第二章spss时间序列分析教程

合集下载

SPSS随机时间序列分析技巧

SPSS随机时间序列分析技巧
s1i=alpha*yi+1alpha*s1i1; end yhat9=s1end sigma=sqrtmeans11:end1y2:end ^2
运行结果
s1 =16 4100 yhat9 = 17 1828 sigma = 0 9613
19
Matlab 程序
clc;clear alpha=0 4; y=16 41 17 62 16 15 15 54 17 24 16 83 18 14 17 05; s11=y1; for i=2:8
Mt(1)
1 N (yt
yt1 ytN1)
1 N
(yt1
ytN )
1 N
(yt
ytN )
M(1) t1
1 N
(yt
ytN
)
5
二次移动平均
M(2) t
1(M(1)t N
M(1)t1M(1)tN1)
Mt(21)
1(M(1)t N
M(1)tN)
当预测目标的基本趋势是在某一水平上下波动时;可用
一次移动平均方法建立预测模型:
时间 t 价格 yt
1 2 3 4 5 6 78 16 41 17 62 16 15 15 54 17 24 16 83 18 14 17 05
Matlab 程序
alpha=0 4; y=16 41 17 62 16 15 15 54 17 24 16 83 18 14 17 05; s11=y1; for i=2:8
temp=cumsumy;% 求累积和 mt=temp4:110 temp1:7/4; y12=mtend ythat=mt1:end1; fangcha=meany5:11ythat ^2; sigma=sqrtfangcha

SPSS随机时间序列分析技巧教材

SPSS随机时间序列分析技巧教材

SPSS随机时间序列分析技巧教材SPSS(Statistical Package for the Social Sciences)是一款用于统计分析和数据挖掘的软件工具。

