时间序列分析第二章

合集下载

《时间序列分析》第二章 时间序列预处理习题解答

《时间序列分析》第二章 时间序列预处理习题解答

《时间序列分析》习题解答�0�2习题2.3�0�21考虑时间序列12345…201判断该时间序列是否平稳2计算该序列的样本自相关系数kρ∧k12… 6 3绘制该样本自相关图并解释该图形. �0�2解1根据时序图可以看出该时间序列有明显的递增趋势所以它一定不是平稳序列�0�2即可判断该时间序是非平稳序列其时序图程序见后。

�0�2 时间序描述程序data example1 input number timeintnxyear01jan1980d _n_-1 format time date. cards 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 proc gplot dataexample1 plot numbertime1 symbol1 cblack vstar ijoin run�0�2�0�2�0�22当延迟期数即k本题取值1 2 3 4 5 6远小于样本容量n本题为20时自相关系数kρ∧计算公式为number1234567891011121314151617181920time01JAN8001J AN8101JAN8201JAN8301JAN8401JAN8501JAN8601JAN870 1JAN8801JAN8901JAN9001JAN9101JAN9201JAN9301JAN9 401JAN9501JAN9601JAN9701JAN9801JAN99121nkttktknttX XXXXXρ�6�1∧�6�1�6�1≈�6�1∑∑ 0kn4.9895�0�2注20.05125.226χ接受原假设认为该序列为纯随机序列。

�0�2解法三、Q统计量法计算Q统计量即12214.57kkQnρ∑�0�2�0�2�0�2�0�2�0�2�0�2�0�2�0�2�0�2�0�2查表得210.051221.0261χ�6�1由于Q统计量值4.57Q小于查表临界值即可认为接受原假设即该序列可视为纯随机序列为白噪声序列 5表2——9数据是某公司在2000——2003年期间每月的销售量。

应用时间序列分析王燕答案

应用时间序列分析王燕答案

人大时间序列课后习题答案第二章P341、(1)因为序列具有明显的趋势,所以序列非平稳。

(2)样本自相关系数:∑∑=-=+---≅=nt tkn t k t tk x xx x x xk 121)())(()0()(ˆγγρ5.10)2021(20111=+++==∑= n t t x n x=-=∑=2201)(201)0(x x t tγ35 =--=+=∑))((191)1(1191x x x x t t t γ29.75 =--=+=∑))((181)2(2181x x x x t t t γ25.9167 =--=+=∑))((171)3(3171x x x x t t t γ21.75 γ(4)=17.25 γ(5)=12.4167 γ(6)=7.25 1ρ=0.85(0.85) 2ρ=0.7405(0.702) 3ρ=0.6214(0.556)4ρ=0.4929(0.415) 5ρ=0.3548(0.280) 6ρ=0.2071(0.153)注:括号内的结果为近似公式所计算。

(3)样本自相关图:Autocorrelation Partial CorrelationAC PAC Q-Stat Prob . |*******| . |*******| 1 0.850 0.850 16.732 0.000 . |***** | . *| . | 2 0.702 -0.076 28.761 0.000 . |**** | . *| . | 3 0.556 -0.076 36.762 0.000 . |*** | . *| . | 4 0.415 -0.077 41.500 0.000 . |**. | . *| . | 5 0.280 -0.077 43.800 0.000 . |* . | . *| . | 6 0.153 -0.078 44.533 0.000 . | . | . *| . | 7 0.034 -0.077 44.572 0.000 . *| . | . *| . | 8 -0.074 -0.077 44.771 0.000 . *| . | . *| . | 9 -0.170 -0.075 45.921 0.000 .**| . |. *| . |10 -0.252 -0.072 48.713 0.000.**| . | . *| . | 11 -0.319 -0.067 53.693 0.000 ***| . |. *| . |12 -0.370 -0.060 61.220 0.0004、∑=⎪⎪⎭⎫ ⎝⎛-+=mk k k n n n LB 12ˆ)2(ρLB(6)=1.6747 LB(12)=4.9895205.0χ(6)=12.59 205.0χ(12)=21.0显然,LB 统计量小于对应的临界值,该序列为纯随机序列。

