了解直角三角形,勾股定理等知识,解题的关键是能构造出直角三角形.18.C 【分析】先根据锐角三角函数值求出AC =5,AB =过点D 作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得AD 可求出CD .【详解】解:在Rt ABC 中,90C ∠=︒,BC = ∠1tan 2BC A AC ∠==∠2AC BC ==由勾股定理得,5AB ==过点D 作DE AB ⊥于点E ,如图,∠1tan 2A ∠=,1tan 3ABD ∠=, ∠11,,23DE DE AE BE ==∠11,,23DE AE DE BE == ∠1123AE BE = ∠32BE AE =∠5,AE BE += ∠352AE AE += ∠2,AE =∠1DE =,在Rt ADE ∆中,222AD AE DE =+ ∠AD∠AD CD AC +==∠CD AC AD =-==故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键. 19.A【分析】由勾股定理求出AB =2,再由三角函数的意义求出60,A ∠=︒进一步可得出结论.【详解】解:如图,∠90,4,C AB BC =∠=︒=∠2AC ===又tan BC A AC ∠=== ∠60A ∠=︒ ∠302A ∠=︒∠3tan3tan 3032A =︒== 故选:A【点睛】本题主要考查了正切函数的定义,正确求得AC 的长是解题关键.20.B【分析】首先根据折叠及3tan 4EFC ∠=求得EF 的值,进一步知道DC 的长度,后根据BAF EFC ∠=∠,其正切值相同解三角形ABF 得BF 的长度,从而知道AD 的长度,后根据勾股定理求得AE 的长度.【详解】解:由题意4CF =,∠C =90°,3tan 4EC EFC FC ∠== ∠CE =3∠Rt EFC 中,∠C =90°,∠5EF =∠AEF 是ADE 折叠而来∠5ED EF ==,538DC AB ==+=∠矩形ABCD∠90C B AFE ∠=∠=∠=︒∠90BAF AFB ∠+∠=︒,90AFB EFC ∠+∠=︒∠BAF EFC ∠=∠ ∠tan∠BAF =tan∠EFC =34, 即34BF AB =, ∠364BF AB == ∠6410AD BC ==+=∠AE 故选:B【点睛】本题考查了锐角三角函数解直角三角形,勾股定理,矩形的性质,翻折的性质,根据等量变换得到BAF EFC ∠=∠并运用其锐角三角函数相等,求线段长是解决本题的关键.21.C【分析】过点B 作BF x ⊥轴于点F ,先根据菱形的性质可得10AB OA ==,1802OA BF OB AC ⋅=⋅=,OD BD =,从而可得8BF =,再在Rt ABF 中,利用勾股定理可得6AF =,从而可得点B 的坐标,然后根据中点的坐标公式可得点D 的坐标,最后利用待定系数法可得双曲线的解析式,由此可判断∠;根据点E 的纵坐标为8,代入反比例函数即可判断∠;先根据平行线的性质可得COA BAF ∠=∠,再根据正弦的定义即可判断∠;先在Rt OBF △中,利用勾股定理可得OB =160OB AC ⋅=可得AC =AC OB +的值,由此即可判断∠.【详解】解:如图,过点B 作BF x ⊥轴于点F ,点A 的坐标为(10,0),10OA ∴=,四边形OABC 是菱形,且160OB AC ⋅=,10AB OA ∴==,1802OA BF OB AC ⋅=⋅=,OD BD =,AD CD =, 解得8BF =,在Rt ABF 中,6AF ==,16OF OA AF ∴=+=,(16,8)B ∴,又OD BD =,即点D 是OB 的中点,01608(,)22D ++∴,即(8,4)D , 将点(8,4)D 代入反比例函数k y x =得:8432k =⨯=, 则该双曲线解析式为32y x=,结论∠错误; 四边形OABC 是菱形,BC OA ∴,OC AB ∥,∴点E 的纵坐标与点B 的纵坐标相同,即为8,当8y =时,3248x ==, 则点E 的坐标是(4,8),结论∠正确;OC AB ,COA BAF ∴∠=∠,84sin sin 105BF COA BAF AB ∴∠=∠===,结论∠正确;在Rt OBF △中,OB =160OB AC ⋅=,160AC OB∴==,AC OB ∴+==,结论∠正确;综上,正确的结论有3个,故选:C .【点睛】本题考查了菱形的性质、勾股定理、反比例函数、正弦等知识点,熟练掌握菱形的性质是解题关键. 22.C【分析】先根据矩形的性质和折叠的性质,利用“AAS”证明AFD EFB ∆∆≌,得出AF EF =,DF BF =,设AF EF x ==,则5BF x =-,根据勾股定理列出关于x 的方程,解方程得出x 的值,最后根据余弦函数的定义求出结果即可.