它提供了丰富的功能和功能,可以用于各种统计分析任务。

其中一个强大的功能是随机时间序列分析,它可以帮助用户了解和解释时间序列数据的模式和趋势。

本文将介绍一些SPSS中常用的随机时间序列分析技巧。

1. 数据导入:首先,将时间序列数据导入SPSS中。

确保数据以适当的格式存储,并正确地标识时间变量。

SPSS支持多种数据格式,如CSV、Excel等。

2. 数据检查:在进行时间序列分析之前,需要对数据进行一些基本的检查。

可以使用SPSS中的描述性统计量来检查数据的一般概况,比如数据的均值、方差、最大值和最小值等。

如果数据存在缺失值、异常值或离群值,需要进行适当的数据清洗。

3. 时间序列图:时间序列图可以帮助用户直观地了解数据的模式和趋势。

SPSS提供了绘制时间序列图的功能,用户可以选择不同的图形类型,如折线图、散点图等。

通过观察时间序列图,用户可以判断数据是否存在趋势、季节性或周期性等特征。

4. 时间序列分解:时间序列分解是将时间序列数据分解为趋势、周期和随机成分的过程。

SPSS提供了用于时间序列分解的函数和工具,用户可以根据需要选择不同的分解方法,如移动平均法、指数平滑法等。

分解后的时间序列可以帮助用户更好地理解数据的结构和组成。

5. 自相关分析:自相关分析是研究时间序列数据自身相关性的一种方法。

SPSS提供了自相关分析的功能,用户可以计算自相关系数,并绘制自相关图。

自相关分析可以帮助用户判断时间序列数据是否具有持续性,即当前的值是否与以前的值相关。

6. 平稳性检验:平稳性是时间序列分析的一个重要概念,它指的是时间序列数据的均值和方差在时间上保持稳定。

SPSS提供了多种平稳性检验方法,如ADF检验、KPSS检验等。

通过进行平稳性检验,用户可以判断时间序列数据是否适合进行随机时间序列分析。

SPSS时间序列分析案例

SPSS时间序列分析案例

SPSS时间序列分析案例时间序列分析是一种研究时间上连续观测变量的统计方法。

它可以用于预测未来的趋势和模式,帮助企业提前做出调整。

SPSS是一款功能强大的统计分析软件,可以进行各种统计方法的分析。

以下将通过一个时间序列分析案例,介绍SPSS如何进行时间序列分析。

假设家服装零售店想要分析过去几个季度的销售数据,以便预测未来几个季度的销售情况。

该店提供的数据集包含每个季度的销售总额。

首先,我们需要导入数据集到SPSS软件中。

在SPSS软件的主界面,选择“文件”菜单中的“打开”选项,然后选择对应的数据文件。

接下来,我们需要将数据按照时间序列的顺序进行排序。

在数据视图中,点击数据集右上角的“排列数据”按钮,在弹出的菜单中选择时间变量,并按照升序进行排序。

点击“确定”按钮完成排序。

然后,我们可以使用SPSS的时间序列分析工具来执行分析。

在菜单栏选择“分析”选项,然后选择“时间序列”子菜单中的“建模”选项。

在弹出的对话框中选择要分析的变量,即销售总额,并点击“确定”按钮。

SPSS将会输出一个时间序列模型的报告。

报告中包含了多个统计指标,如拟合优度、残差等,以及趋势和季节性的分析结果。

通过这些指标,我们可以判断时间序列的趋势特征和模式,并做出预测。

除了时间序列分析工具,SPSS还提供了其他的时间序列分析方法,如平滑技术、ARIMA模型等。

根据具体的研究目的和数据特点,我们可以选择合适的方法进行分析。

在本案例中,我们可以使用平滑技术来预测未来的销售情况。

平滑技术根据历史数据的平均值来预测未来的值。

在SPSS的时间序列分析工具中,选择“平滑”子菜单中的“simple exponential smoothing”选项,并设置平滑指数和初始预测值。

SPSS将会输出一个平滑结果的报告,包含了预测值和置信区间。

通过以上步骤,我们可以通过SPSS进行时间序列分析,帮助企业做出准确的预测和决策。

当然,在实际应用中,还需要根据具体情况进行参数选择和模型检验,以确保分析结果的可靠性。

时间序列季节性分析spss

时间序列季节性分析spss

时间序列季节性分析spss表1 为某公司连续144个⽉的⽉度销售量记录,变量为sales。

试⽤专家模型、ARIMA模型和季节性分解模型分析此数据。

选定样本期间为1978年9⽉⾄1990年5⽉。

按时间顺序分别设为1⾄141。

⼀、画出趋势图,粗略判断⼀下数据的变动特点。

具体操作为:依次单击菜单“Analyz e→Forecasting→Sequence Chart”,打开“Sequence Chart”对话框,在打开的对话框中将sales选⼊“Variables”列表框,时间变量date选⼊“Time Axis Labels”,单击“OK”按钮,则⽣成如图2 所⽰的sales序列。

图1 “Sequence Chart”对话框从趋势图可以明显看出,时间序列的特点为:呈线性趋势、有季节性变动,但季节波动随着趋势增加⽽加⼤。

⼆、模型的估计(⼀)、季节性分解模型根据时间序列特点,我们选择带线性趋势的季节性乘法模型作为预测模型。

1、定义⽇期具体操作为:依次单击菜单“Data→Define Date”,打开“Define Date”对话框,在“Cases Are”列表框选择“Years,months”的⽇期格式,在对话框的右侧定义数据的起始年份、⽉份。

定义完毕后,单击“OK”按钮,在数据集中⽣成⽇期变量。

图3 “Define Date”对话框2、季节分解具体操作为:“Analyze→Forecasting→Seasonal Decomposition”打开“Seasonal Decomposition”对话框,将待分析的序列变量名选⼊“Variable”列表框。

在“Model Type”选择组中选择“Multiplicative”模型;在“Moving Average Weight”选择组中选择“Endpoints weighted by 0.5”。

单击“OK”按钮,执⾏季节分解操作。

图4 “Seasonal Decomposition”对话框3、画出序列图①原始序列和校正了季节因⼦作⽤的序列图图5为sales 序列和校正了季节因⼦作⽤的序列图。

