多元方差分析spss实例

合集下载

spss超详细操作两因素多元方差分析(two-way manova)

spss超详细操作两因素多元方差分析(two-way manova)

SPSS超详细操作:两因素多元方差分析(Two-way Manova)每种方差分析的应用场景,以及该如何进行SPSS操作和解读结果,各位伙伴请点击相应的文章链接查看~~今天,我们再来介绍一种统计方法:两因素多元方差分析(Two-way Manova)。

一、问题与数据某研究者想研究三种干预方式(regular—常规干预;rote—死记硬背式干预;reasoning—推理式干预)对学生学习成绩的影响。

研究者记录了学生两门考试的成绩:文科成绩(humanities_score)和理科成绩(science_score)。

另外,基于之前的知识,研究者假设干预方式对男女两种性别学生的效果可能不同。

换言之,研究者想知道不同干预方式对学习成绩的影响在男女学生中是否不同。

也就是说,干预方式和性别两个自变量之间是否存在交互作用(interaction effect)。

注:交互作用是指某一自变量对因变量的效应在另一个自变量的不同水平会不同。

在本例中,就是要比较①男性中干预方式对学习成绩的影响和②女性中干预方式对学习成绩的影响。

这两个效应就成为单独效应(simple main effects),也就是说,单独效应是指在一个自变量的某一水平,另一个自变量对因变量的影响。

因此,交互作用也可以看做是对单独效应间是否存在差异的检验。

在本研究中,共有三个效应:性别的主效应;干预方式的主效应;性别和干预方式的交互作用。

研究者选取30名男学生和30名女学生,并将其随机分配到三个干预组中,每个干预组中共有10名男学生和10名女学生。

部分数据如下:二、对问题的分析使用两因素多元方差分析法进行分析时,需要考虑10个假设。

对研究设计的假设:1. 因变量有2个或以上,为连续变量;2. 有两个自变量,为二分类或多分类变量;3. 各观察对象之间相互独立;对数据的假设:4. 自变量的各个组内,各因变量间存在线性关系;5. 自变量的各个组内,各因变量间没有多重共线性;6. ①没有单因素离群值(univariate outliers)与②多因素离群值(multivariate outliers):单因素离群值是指自变量的各个组中因变量是否是离群值;多因素离群值是指每个研究对象(case)的各因变量组合是否是一个离群值;7. 各因变量服从多元正态分布;8. 样本量足够;9. 自变量的各组观察对象之间因变量的方差协方差矩阵相等;10. 每个因变量在自变量的各个组中方差相等。

spss多因素方差分析报告例子

spss多因素方差分析报告例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction 的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

多元方差分析spss实例

多元方差分析spss实例

多元方差分析1992年美国总统选举的三位候选人为布什、佩罗特、克林顿。

从支持三位候选人的选民中分别分析:该题自变量为三位候选人,因变量为年龄段和受教育程度。

从自变量来看要进行方差分析,从因变量来看是二元分析,所以最终确定使用多变量分析具体操作(spss)1、打开spss,录入数据,定义变量和相应的值在此不作详述。

结果如图1图1 被投票人:1、布什2、佩罗特3、克林顿2、在spss窗口中选择分析——一般线性模型——多变量,调出多变量分析主界面,将年龄段和受教育程度移入因变量框中,被投票人移入固定因子框中。

如图2图2 多变量分析主界面3、点击选项按钮在输出框中选择方差齐性分析(既包括协方差矩阵等同性分析也包括误差方差齐性分析),其它使用默认即可,点击继续返回主界面。

如图3图3 选项子对话框4、点击确定,运行多变量分析过程。

结果解释1、协方差矩阵等同性的Box检验结果,如图4图4 协方差矩阵检验结果说明:此Box检验的协方差矩阵为三位候选人每个人的支持者的年龄段和受教育程度的协方差矩阵。

