SPSS方差分析图文

合集下载

spss方差分析

spss方差分析

方差分析是用于两个及两个以上样本均数差别的显著性检验。

由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。

方差分析的基本思想是:通过分析研究不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

方差分析主要用途:①均数差别的显著性检验,②分离各有关因素并估计其对总变异的作用,③分析因素间的交互作用,④方差齐性检验。

在科学实验中常常要探讨不同实验条件或处理方法对实验结果的影响。

通常是比较不同实验条件下样本均值间的差异。

例如医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同化学药剂对作物害虫的杀虫效果等,都可以使用方差分析方法去解决。

方差分析原理方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:(1) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SS w,组内自由度df w。

(2) 实验条件,实验条件,即不同的处理造成的差异,称为组间差异。

用变量在各组的均值与总均值之偏差平方和表示,记作SS b,组间自由度df b。

总偏差平方和 SS t = SS b + SS w。

组内SS t、组间SS w除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MS w和MS b,一种情况是处理没有作用,即各组样本均来自同一总体,MS b/MS w≈1。

另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。

那么,MS b>>MS w(远远大于)。

MS b/MS w比值构成F分布。

用F值与其临界值比较,推断各样本是否来自相同的总体。

方差分析的假设检验假设有m个样本,如果原假设H0:样本均数都相同即μ1=μ2=μ3=…=μm=μ,m个样本有共同的方差。

SPSS中的单因素方差分析

SPSS中的单因素方差分析

SPSS中的单因素方差分析一、大体原理单因素方差分析也即一维方差分析,是查验由单一因素阻碍的多组样本某因变量的均值是不是有显著不同的问题,如各组之间有显著差异,说明那个因素(分类变量)对因变量是有显著阻碍的,因素的不同水平会阻碍到因变量的取值。

二、实验工具SPSS for Windows 三、实验方式例:某灯泡厂用四种不同配料方案制成的灯丝(filament),生产了四批灯泡。

在每批灯泡中随机地抽取假设干个灯泡测其利用寿命(单位:小时hours),数据列于下表,此刻想明白,关于这四种灯丝生产的灯泡,其利用寿命有无显著不同。

灯泡灯丝1 2 3 4 5 6 7 8 甲1600 1610 1650 1680 1700 1700 1780 乙1500 1640 1400 1700 1750 丙1640 1550 1600 1620 1640 1600 1740 1800 丁1510 1520 1530 1570 1640 1680 四、不利用选择项操作步骤(1)在数据窗成立数据文件,概念两个变量并输入数据,这两个变量是:filament 变量,数值型,取值一、二、3、4 别离代表甲、乙、丙、丁,格式为F1.0,标签为“灯丝”。

Hours 变量,数值型,其值为灯泡的利用寿命,单位是小时,格式为F4.0,标签为“灯泡利用寿命”。

(2)按Analyze,然后Compared Means,然后One-Way Anova 的顺序单击,打开“单因素方差分析”主对话框。

(3)从左侧源变量框当选取变量hours,然后按向右箭头,所选去的变量hours 即进入Dependent List 框中。

(4)从左侧源变量框当选取变量filament,然后按向右箭头,所选取的变量folament 即进入Factor 框中。

(5)在主对话框中,单击“OK”提交进行。

五、输出结果及分析灯泡利用寿命的单因素方差分析结果ANQVA Sun of Squares df Mean Square F Sig Between Groups 39776.46 3 13258.819 1.638 .209 Within Groups 178088.9 22 8094.951 Total 217865.4 25 该表各部份说明如下:第一列:方差来源,Between Groups 是组间变差,Within Groups 是组内变差,Total 是总变差。

两因素方差分析-SPSS教程

两因素方差分析-SPSS教程

两因素方差分析-SPSS教程一、问题与数据某研究者已知受教育程度可以影响幸福指数,即如果将研究对象的受教育程度分为高中及以下、大学本科和硕士研究生及以上3个等级(级别依次递增),那么他们的幸福指数会随着受教育程度的增加而增加。