SPSS时间序列分析spss操作步骤

SPSS时间序列分析spss操作步骤
返回
17 习题
1、 时间序列的基本概念。 时间序列分析过程中有哪几种常用的方法?2、 对数据用时间序列模型进行拟合处理前,应做哪些准备工作?3、 在哪个过程中可进行缺失值的修补?修补缺失值的方法共有几种?4、 在哪个过程中可定义时间变量?5、 时间序列分析是建立在序列的平稳的条件上的,怎样判断序列是否平稳?6、为什么要建一个时间序列的新变量?在SPSS的哪个过程中来建时间序列的新变量?7、光盘中Data17-07.sav(Data17-07a.sav是Data17-07.sav使用中文标签名的同一个文件)记录了一个邮购公司在1989年1月至1998年12月间男、女服装产品的销售量情况以及一些可能影响服装销售的宣传、服务方面的变量。试用学过的时间序列方法对其进行分析,并预测1999年4月的男装的销售量。
返回
时间序列习题参考答案(5)
三、自相关分析
返回
时间序列习题参考答案(6)
表中显示的是自相关计算结果,从左向右,依次列出的是:滞后数、自相关系数值值、标准误差、Box-ljung统计量(值、自由度、原假设成立的概率值)。由于原假设(假设基本过程是独立的,也即假定时间序列所反映的随机过程是白噪声)成立的概率值都小于0.05,所以全部自相关均有显著性意义。
返回
时间序列分析实例输出(2)
模型统计数据
返回
时间序列分析实例输出(3)
预测部分结果
数据编辑器中的新变量
返回
应用时间序列模型
(Applies models对话框
返回
自相关
(Autocorrelations )
返回
Autocorrelations对话框
感谢您的下载观看
返回
时间序列习题参考答案(17)

【IBM-SPSS课件】时间序列分析

【IBM-SPSS课件】时间序列分析

▪ 圖23-10所示給出了模型擬合的八個擬合優度指 標,以及這些指標的均值、最小值、最大值及 百分位數。其中平穩的R方值為0.418。
▪ 圖23-11所示為模型的擬合統計量和Ljung-BoxQ 統計量。平穩的R方值為0.418 。Ljung-BoxQ統 計量值為 18.537,顯著水準為0.293。
▪ 例23.2:利用1992年初~2002年底共11年彩電 出口量(單位:“臺”)的月度數據,見例23.2
sav.
▪ 操作步驟如下:
▪ (1)單擊“數據”|“定義日期”命令,彈出圖 23-2所示的對話框,打開“定義日期”,在“ 個案為”選項中選擇“年份、月份”,然後在 “第一個個案為”中的“年”和“月份”輸入 數據開始的具體的年份1992和月份1,單擊“確 定”按鈕,完成時間變數的定義。
▪ 時間序列預處理的主要方法:
▪ 對缺失數據的處理和對數據的變換處理。主要包括 序列的平穩化處理和序列的平滑處理等。SPSS提 供了8種平穩處理的方法:差分、季節差分、中心 移動平均、先前移動平均、運行中位數、累計求和 、滯後、提前。
▪ 例23.1:描述了中國某城市女士服裝從1993年到 2002十年的出口總額及外匯儲備情況,資料庫見 例23.1.sav。研究如何創建時間序列數據。
▪ 1.操作步驟
▪ (1)單擊“數據”|“定義日期”命令,彈出圖 23-2所示的對話框,在“個案為”選項中選擇 “年份、月份”,然後在“第一個個案為”中 的“年”和“月份”輸入數據開始的具體的年 份1993和月份1,單擊“確定”,完成時間變數 的定義。
▪ (2)單擊“轉換”|“創建時間序列”命令,彈 出圖23-3所示的對話框,將sum變數選入“變數 -新名稱”列表中。在函數子菜單中選擇“季節 差分”選項。

SPSS作业关于时间序列分析

SPSS作业关于时间序列分析

SPSS作业关于时间序列分析时间序列分析是一种统计方法,用于研究随时间变化的数据,并从中提取出隐藏在数据背后的模式和趋势。

这种分析方法在经济学、金融学、天气预报、市场调研等领域经常被应用。

SPSS(Statistical Package for the Social Sciences)是一款广泛使用的统计分析软件,它提供了丰富的时间序列分析工具,可以用来处理和分析时间序列数据。

时间序列数据是根据时间顺序排列的一系列观测值,例如每天的股票价格、每月的销售额、每年的气温等等。

通过对这些时间序列数据进行分析,我们可以得到数据的趋势、季节性、周期性等信息,以及对未来数据的预测。

在SPSS中进行时间序列分析的第一步是导入数据。

通常,数据以文本文件的形式存在,我们需要将其导入到SPSS中进行后续操作。

导入数据完成后,我们可以开始对数据进行初步的探索和观察。

SPSS提供了一系列的统计工具,可以用于时间序列数据的分析。

其中最常用的是时间序列图,它可以帮助我们观察数据的趋势和季节性。

通过绘制时间序列图,我们可以更直观地了解数据的波动情况,找出可能的异常值和离群点。

除了时间序列图,SPSS还提供了许多其他的分析工具,如自相关函数、偏自相关函数、移动平均等。

自相关函数可以帮助我们研究数据之间的相关性,了解数据的滞后效应;偏自相关函数则可以帮助我们确定时间序列模型的阶数;移动平均则可以用于平滑时间序列数据,减少数据的随机波动。