因为sig>0.05,所以差异不显著,即各个因变量的协方差矩阵在所有三个候选人组中是相等的。

可以对其进行多元方差分析。

2、多变量检验结果,如图5图5 多变量检验结果说明:被投票人在四种统计方法中的sig均小于0.05,所以差异显著,即三组的总体均值有显著性差异3、误差方差等同性的Levene检验结果,如图6图6 Levene检验结果说明:只考虑单个变量,年龄段或者受教育程度,每位候选人的20名支持者的随机误差是否有显著性差异。

因为sig>0.05,差异不显著,所以三位候选人的20名支持者的随机误差相等。

可以进行单因素方差分析。

4、主体间效应的检验结果,如图7图7 主体间效应的检验结果说明:被投票人一行中,年龄段的sig<0.05,差异显著,即支持三位候选人的选民中,年龄段之间存在显著差异;而受教育程度的sig>0.05,差异不显著,即支持三位候选人的选民中,受教育程度差异不显著。

《2024年使用SPSS软件进行多因素方差分析》范文

《2024年使用SPSS软件进行多因素方差分析》范文

《使用SPSS软件进行多因素方差分析》篇一一、引言随着社会发展和科研进步,数据已经成为学术研究和工程领域不可或缺的部分。

对于处理复杂的多个因素之间关系的探究,多因素方差分析成为了一种常见的数据分析方法。

本文旨在展示如何使用SPSS软件进行多因素方差分析,以便读者能更好地理解和掌握其使用方法和过程。

二、数据与方法本节将介绍数据的来源、背景和采集方式,以及采用多因素方差分析的原因。

此外,也将简单介绍SPSS软件的相关知识和其在本次分析中的使用方式。

1. 数据来源本次研究使用的数据来自于一项实地调查。

数据涉及了不同区域、不同教育程度和不同经济水平的参与者,每个参与者均进行了特定的实验操作,产生了多个因变量和自变量的数据。

2. 方法我们选择使用SPSS软件进行多因素方差分析,该软件是当前广泛使用的统计分析工具之一。

其功能强大且操作简便,可以很好地处理复杂的多因素数据。

三、实验设计与变量本部分将详细介绍实验设计及所涉及的变量。

1. 实验设计实验设计为完全随机设计,涉及两个主要自变量(因素A和因素B)和多个因变量(如结果Y1、Y2等)。

2. 变量说明因素A包括三个水平:水平1、水平2、水平3;因素B同样包括三个水平:水平A、水平B、水平C。

因变量为各组在实验操作后的结果,包括但不限于特定任务完成度、准确度等。

四、数据分析与结果解读本部分将详细描述使用SPSS软件进行多因素方差分析的步骤及结果解读。

1. 数据录入与整理将收集到的数据录入SPSS软件中,并进行必要的整理和清洗,确保数据的准确性和完整性。

2. 多因素方差分析步骤(1)打开SPSS软件,选择“分析”菜单中的“一般线性模型”选项,然后选择“单变量”。

(2)在弹出的对话框中,将因变量放入“因变量”框中,将两个自变量放入“固定因子”框中。

(3)点击“运行”,SPSS将自动进行多因素方差分析,并生成相应的结果表格和图表。

3. 结果解读通过查看SPSS生成的结果表格和图表,我们可以得到以下信息:各因素的主效应、各因素之间的交互效应以及因变量的变化情况等。

SPSS教程-多因素方差分析(优质参考)

SPSS教程-多因素方差分析(优质参考)

多因素方差分析多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。

SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。

在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。

该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。

但也可以通过方差齐次性检验选择均值比较结果。

因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。

因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。

固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。

[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。

分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。

表5-7 不同温度与不同湿度粘虫发育历期表相对湿度(%)温度℃重复1 2 3 4100 25 91.2 95.0 93.8 93.0 27 87.6 84.7 81.2 82.4 29 79.2 67.0 75.7 70.6 31 65.2 63.3 63.6 63.380 25 93.2 89.3 95.1 95.5 27 85.8 81.6 81.0 84.4 29 79.0 70.8 67.7 78.8 31 70.7 86.5 66.9 64.940 25 100.2 103.3 98.3 103.8 27 90.6 91.7 94.5 92.2 29 77.2 85.8 81.7 79.7 31 73.6 73.2 76.4 72.5数据保存在“DATA5-2.SAV”文件中,变量格式如图5-1。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。