目前,该研究者拟进一步分析研究对象这种受教育程度与幸福指数的相关关系是否受性别影响。

研究者招募了58位研究对象,包括28位男性和30位女性。

每一类性别中,研究对象的受教育程度由均分为3类(高中及以下、大学本科和硕士研究生及以上)。

该研究者采用问卷测量研究对象的幸福指数,研究对象得分在0-100之间分布,分数越高,幸福指数越强。

最终收集了研究对象的幸福指数(Index)、性别(gender)和受教育程度(education)等变量信息,部分数据如图1。

图1 部分数据二、对问题分析研究者已知一个自变量(受教育程度)对因变量(幸福指数)的影响,想判断另一个自变量(性别)对这一相关关系是否存在作用。

针对这种情况,我们可以使用两因素方差分析,但需要先满足6项假设:假设1:因变量是连续变量。

假设2:存在两个自变量,且都是分类变量。

假设3:具有相互独立的观测值。

假设4:任一分类中不存在显著异常值。

假设5:任一分类中残差近似正态分布。

假设6:任一分类都具有等方差性。

假设1-3主要和研究设计有关,经分析,本研究数据满足假设1-3,那么应该如何检验假设4-6,并进行两因素方差分析呢?三、SPSS操作3.1 生成检验假设4-6的新变量检验假设4-6需要用到残差,因此我们先运行两因素方差分析的SPSS操作,得到主要结果和相应残差变量后,再逐一进行对假设的检验。

在主界面点击Analyze→General Linear Model→Univariate,分别将Index 放入Dependent Variable栏,gender和education放入Fixed Factor(s)栏。

如图2。

图2 Univariate点击Plots,分别将gender和education放入Separate Lines和Horizontal Axis栏。

多元方差分析spss实例

多元方差分析spss实例

多元方差分析1992年美国总统选举的三位候选人为布什、佩罗特、克林顿。

从支持三位候选人的选民中分别分析:该题自变量为三位候选人,因变量为年龄段和受教育程度。

从自变量来看要进行方差分析,从因变量来看是二元分析,所以最终确定使用多变量分析具体操作(spss)1、打开spss,录入数据,定义变量和相应的值在此不作详述。

结果如图1图1 被投票人:1、布什2、佩罗特3、克林顿2、在spss窗口中选择分析——一般线性模型——多变量,调出多变量分析主界面,将年龄段和受教育程度移入因变量框中,被投票人移入固定因子框中。

如图2图2 多变量分析主界面3、点击选项按钮在输出框中选择方差齐性分析(既包括协方差矩阵等同性分析也包括误差方差齐性分析),其它使用默认即可,点击继续返回主界面。

如图3图3 选项子对话框4、点击确定,运行多变量分析过程。

结果解释1、协方差矩阵等同性的Box检验结果,如图4图4 协方差矩阵检验结果说明:此Box检验的协方差矩阵为三位候选人每个人的支持者的年龄段和受教育程度的协方差矩阵。

因为sig>0.05,所以差异不显著,即各个因变量的协方差矩阵在所有三个候选人组中是相等的。

可以对其进行多元方差分析。

2、多变量检验结果,如图5图5 多变量检验结果说明:被投票人在四种统计方法中的sig均小于0.05,所以差异显著,即三组的总体均值有显著性差异3、误差方差等同性的Levene检验结果,如图6图6 Levene检验结果说明:只考虑单个变量,年龄段或者受教育程度,每位候选人的20名支持者的随机误差是否有显著性差异。

因为sig>0.05,差异不显著,所以三位候选人的20名支持者的随机误差相等。

可以进行单因素方差分析。

4、主体间效应的检验结果,如图7图7 主体间效应的检验结果说明:被投票人一行中,年龄段的sig<0.05,差异显著,即支持三位候选人的选民中,年龄段之间存在显著差异;而受教育程度的sig>0.05,差异不显著,即支持三位候选人的选民中,受教育程度差异不显著。