时间序列分析的一个重要应用是预测。

通过对过去数据的分析,我们可以建立时间序列模型,并用此模型来预测未来的数据。

SPSS提供了各种预测模型,如ARIMA模型、指数平滑模型等。

通过选择合适的模型和参数,SPSS可以帮助我们进行准确的预测,并提供相应的置信区间和预测误差。

除了基本的时间序列分析工具,SPSS还提供了其他高级功能,如自回归条件异方差模型(ARCH)、广义自回归条件异方差模型(GARCH)等。

SPSS数据统计与分析标准教程时间序列分析

SPSS数据统计与分析标准教程时间序列分析

第12章时间序列分析社会经济现象随着时间的推移在不断地发生着变化,关于社会经济现象的统计指标也是在不同的时间进行观察记录的,从而形成了统计指标的时间序列。

时间序列是一种基于随机过程理论和数理统计学方法的动态数据处理的一种统计方法,包括一般统计分析和统计模型的建立与推断,以及关于时间序列的最优预测、控制和滤波等内容。

而随着计算机的普及和相关软件的开发,时间序列分析已越来越被研究者所重视。

在本章中,将以SPSS软件进行时间序列分析为基线,详细介绍时间序列分析的基础理论,以及指数平滑和季节分析等模型的使用技巧。

本章学习目标:时间序列分析概述时间序列数据的预处理指数平滑模型ARIMA模型季节分析模型时间序列又称为动态数列或时间数列,主要反映了不同时间内的社会经济现象的统计指标值,并将这些统计指标值按照时间的先后顺序加以排列后形成分析数列。

在本小节中,将详细介绍时间序列分析的基本原理。

时间序列分析在统计分析学中具有非常重要的地位,其具有了解和分析社会经济现象的发展过程、发展变化的规律性和预测现象的未来发展趋势等目的。

另外,时间序列按照其指标的性质,可分为总量指标、相对指标和平均指标。

其中,总量指标时间序列又称为绝对数时间序列,而相对指标和平均指标则是在总量指标时间序列上派生出来的。

1.总量指标时间序列总量指标时间序列反映了社会经济现象的绝对水平情况。

根据社会经济现象性质而定,总量指标又分为时期指标和时点指标时间序列,其中:“ 时期指标 时期指标具有可加性特点,即将不同时期的总量指标相加,从而获得长时期的指标值。

另外,指标值的大小和所属时间的长度有着直接的关系,以及其指标值必须采用连续统计的方法来获取。

“ 时点指标 时点指标和时期指标具有一定的相反性,时点指标具有不可加性特点,即不同时点的总量指标不能相加在一起。

另外,指标数值的大小和时点间隔的长短不存在相关性,以及其指标值必须采用间断统计的方法来获取。

2.相对指标和平均指标相对指标和平均指标主要反映了社会经济现象达到的相对水平或平均水平,并将一系列相对指标和平均指标值,按照时间先后顺序排列起来所形成的时间分析序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章spss时间序列分析教程3.3时间序列分析3.3.1时间序列概述基本概念(1)一般概念:系统中某一变量的观测值按时间顺序(时间间隔相同)排列成一个数值序列,展示研究对象在一定时期内的变动过程,从中寻找和分析事物的变化特征、发展趋势和规律。