【详解】解:∠四边形ABCD 为矩形,∠CD =AB =5,AB =BC =3,90A C ∠=∠=︒,根据折叠可知,3BE BC ==,5DE DE ==,90∠=∠=︒E C ,∠在∠AFD 和∠EFB 中903A E AFD EFB AD BE ∠=∠=︒⎧⎪∠=∠⎨⎪==⎩,∠AFD EFB ∆∆≌(AAS ),∠AF EF =,DF BF =,设AF EF x ==,则5BF x =-,在Rt BEF ∆中,222BF EF BE =+,即()22253x x -=+, 解得:85x =,则817555DF BF ==-=, ∠315cos 17175AD ADF DF ∠===,故C 正确.故选:C .【点睛】本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明AFD EFB ∆∆≌,是解题的关键.23.B【分析】通过解直角三角形即可求得.【详解】解:在Rt ABP △中,4==sin sin 40AP BP ABP ∠︒, 故原来这棵树的高度为:4=4sin 40AP BP ⎛⎫++ ⎪︒⎝⎭(米), 故选:B .【点睛】本题考查了解直角三角形的应用,熟练掌握和运用解直角三角形的方法是解决本题的关键.24.A【分析】首先根据两个正方形的面积分别求出两个正方形的边长,然后结合题意进一步设直角三角形短的直角边为a ,则较长的直角边为a +1,再接着利用勾股定理得到关于a 的方程,据此进一步求出直角三角形各个直角边的边长,最后求出tan α的值即可.【详解】∠小正方形与每个直角三角形面积均为1,∠大正方形的面积为5,∠小正方形的边长为1设直角三角形短的直角边为a ,则较长的直角边为a +1,其中a >0,∠a 2+(a +1)2=5,其中a >0,解得:a 1=1,a 2=-2(不符合题意,舍去),tan α=1a a +=111+=2, 故选:A .【点睛】本题主要考查了勾股定理与一元二次方程及三角函数的综合运用,熟练掌握相关概念是解题关键. 25.B【分析】把AB 向上平移一个单位到DE ,连接CE ,则DE ∠AB ,由勾股定理逆定理可以证明△DCE 为直角三角形,所以cos∠APC =cos∠EDC 即可得答案.【详解】解:把AB 向上平移一个单位到DE ,连接CE ,如图.则DE ∠AB ,∠∠APC =∠EDC .在△DCE 中,有EC DC =5DE =,∠22252025EC DC DE +=+==,∠DCE ∆是直角三角形,且90DCE ∠=︒,∠cos∠APC =cos∠EDC =DC DE = 故选:B .【点睛】本题考查了解直角三角形、平行线的性质,勾股定理,作出合适辅助线是解题关键.26.B【分析】过点A 作AH 垂直BC 于点H ,延长FG 交AB 于点P ,由题干所给条件可知,AG =FG ,EG =GP ,利用∠AGP =∠B 可得到cos∠AGP =14,即可得到FG 的长; 【详解】过点A 作AH 垂直BC 于点H ,延长FG 交AB 于点P ,由题意可知,AB =BC =4,E 是BC 的中点,∠BE =2,又∠1cos 4B =, ∠BH =1,即H 是BE 的中点,∠AB =AE =4,又∠AF 是∠DAE 的角平分线,FG AD ∥,∠∠F AG =∠AFG ,即AG =FG ,又∠PF AD ∥,AP DF ∥,∠PF =AD =4,设FG =x ,则AG =x ,EG =PG =4-x ,∠PF BC ∥,∠∠AGP =∠AEB =∠B ,∠cos∠AGP =12PG AG =22x x-=14, 解得x =83; 故选B .【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.27.(1)75︒(2)()2米【分析】(1)根据直角三角形的性质求出EAH ∠,根据平角的定义计算,求出CAD ∠;(2)过点A 作AM CD ⊥,垂足为M ,根据正弦的定义求出AM 、根据余弦的定义求出DM ,根据直角三角形的性质求出CM ,根据正弦的定义求出AC ,结合图形计算,得到答案.(1)解:在Rt AHE 中,30AEH ∠=︒, 60EAH ∴∠=︒,45BAC ∠=︒,180604575CAD ∴∠=︒-︒-︒=︒;(2)过点A 作AM CD ⊥,垂足为M ,在Rt ADM △中,60ADC ∠=︒,4AD =米,cos 4cos602DM AD ADC ∠∴=⋅=︒=(米),sin 4sin 60AM AD ADC ∠=⋅=︒=,在Rt ACM △中,180756045C ∠=︒-︒-︒=︒,CM AM ∴==,sin AM AC C==, ()2AB AC CD ∴=+=米,答:这棵大树折断前高为()2米.