SPSS操作—方差分析

SPSS操作—方差分析
• 实际工作中往往需要两两的组间均值比较。这就需要使用 One-way ANOVA进行单因素方差分析时使用选择项从而获 得更丰富的信息,使分析更深入。
例题进一步分析
析中剔除
实例-单因素方差分析各处理重复数不等的方差分析
用四种饲料喂养19头猪比较,四种饲料是否不同。
饲料 A 133.8 B 151.2 C 193.4 D 225.8
125.3
143.1 128.9 135.7
149.0
162.7 143.8 153.5
185.3
182.8 188.5 198.6
Post Hoc(均数的多重比较选项)
• 进行多重比较是对每两个组的均值进行如下比较:MEAN(i)MEAN(j)≥4.6625×RANGE×SQRT(1/N(i)+1/N(j));其中i、j分 别为组序号, MEAN(i)、MEAN(j)分别为第i、j组均值, N(i)、N(j) 分别为第i、j组中的观测数。各组均值的多重比较方法的算法 不同RANGE值也不同。
• Hochberg’s GT2(霍耶比GT2法):用正态最大系数进行多 重比较
• Gabriet(盖比理法):用正态标准系数进行配对比较,在单元 数较大时,这种方法较自由; • Waller-Duncan(瓦尔-邓肯法):用t统计量进行多重比较检验。
使用贝耶斯接近;
• Dunnett(邓尼特法):最小显著差数测验法,进行各组与对照 组的均值,默认的对照组是最后一组;选定此方法后,激活 下面的Control Catetory参数框,展开小菜单,选择对照组 • Tamhane‘s T2(塔海尼T2法):t检验进行配对比较; • Dunnett’s T3(邓尼特T3法):正态分布下的配对比较; • Games-Howell(盖门-霍威尔法):各组均值的配对比较,该方 法较灵活;

SPSS超详细操作:两因素多元方差分析(Two

SPSS超详细操作:两因素多元方差分析(Two

SPSS超详细操作:两因素多元方差分析(Two医咖会在之前的推文中,推送过多篇方差分析相关的文章,包括:单因素方差分析(One-Way ANOVA)双因素方差分析(Two-way ANOVA)三因素方差分析(Three-way ANOVA)单因素重复测量方差分析两因素重复测量方差分析三因素重复测量方差分析单因素多元方差分析(One-way MANOVA)每种方差分析的应用场景,以及该如何进行SPSS操作和解读结果,各位伙伴请点击相应的文章链接查看~~今天,我们再来介绍一种统计方法:两因素多元方差分析(Two-way Manova)。

一、问题与数据某研究者想研究三种干预方式(regular—常规干预;rote—死记硬背式干预;reasoning—推理式干预)对学生学习成绩的影响。

研究者记录了学生两门考试的成绩:文科成绩(humanities_score)和理科成绩(science_score)。

另外,基于之前的知识,研究者假设干预方式对男女两种性别学生的效果可能不同。

换言之,研究者想知道不同干预方式对学习成绩的影响在男女学生中是否不同。

也就是说,干预方式和性别两个自变量之间是否存在交互作用(interaction effect)。

注:交互作用是指某一自变量对因变量的效应在另一个自变量的不同水平会不同。

在本例中,就是要比较①男性中干预方式对学习成绩的影响和②女性中干预方式对学习成绩的影响。

这两个效应就成为单独效应(simple main effects),也就是说,单独效应是指在一个自变量的某一水平,另一个自变量对因变量的影响。

因此,交互作用也可以看做是对单独效应间是否存在差异的检验。

在本研究中,共有三个效应:性别的主效应;干预方式的主效应;性别和干预方式的交互作用。

研究者选取30名男学生和30名女学生,并将其随机分配到三个干预组中,每个干预组中共有10名男学生和10名女学生。

部分数据如下:二、对问题的分析使用两因素多元方差分析法进行分析时,需要考虑10个假设。

SPSS中的方差分析法(1)