它是系统中某一变量受其它各种因素影响的总结果。

(2)研究实质:通过处理预测目标本身的时间序列数据,获得事物随时间过程的演变特性与规律,进而预测事物的未来发展。

它不研究事物之间相互依存的因果关系。

(3)假设基础:惯性原则。

即在一定条件下,被预测事物的过去变化趋势会延续到未来。

暗示着历史数据存在着某些信息,利用它们可以解释与预测时间序列的现在和未来。

近大远小原理(时间越近的数据影响力越大)和无季节性、无趋势性、线性、常数方差等。

(4)研究意义:许多经济、金融、商业等方面的数据都是时间序列数据。

时间序列的预测和评估技术相对完善,其预测情景相对明确。

尤其关注预测目标可用数据的数量和质量,即时间序列的长度和预测的频率。

变动特点(1)趋势性:某个变量随着时间进展或自变量变化,呈现一种比较缓慢而长期的持续上升、下降、停留的同性质变动趋向,但变动幅度可能不等。

(2)周期性:某因素由于外部影响随着自然季节的交替出现高峰与低谷的规律。

(3)随机性:个别为随机变动,整体呈统计规律。

(4)综合性:实际变化情况一般是几种变动的叠加或组合。

预测时一般设法过滤除去不规则变动,突出反映趋势性和周期性变动。

特征识别认识时间序列所具有的变动特征,以便在系统预测时选择采用不同的方法。

(1)随机性:均匀分布、无规则分布,可能符合某统计分布。

(用因变量的散点图和直方图及其包含的正态分布检验随机性,大多数服从正态分布。

)(2)平稳性:样本序列的自相关函数在某一固定水平线附近摆动,即方差和数学期望稳定为常数。

样本序列的自相关函数只是时间间隔的函数,与时间起点无关。

其具有对称性,能反映平稳序列的周期性变化。

特征识别利用自相关函数ACF:ρk=γk/γ0其中γk是yt的k阶自协方差,且ρ0=1、-1<ρk<1。

平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋近于0,前者测度当前序列与先前序列之间简单和常规的相关程度,后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。

实际上,预测模型大都难以满足这些条件,现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。

预测类型(1)点预测:确定唯一的最好预测数值,其给出了时间序列未来发展趋势的一个简单、直接的结果。

但常产生一个非零的预测误差,其不确定程度为点预测值的置信区间。

(2)区间预测:未来预测值的一个区间,即期望序列的实际值以某一概率落入该区间范围内。

区间的长度传递了预测不确定性的程度,区间的中点为点预测值。

(3)密度预测:序列未来预测值的一个完整的概率分布。

根据密度预测,可建立任意置信水平的区间预测,但需要额外的假设和涉及复杂的计算方法。

基本步骤(1)分析数据序列的变化特征。

(2)选择模型形式和参数检验。

(3)利用模型进行趋势预测。

(4)评估预测结果并修正模型。

3.3.2随机时间序列系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。

(自变量不直接含有时间变量,但隐含时间因素)自回归AR(p)模型(R:模型的名称P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y 的历史的影响不受其他因素影响)yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;εt不同时刻互不相关,εt与yt历史序列不相关。

式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定;yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系;yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值;φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt 依赖于过去的程度,且这种依赖关系恒定不变;εt随机干扰误差项,是0均值、常方差σ2、独立的白噪声序列,通过估计指定的模型获得。

(2)识别条件当k>p时,有φk=0或φk服从渐近正态分布N(0,1/n)且(|φk|>2/n1/2)的个数≤4.5%,即平稳时间序列的偏相关系数φk为p步截尾,自相关系数rk逐步衰减而不截尾,则序列是AR(p)模型。

实际中,一般AR过程的ACF函数呈单边递减或阻尼振荡,所以用PACF函数判别(从p阶开始的所有偏自相关系数均为0)。

(3)平稳条件一阶:|φ1|<1。

二阶:φ1+φ2<1、φ1-φ2<1、|φ2|<1。

φ越大,自回归过程的波动影响越持久。

(4)模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量相互独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性等造成的困难。

移动平均MA(q)模型(1)模型形式yt=εt-θ1εt-1-θ2εt-2-……-θpεt-p(2)模型含义用过去各个时期的随机干扰或预测误差的线性组合来表达当前预测值。

AR(p)的假设条件不满足时可以考虑用此形式。

总满足平稳条件,因其中参数θ取值对时间序列的影响没有AR模型中参数p的影响强烈,即这里较大的随机变化不会改变时间序列的方向。

(3)识别条件当k>q时,有自相关系数rk=0或自相关系数rk服从N(0,1/n(1+2∑r2i)1/2)且(|rk|>2/n1/2(1+2∑r2i)1/2)的个数≤4.5%,即平稳时间序列的自相关系数rk为q步截尾,偏相关系数φk逐步衰减而不截尾,则序列是MA(q)模型。

实际中,一般MA过程的PACF函数呈单边递减或阻尼振荡,所以用ACF函数判别(从q阶开始的所有自相关系数均为0)。

(4)可逆条件一阶:|θ1|<1。

二阶:|θ2|<1、θ1+θ2<1。

当满足可逆条件时,MA(q)模型可以转换为AR(p)模型自回归移动平均ARMA(p,q)模型(1)模型形式yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt-θ1εt-1-θ2εt-2-……-θpεt-p式中符号:p和q是模型的自回归阶数和移动平均阶数;φ和θ是不为零的待定系数;εt独立的误差项;yt是平稳、正态、零均值的时间序列。