第2章 平稳时间序列分析

第2章 平稳时间序列分析

zt
(c1
c2t
cd t d1)1t
cd
t
1 d
1
cptp
复根场合
zt
rt (c1eit
c2eit
) c3t3
c
t
pp
非齐次线性差分方程的解
非齐次线性差分方程的特解
使得非齐次线性差分方程成立的任意一个解zt
zt a1 zt1 a2 zt2 a p zt p h(t)
推导出
0
1 1 p
Green函数定义
设零均值平稳序列 {xt , t 0, 1, 2,...} 能够表示为
xt Gjt j t : WN (0, 2 ) j0
则称上式为平稳序列 {xt } 的传递形式,式中的加权系数 G j
称为Green函数,其中 G0 1 。
Green函数的含义
几个例题
0.8 0.6 0.4 0.2 0.0
2 4 6 8 10 12 14 16 18 20
2.2 2.0 1.8 1.6 1.4 1.2 1.0
2 4 6 8 10 12 14 16 18 20
几个例题
(5) yt 1.6yt1 0.9yt2 (6) yt 1.6yt1 1.1yt2
有关。
2.时间序列的协方差函数与自相关函数
协方差函数:
(t, s) E( Xt t ) X s s
(x t ) y s dFt,s (x, y) 其中,Ft,s (x, y) 为 ( X t , X s )的二维联合分布。
自相关函数:
(t, s) (t, s) / (t,t) (s, s)
特征根判别
AR(p)模型平稳的充要条件是它的p个特征根都在单 位圆内

2-2第二章时间序列分析法

2-2第二章时间序列分析法

(1)简单平均法
例2:设某电网2001-2004年个季度的发电量如表2-5所示,试
用简易计算法列出发电量的一次线性趋势方程,再用简单平
均法计算出季节指数,并以次预测2005年该电网全年及各季
度的发电量。
表2-5
年次 季节
2001
2002
一 二 三 四 全年
(1) 1206030 1283687 1211133 1328247 5029097
n
4
b ty 3213072 160653.6
t2
20
y=a+bt=5459952+160653.6t
2005年t=5,代入公式,得到y=6263220 根据表2-5的调整后季节指数,2005年各季度 发电量为: 一季度:6263220×0.9666/4=1513507 二季度:6263220×1.0081/4=1578488 三季度:6263220×0.9768/4=1529478 四季度:6263220×1.0485/4=1641747
2、指数的分类 (1)个体指数:反映某一具体经济现象动态变动的相
对数
(2)综合指数:反映全部经济现象动态变动的相对数
(3)数量指标指数:它是表明经济活动结果数量 多少的指数。
(4)质量指标指数:它是表明经济工作质量好坏 的指数。
(5)定基指数:它是指各个指数都是以某一个固 定时期为基期而进行计算的一系列指数。
季别平均 季节指数
(6) 1319460 1375988 1333301 1431204 1364988
(7) 0.9666 1.0081 0.9768 1.0485 4.0000
调整后季 节指数 (8)
0.9666 1.0081 0.9768 1.0485 4.0000

应用时间序列分析习题标准答案

应用时间序列分析习题标准答案

应⽤时间序列分析习题标准答案第⼆章习题答案2.1(1)⾮平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本⾃相关图2.2(1)⾮平稳,时序图如下(2)-(3)样本⾃相关系数及⾃相关图如下:典型的同时具有周期和趋势序列的样本⾃相关图2.3(1)⾃相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)⽩噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性⽔平=0.05不能视为纯随机序列。

2.5(1)时序图与样本⾃相关图如下(2)⾮平稳(3)⾮纯随机 2.6(1)平稳,⾮纯随机序列(拟合模型参考:ARMA(1,2))(2)差分序列平稳,⾮纯随机第三章习题答案3.1 解:1()0.7()()t t t E x E x E ε-=?+0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01(t t t B B B x εε)7.07.01()7.01(221 +++=-=- 229608.149.011)(εεσσ=-=t x Var49.00212==ρφρ 022=φ3.2 解:对于AR (2)模型:=+=+==+=+=-3.05.02110211212112011φρφρφρφρρφφρφρφρ解得:==15/115/721φφ3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E原模型可变为:t t t t x x x ε+-=--2115.08.02212122)1)(1)(1(1)(σφφφφφφ-+--+-=t x Var2)15.08.01)(15.08.01)(15.01()15.01(σ+++--+==1.98232σ=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ??=-====015.06957.033222111φφφρφ 3.4 解:原模型可变形为:t t x cB B ε=--)1(2由其平稳域判别条件知:当1||2<φ,112<+φφ且112<-φφ时,模型平稳。