【点睛】本题考查的是解直角三角形的应用——坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解答此题的关键.28.(1)点D 与点A 的距离为300米(2)隧道AB 的长为米【分析】(1)根据方位角图,易知60ACD ∠=︒,90ADC ∠=︒,解Rt ADC 即可求解;(2)过点D 作DE AB ⊥于点E .分别解Rt ADE △,Rt BDE 求出AE 和BE ,即可求出隧道AB 的长(1)由题意可知:154560ACD ∠=︒+︒=︒,180454590ADC ∠=︒-︒-︒=︒在Rt ADC 中,∠tan tan 60300AD DC ACD =⨯∠=︒=(米)答:点D 与点A 的距离为300米.(2)过点D 作DE AB ⊥于点E .。
初三数学锐角三角函数测试题及答案
ACOP D B图3锐角三角函数(一)测试题一、 选择题(每小题3分,共30分)1、在Rt △ABC 中,∠C=90°,CD ⊥AB 于点D ,已知AC=5,BC=2,那么sin ∠ACD=( )A 、35B 、32C 、552D 、252、如图1,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC=1200米,则飞机到目标B 的距离AB 为( ) A 、1200m B 、2400m C 、4003m D 、12003m3、(08)在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为( )A .12B .22C .32D .334、在Rt △ABC 中,∠C=90°,若tanA=43,则sinA=( )A 、34B 、43C 、35D 、535、如图2,CD 是平面镜,光线从A 点射出,经CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6,CD=11,则tan α的值为( )A 、311B 、113C 、119D 、9116、在△ABC 中,∠A 、∠B 都是锐角,且sinA=21,cosB=22ABC 三个角的大小关系是( )A 、∠C >∠A >∠B B 、∠B >∠C >∠A C 、∠A >∠B >∠CD 、∠C >∠B >∠A7、若关于x 的方程x 2-2x+cos α=0有两个相等的实数根,则锐角α为( )A 、30°B 、45°C 、60°D 、0°8、如图3,∠AOB=30°,OP 平分∠AOB ,PC ∥OB ,PD ⊥DB , 如果PC=6,那么PD 等于( ) A 、4 B 、3 C 、2 D 、19、已知∠A 为锐角,且cosA ≤21,则( )A 、 0°≤A ≤60°B 、60°≤A <90°C 、0°<A ≤30°D 、30°≤A ≤90°10、如图4,在矩形ABCD 中,CE ⊥BD 于点E ,BE=2,DE=8,设∠ACE=α,则 tan α的值为( )ABC( α 图1CEDAB图2(αA 、21B 、34C 、43D 、2二、 填空题(每小题3分,共30分)11、直线y=kx-4与y 轴相交所成的锐角的正切值为21,则k 的值为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锐角三角函数(一) 姓名:
1、如图,△ABC 的三个顶点都在正方形网格的格点上,则sin ∠A 的值为( )
A .
B .
C .
D .
2、=( )
A .
B .
C .
D .1 (第1题)
3、如图,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为α,则重叠部分的面积为( )
A .
B .
C .tan α
D .1
4、关于x 的一元二次方程x 2﹣x+cos α=0有两个相等的实数根,则锐角a 等于( )
A .0°
B .30°
C .45°
D .60°
5、如图,点O 在△ABC 内,且到三边的距离相等.若∠BOC=120°,则tanA 的值为( )
A .
B .
C .
D .
6、如图,已知Rt △ABC 中,两条直角边AB=3,BC=4,将Rt △ABC
绕直角顶点B 旋转一定的角度得到Rt △DBE ,并且点A 落在DE 边上,
则sin ∠ABE=
(第6题)
7、已知Rt△ABC中,∠C=90°,AC=3,BC=4,则tan∠B= .
8、△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是三角形.
9、若,则锐角α=__________. (第7题)
10、先化简,再求值,其中a=1+2cos45°;b=1-2sin45°
参考答案
一、选择题
1、D
2、D.
3、A
4、D
5、A
二、填空题
6、
7、.
8、直角
9、60°
三、简答题
10、,原式=。