(2)模型含义使用两个多项式的比率近似一个较长的AR多项式,即其中p+q个数比AR(p)模型中阶数p小。

前二种模型分别是该种模型的特例。

一个ARMA过程可能是AR与MA过程、几个AR过程、AR与ARMA过程的迭加,也可能是测度误差较大的AR过程。

(3)识别条件平稳时间序列的偏相关系数φk和自相关系数rk均不截尾,但较快收敛到0,则该时间序列可能是ARMA(p,q)模型。

实际问题中,多数要用此模型。

因此建模解模的主要工作是求解p、q和φ、θ的值,检验εt 和yt的值。

(4)模型阶数AIC准则:最小信息准则,同时给出ARMA模型阶数和参数的最佳估计,适用于样本数据较少的问题。

目的是判断预测目标的发展过程与哪一随机过程最为接近。

因为只有当样本量足够大时,样本的自相关函数才非常接近母体的自相关函数。

具体运用时,在规定范围内使模型阶数从低到高,分别计算AIC值,最后确定使其值最小的阶数是模型的合适阶数。

模型参数最大似然估计时AIC=(n-d)logσ2+2(p+q+2)模型参数最小二乘估计时A IC=nlogσ2+(p+q+1)logn式中:n为样本数,σ2为拟合残差平方和,d、p、q为参数。

其中:p、q范围上线是n较小时取n的比例,n较大时取logn的倍数。

实际应用中p、q一般不超过2。

自回归综合移动平均ARIMA(p,d,q)模型(1)模型识别平稳时间序列的偏相关系数φk和自相关系数rk均不截尾,且缓慢衰减收敛,则该时间序列可能是ARIMA(p,d,q)模型。

(2)模型含义模型形式类似ARMA(p,q)模型,但数据必须经过特殊处理。

特别当线性时间序列非平稳时,不能直接利用ARMA(p,q)模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中d一般不超过2。

若时间序列存在周期性波动,则可按时间周期进行差分,目的是将随机误差有长久影响的时间序列变成仅有暂时影响的时间序列。

即差分处理后新序列符合ARMA(p,q)模型,原序列符合ARIMA(p,d,q)模型。

3.3.3建模解模过程数据检验检验时间序列样本的平稳性、正态性、周期性、零均值,进行必要的数据处理变换。

(1)作直方图:检验正态性、零均值。

按图形Graph—直方图Hitogram的顺序打开如图3.15所示的对话框。

图3.15将样本数据送入变量Variable框,选中显示正态曲线Diplaynormalcurve项,点击OK运行,输出带正态曲线的直方图,如图3.16所示。

图3.16从图中看出:标准差不为1、均值近似为0,可能需要进行数据变换。

(2)作相关图:检验平稳性、周期性。

按图形Graph—时间序列TimeSerie—自相关Autocorrelation的顺序打开如图3.17所示的对话框。

图3.17将样本数据送入变量Variable框,选中自相关Autocorrelation和偏自相关PartialAutocorrelation项,暂不选数据转换Tranform项,点击设置项Option,出现如图3.18所示对话框。

图3.18因为一般要求时间序列样本数据n>50,滞后周期k<n/4,所以此处控制最大滞后数值Ma某imumNumberofLag设定为12。

点击继续Continue返回自相关主对话框后,点击OK运行系统,输出自相关图如图3.19所示。

图3.19从图中看出;样本序列数据的自相关系数在某一固定水平线附近摆动,且按周期性逐渐衰减,所以该时间序列基本是平稳的。

(3)数据变换:模型识别分析时间序列样本,判别模型的形式类型,确定p、d、q的阶数。

(1)判别模型形式和阶数①相关图法:运行自相关图后,出现自相关图(图3.19)和偏自相关图(图3.20)。

图3.20从图中看出:自相关系数和偏相关系数具有相似的衰减特点:衰减快,相邻二个值的相关系数约为0.42,滞后二个周期的值的相关系数接近0.1,滞后三个周期的值的相关系数接近0.03。

所以,基本可以确定该时间序列为ARMA(p,q)模型形式,但还不能确定是ARMA(1,1)或是ARMA(2,2)模型。

相关文档
最新文档