时间序列分析第二章王燕第四到第六题习题解答

时间序列分析第二章王燕第四到第六题习题解答

^
11 =0.02
^
12 =-0.05
^
该序列能否视为纯随机序列? 解:假设 H 0: 1 2 12
H 1:至少存在某个 k 0 , 1 k 12
计算 Q 统计量:
ˆ k2 , Q n
k 1
m
LB n(n 2)
k 1
m
nk
k
因为 Q 4.57 与 LB=4.99 均介于 4.40 与 5,23 之间,故 P 值约为 0.96,显著 大于显著性水平 0.05。所以不能拒绝纯随机的原假设,可以认为该序列为白噪 声序列,即认为该序列为纯随机序列。 (注:计算在 EXCEL 中进行)
2.5 下表数据是某公司在 2000-2003 年期间每月的销售量。
sales 300
200
100
0 JAN00 MAR00 MAY00 JUL00 SEP00 NOV00 JAN01 MAR01 MAY01 JUL01 SEP01 NOV01 JAN02 MAR02 MAY02 JUL02 SEP02 NOV02 JAN03 MAR03 MAY03 JUL03 SEP03 NOV03 JAN04 time
——————————————————————————— 月份 2000 年 2001 年 2002 年 2003 年 1月 153 134 145 117 2月 187 175 203 178 3月 234 243 189 149 4月 212 227 214 178 5月 300 298 295 248 6月 221 256 220 202 7月 201 237 231 162 8月 175 165 174 135
图 a2. 输出的时序图:

人大版应用时间序列分析(第5版)习题答案

人大版应用时间序列分析(第5版)习题答案

第一章习题答案略第二章习题答案2.1答案:(1)不平稳,有典型线性趋势(2)1-6阶自相关系数如下(3)典型的具有单调趋势的时间序列样本自相关图2.2答案:(1)不平稳(2)延迟1-24阶自相关系数(3)自相关图呈现典型的长期趋势与周期并存的特征2.3答案:(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列2.4计算该序列各阶延迟的Q统计量及相应P值。

由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。

2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列2.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。

如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列(2)差分后序列为平稳非白噪声序列2.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。

(2)单位根检验显示带漂移项0阶延迟的P值小于0.05,所以基于adf检验可以认为该序列平稳(3)如果使用adf检验结果,认为该序列平稳,则白噪声检验显示该序列为非白噪声序列如果使用图识别认为该序列非平稳,那么一阶差分后序列为平稳非白噪声序列2.8答案(1)时序图和自相关图都显示典型的趋势序列特征(2)单位根检验显示该序列可以认为是平稳序列(带漂移项一阶滞后P值小于0.05)(3)一阶差分后序列平稳第三章习题答案 3.10101()0110.7t E x φφ===--() 221112() 1.96110.7t Var x φ===--() 22213=0.70.49ρφ==()12122221110.490.7=0110.71ρρρφρρ-==-(4) 3.21111222211212(2)7=0.515111=0.30.515AR φφφρφφφρφρφφφ⎧⎧⎧=⎪=⎪⎪⎪--⇒⇒⎨⎨⎨⎪⎪⎪=+=+⎩⎩⎪⎩模型有:,2115φ=3.312012(1)(10.5)(10.3)0.80.15()01t t t t t tt B B x x x x E x εεφφφ----=⇔=-+==--,22121212()(1)(1)(1)10.15=(10.15)(10.80.15)(10.80.15)1.98t Var x φφφφφφ-=+--+-+--+++=()1122112312210.83=0.70110.150.80.70.150.410.80.410.150.70.22φρφρφρφρφρφρ==-+=+=⨯-==+=⨯-⨯=() 1112223340.70.15=0φρφφφ====-()3.41211110011AR c c c c c ⎧<-<<⎧⎪⇒⇒-<<⎨⎨<±<⎪⎩⎩() ()模型的平稳条件是 1121,21,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩() 3.5证明:该序列的特征方程为:320c c λλλ--+=,解该特征方程得三个特征根:11λ=,2λ=3λ=无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。

第二章 时间序列分析的基本概念

第二章  时间序列分析的基本概念

一、两种不同的平稳性定义
(一)严平稳(strictly stationary)时间序列
若时间序列{ X t }的概率分布不随时间的平移 而改变,则称{ X t }为严平稳时间序列.
即对于任何正整数 m 和整数t1 t2 ... tm ,此 序列中的随机变量X t1 s , X t2 s ,..., X tm s 的联合分 布函数与整数 s 无关,亦即
X t ,t T
其中,T 表示时间t 的变动范围,对每个 固定的时刻 t 而言,X t 是一随机变量,这些随 机变量的全体就构成一个随机过程.
(二)特征:
1、从顺序角度来看,随机过程是随机变量的 集合;构成随机过程的随机变量是随时间产生 的,在任意时刻,总有随机变量与之相对应. 2、从试验角度来看,若对事物变化的全过程 进行一次观测,得到的结果是时间的函数,但 对同一过程独立地重复多次进行观测,所得的 结果是不相同的.
Ft1 ,t2 ,...,tm (a1 , a2 ,...am ) Ft1 s ,t2 s ,...,tm s (a1 , a2 ,...am )
其中,Ft
,t2 ,...,tm 是X t1 , X t2 ,..., X tm 1
的联合分布函数,
Ft1 s ,t2 s ,...,tm s 是 X
2、性质 (1) (t , t ) 1
(2)对称性
(t, s) (s, t )
(3)非负定性
四、时间序列的运算
是指对一个或几个时间序列进行运算而获得 新的时间序列.
(一)时间序列的线性运算
对于时间序列{ X t }, {Yt },
a, b R