多元方差分析-SPSS10

多元方差分析-SPSS10

多元方差分析SPSS10.0高级教程十:征服一般线性模型(2)2004-7-12 22:06:00信息来源:医学统计之星SPSS 10.0高级教程十:征服一般线性模型(2) 生物谷网站§8.4多元方差分析所谓的多元方差分析,就是说存在着不止一个应变量,而是两个以上的应变量共同反映了自变量的影响程度。

比如要研究某些因素对儿童生长的影响程度,则身高、体重等都可以作为生长程度的测量因子,即都应作为应变量。

8.4.1分析步骤为了方便起见,我们这里直接利用SPSS自带的数据集plastic.sav,假设tear_res、gloss和o pacity都使反应橡胶质量的指标(不要笑,是假设),现在要研究extrusn和additive对橡胶的质量影响如何,则应采用多元方差分析。

选择Analyze==>General Linear Model==>Multivariate,则弹出Multivariate对话框,请注意,除了没有random effect外,它的所有元素都是和univariate对话框相同的,里面的内容也相同,因此我们这里就不再重复了。

按照我们的分析要求,对话框操作步骤如下:1.Analyze==>General Lineal model==>Multivariate2.Dependent Variable框:选入tear_res、gloss和opacity3.Fixed Factors框:选入extrusn和additive4.单击OK此处两个自变量均是二分类变量,故无需选择两两比较方法。

8.4.2结果解释按上面的选择,分析结果如下:General Linear Model这是引入模型的自变量的取值情况列表。

上表是针对模型中的自变量间及其交互作用所做的检验,采用的是四种多元检验方法。

一般他们的结果都是相同的,如果不同,一般以Hotelling's Trace方法的结果为准。

spss多因素方差分析例子

spss多因素方差分析例子

1, data0806-height 是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打 开 spss 软 件 , 打 开 data0806-height 数 据 , 点 击 Analyze->General Linear Model->Univariate 打开:把 plot 和 species 送入 Fixed Factor(s) ,把 height 送入 Dependent Variable ,点击 Model 打开:选择 Full factorial , Type III Sum of squares , Include intercept in model (即 全部默认选项) ,点击 Continue 回到 Univariate 主对话框,对其他选项卡不做任何选 择, 结果输出:因无法计算 ???? ??rror ,即无法分开 ???? intercept的影响,无法进行方差分析,重新 Analyze->General Linear Model->Univariate 打开:选择好 Dependent Variable 和 Fixed Factor(s) 点击Custom,把主效应变量 species 和plot 送入 Model 框,点击 Continue 回到Univariate 主对话框,点击 Plots : 把 date 送入 Horizontal Axis ,把 depth 送入 Separate Lines ,点击 Add ,点击 Continue 回到 Univariate 对话框,点击 Options :把 OVERALL,species, plot 送入 Display Means for 框,选择 Compare main effects , Bonferroni ,点击 Continue 回到 Univariate 对话框,输出结果:可以看到: SS species =, df species =7, MS species= ;SS plot =, df plot =7, MS plot= ;SS error =, df error =14, MS error= ;Fspecies= , p=<;Fplot=,p=<;所以故认为在 5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。

SPSS软件的应用——多元统计分析

SPSS软件的应用——多元统计分析

多元统计分析学院:理学与信息科学学院专业班级:信息与计算科学 2012级01 班姓名:韩祖良(20125991)****:***2015 年6月1日作业1 方差分析三组贫血患者的血红蛋白浓度(%,X1)及红细胞计数(万/mm3,X2)如下表:1、方差分析的前提条件要求各总体服从正态分布,请给出正态分布的检验结果,另要求各总体方差齐性,给出方差齐性检验结果。