方差分析(多因素,协方差)一、方法名称单因素二、定义(方法及结果)三、用途四、实现过程1、格式数据整理2、提交显示3、分析变量处理:自变量、因变量ANOVA检验:显示表,是否齐次1 方差分析法方差分析是一种是一种假设检验,它把观测总变异的平方和自由度分解为对应不同变异来源的平方和自由度,将某种控制性因素所导致的系统性误差和其他随机性误差进行对比,从而判断各组样本之间是否存在显著性差异,以分析该因素是否对总体存在显著性影响。

2 样本数据要求方差分析法采用离差平法和对变差进行度量,从总离差平方分解出可追溯到指定来源的部分离差平方和。

方差分析要求样本满足以下条件:2.1 可比性样本数据各组均数本身必须具有可比性,这是方差分析的前提。

2.2 正态性方差分析要求样本来源于正态分布总体,偏态分布资料不适用方差分析。

对偏态分布的资源要考虑先进行对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变换为正态或接近正态后再进行方差分析。

2.3 方差齐性。

方差分析要求各组间具有相同的方差,满足方差齐性。

3 单因素分析法实验操作单因素分析用于分析单一控制变量影响下的多组样本的均值是否存在显著性差异。

单因素分析法的原理,单因素方差分析也称为一维方差分析,用于分析单个控制因素取不同水平时因变量的均值是否存在显著差异。

单因素方差分析基于各观测量来自于相互独立的正态样本和控制变量不同水平的分组之间的方差相等的假设。

单因素方差分析将所有的方差划分为可以由该因素解释的系统性偏差部分和无法由该因素解释的随机性偏差,如果系统性偏差明显超过随机性偏差,则认为该控制因素取不同水平时因变量的均值存在显著差异。

3.1 实验数据描述某农业大学对使用不同肥料的实验数据对比。

产量(千克/亩产)施肥类型864 普通钾肥875 普通钾肥891 普通钾肥873 普通钾肥883 普通钾肥859 普通钾肥921 控释肥944 控释肥986 控释肥929 控释肥973 控释肥963 控释肥962 复合肥941 复合肥985 复合肥974 复合肥977 复合肥在SPSS的变量视图中建立变量“产量”和“施肥类型”,分别表示实验田产量和实验田的施肥类型。

spss方差分析理论概念及实际操作分析

给定显著性水平α,并与检验统计量的概率p值进行比较。 如果p<α,则拒绝原假设,即认为控制变量的不同水平下观测变 量个总体的均值存在差异,当控制变量的各个效应不同时为0时, 控制变量的不同水平对观测变量产生了显著影响; 如果p>α,则接受原假设,认为控制变量不同水平下观测变量各 总体的均值无显著差异,控制变量的各个效应同时为0,控制变 量的不同水平对观测变量没有产生显著影响。
实例操作
采用“*******”数据,分析不同身份的旅游者对“政 府及相关部门的政策充分地照顾到遗产地资源开发各 利益群体的实际情况”的认同是否存在显著性差异。 D1政府及相关部门的政策充分地照顾到遗产地资源开 发各利益群体的实际情况 1不同意 2稍微不同意 3中立 4稍微同意 5同意 您的身份: A. 一般居民(旅游者) B. 学生 C. 专家、学者 D. NGO E. 媒体工作者
多因素方差分析适用案例
• 不同年龄、职业的旅游者对旅游形式的选择是否 存在显著性差异?即,年龄与职业队旅游者选择 旅游形式是否存在显著影响? • 不同教育背景、地区的旅游者对成都市内旅游满 意度是否存在显著性差异?
多因素方差分析 分析步骤
1. 提出原假设 H0:各控制变量不同水平下观测变量总体的均值 无显著性差异,控制变量各效应和交互作用效应 同时为0,即控制变量和它们的交互作用没有对观 测变量产生显著性影响
方差齐次性检验
上表为方差齐性检验表,Levene值为1.480,自由度分别为4 和612,显著性水平P值=0.207 > 0.05,可以认为不同身份的游客 对“政府及相关部门的政策充分地照顾到遗产地资源开发各利益 群体的实际情况”的认同程度具有方差齐性,即各种身份的游客 样本所在总体方差相同。
单因素方差分析结果