2、检验三组贫血患者的指标x1,x2间是否有显著差异,进行多元方差分析。

如果有显著差异,分析三组患者间x1指标是否有显著差异,x2指标是否有显著差异?3、最后进行两两比较,给出更具体的分析结果。

4. 画出三组患者x1,x2两指标的均值图。

答:1.将所需分析数据输入到SPSS中,首先判断各总体是否服从正态分布:对文件进行拆分:数据→拆分文件→按组组织输出→确定。

然后进行正态性检验:文件→描述统计→探索,在绘制对话框中,选择按因子水平分组和带检验的正态图,最后单击确定按钮。

最后得出结果如图(1),(2),(3)所示:表(1)由表(1)可以看出,A组的X1指标的Sig=0.907,X2的Sig=0.914,在检验标准为0.05的条件下,接受H0,拒绝H1,故得A组服从正态分布。

表(2)由表(2)可以看出,B组的X1指标的Sig=0.406,X2的Sig=0.765,在检验标准为0.05的条件下,接受H0,拒绝H1,故得B组服从正态分布。

表(3)由表(3)可以看出,C组的X1指标的Sig=0.337,X2的Sig=0.839,在检验标准为0.05的条件下,接受H0,拒绝H1,故得C组服从正态分布。

再检验各总体是否满足方差齐性:首先取消文件的拆分,对所有个案进行分析。

然后进行方差齐性检验:分析→一般线性模型→多变量,在选项对话框中,选择方差齐性检验,所得结果如下:表(4)上表是对协方差阵相等的检验,由Sig=0.670>0.05,故在显著性水平为0.05的条件下,接受H0,拒绝H1,即观测到的因变量的协方差矩阵在所有组中均相等,可得三组符合方差齐性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元方差分析
1992年美国总统选举的三位候选人为布什、佩罗特、克林顿。

从支持三位候选人的选民中分
分析:该题自变量为三位候选人,因变量为年龄段和受教育程度。

从自变量来看要进行方差分析,从因变量来看是二元分析,所以最终确定使用多变量分析
具体操作(spss)
1、打开spss,录入数据,定义变量和相应的值在此不作详述。

结果如图1
图1 被投票人:1、布什2、佩罗特3、克林顿
2、在spss窗口中选择分析——一般线性模型——多变量,调出多变量分析主界面,将年龄段和
受教育程度移入因变量框中,被投票人移入固定因子框中。

如图2
图2 多变量分析主界面
3、点击选项按钮在输出框中选择方差齐性分析(既包括协方差矩阵等同性分析也包括误差方差齐
性分析),其它使用默认即可,点击继续返回主界面。

如图3
图3 选项子对话框
4、点击确定,运行多变量分析过程。

结果解释
1、协方差矩阵等同性的Box检验结果,如图4
图4 协方差矩阵检验
结果说明:此Box检验的协方差矩阵为三位候选人每个人的支持者的年龄段和受教育程度的协方差矩阵。

因为sig>0.05,所以差异不显著,即各个因变量的协方差矩阵在所有三个候选人组中是相等的。

可以对其进行多元方差分析。

2、多变量检验结果,如图5
图5 多变量检验
结果说明:被投票人在四种统计方法中的sig均小于0.05,所以差异显著,即三组的总体均值有显著性差异
3、误差方差等同性的Levene检验结果,如图6
图6 Levene检验
结果说明:只考虑单个变量,年龄段或者受教育程度,每位候选人的20名支持者的随机误差是否有显著性差异。

因为sig>0.05,差异不显著,所以三位候选人的20名支持者的随机误差相等。

可以进行单因素方差分析。

4、主体间效应的检验结果,如图7
图7 主体间效应的检验
结果说明:被投票人一行中,年龄段的sig<0.05,差异显著,即支持三位候选人的选民中,年龄段之间存在显著差异;而受教育程度的sig>0.05,差异不显著,即支持三位候选人的选民中,受教育程度差异不显著。

相关文档
最新文档