spss之统计挖掘第6章 方差分析


5.“两两比较”
6.“保存”
▪ 单击“保存”按钮,弹出图6-18所示的“单变 量:保存”对话框
7.“选项”
▪ 单击“选项”按钮,弹出图6-19所示的“单变 量:选项”对话框。
析因设计方差分析
▪ 例6.3 A、B两种药物联合应用对红细胞增加数 的影响,数据见表6-8。数据库见6-3.sav。
▪ 1.操作步骤
▪ (4)单击“选项”按钮,将“因子与因子交互 ”列表中的“组别”移入右侧“显示均值”框 ,同时勾选“比较主效应”复选框;“输出” 列表中选择“描述统计”和“方差齐性检验” ,单击“继续”按钮,返回主对话框,单击“ 确定”按钮运行。
▪ 2.主要结果解读
▪ 图6-33所示给出两组的例数、均值和标准差; 图6-34所示为两组治疗后血压的Levene方差齐 性检验,本例F=0.049,P=0.826>0.05,因此 方差齐性,符合方差分析条件要求;图6-35所 示为协方差分析结果,可见组别因素F=0.820, P=0.373,组别因素(即两种药物)对降压效果 没有差别;而治疗前血压因素的F=6.463, P=0.017,说明治疗前血压确实对治疗后血压有 影响。
▪ (1)单击“分析”|“一般线性模型”|“单变 量”命令。
▪ (2)将“治疗后血压”放入“因变量”框;将 分组变量“组别”放入“固定因子”框;将“ 治疗前血压”放入“协变量”框。
▪ (3)单击“模型”按钮,在弹出框中将“因子 与协变量”列表中的“组别”和“治疗前血压 ”放入右侧“模型”列表。“构建项”中类型 选择“主效应”。其他默认,单击继续返回。
▪ 实例详解
▪ 例6.1:比较三个不同电池生产企业生产电池的 寿命,见例6-1.sav。此例企业为因素,不同厂 家为水平,本例为单因素3水平设计。

spss操作--双因素方差分析(无重复)

4.306E-02
F 40.948 25.800
Sig. .000 .001
PA 0.000 0.05, 拒绝原假设,认为因素A对指标有影响 PB 0.001 0.05, 拒绝原假设,认为因素B对指标有影响
1)描述性统计结果
D es c ri p ti v e S ta t i st i cs
Dependent Variable: 含量比
PH 值 1 2 3 4 To ta l
浓度 1 2 3 To ta l 1 2 3 To ta l 1 2 3 To ta l 1 2 3 To ta l 1 2 3 To ta l
Me an 3. 50 0 2. 30 0 2. 00 0 2. 60 0 2. 60 0 2. 00 0 1. 90 0 2. 16 7 2. 00 0 1. 50 0 1. 20 0 1. 56 7 1. 40 0 .8 00 .3 00 .8 33 2. 37 5 1. 65 0 1. 35 0 1. 79 2
-1.180
-1.920
Байду номын сангаас
-.747
-1.320
-.147
结论:…..
95% Confidence Interval
Lower Bound Upper Bound
-.153
1.020
.447
1.620
1.180
2.353
-1.020
.153
1.350E-02
1.187
.747
1.920
-1.620
-.447
-1.187 -1.350E-02
.147
1.320
-2.353
2)将“含量比”设置为变量,将“PH值”、 “浓度”设置为因素
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档