Z t aX t bYt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列分析第二章
2020/11/16
时间序列分析第二章
第二章 时间序列的预处理
时间序列分析第二章
本章结构
1. 平稳性检验 2. 纯随机性检验
时间序列分析第二章
v 特征统计量
2.1平稳性检验
v 平稳时间序列的定义
v 平稳时间序列的统计性质
v 平稳时间序列的意义
v 平稳性的检验
时间序列分析第二章
例2.3自相关图
时间序列分析第二章
本章结构
1. 平稳性检验 2. 纯随机性检验
时间序列分析第二章
2.2 纯随机性检验
v 纯随机序列的定义 v 纯随机性的性质 v 纯随机性检验
时间序列分析第二章
纯随机序列的定义
v 纯随机序列也称为白噪声序列,它满足如下两条 性质
时间序列分析第二章
标准正态白噪声序列时序图
严平稳与宽平稳的关系
v 一般关系
§ 严平稳条件比宽平稳条件苛刻,通常情况下,严平稳(低阶 矩存在)能推出宽平稳成立,而宽平稳序列不能反推严平稳 成立
v 特例
§ 不存在低阶矩的严平稳序列不满足宽平稳条件,例如服从柯 西分布的严平稳序列就不是宽平稳序列
§ 当序列服从多元正态分布时,宽平稳可以推出严平稳
82.57
<0.0001
时间序列分析第二章
v 绘制时序图
本章SAS操作指导
v 平稳性和随机性检验
§ Identify 语句的使用
时间序列分析第二章
3rew
演讲完毕,谢谢听讲!
再见,see you again
2020/11/16
时间序列分析第二章
时间序列分析第二章
例2.5
v 对1950年——1998年北京市城乡居民定期储蓄所 占比例序列的平稳性与纯随机性进行检验
时间序列分析第二章
例2.5时序图
时间序列分析第二章
例2.5自相关图
时间序列分析第二章
例2.5白噪声检验结果
延迟阶数 6 12
LB统计量检验
LB检验统计 量的值
75.46
P值 <0.0001
时间序列分析第二章
Barlett定理
v 如果一个时间序列是纯随机的,得到一个观察期 数为 的观察序列,那么该序列的延迟非零期的 样本自相关系数将近似服从均值为零,方差为序 列观察期数倒数的正态分布
时间序列分析第二章
假设条件
v 原假设:延迟期数小于或等于 期的序列值之间 相互独立
v 备择假设:延迟期数小于或等于 期的序列值之 间有相关性
▪ 有限个变量,每个变量有多个观察值
❖ 时间序列数据结构
▪ 可列多个随机变量,而每个变量只有一个样本观察值
时间序列分析第二章
平稳性的重大意义
v 在平稳序列场合,序列的均值等于常数,这意味着原本含 有可列多个随机变量的均值序列变成了只含有一个变量的 常数序列。
v 原本每个随机变量的均值(/方差/自相关系数)只能依靠 唯一的一个样本观察值去估计,现在由于平稳性,每一个 统计量都将拥有大量的样本观察值。
v 宽平稳
§ 宽平稳是使用序列的特征统计量来定义的一种平稳性。它认 为序列的统计性质主要由它的低阶矩决定,所以只要保证序 列低阶矩平稳(二阶),就能保证序列的主要性质近似稳定。
时间序列分析第二章
平稳时间序列的统计定义
v 满足如下条件的序列称为严平稳序列
v 满足如下条件的序列称为宽平稳序列
时间序列分析第二章
法拒绝原假设,即不能显著拒绝序列为纯随机 序列的假定
时间序列分析第二章
例2.4:标准正态白噪声序列纯随机性检验
样本自相关图
时间序列分析第二章
检验结果
延迟
延迟6期 延迟12期
统计量检验 统计量值
2.36 5.35
P值 0.8838 0.9454
由于P值显著大于显著性水平 ,所以该序列不能拒 绝纯随机的原假设。
v 这极大地减少了随机变量的个数,并增加了待估变量的样 本容量。极大地简化了时序分析的难度,同时也提高了对 特征统计量的估计精度
时间序列分析第二章
平稳性的检验(图检验方法)
v 时序图检验
§ 根据平稳时间序列均值、方差为常数的性质,平稳 序列的时序图应该显示出该序列始终在一个常数值 附近随机波动,而且波动的范围有界、无明显趋势 及周期特征
时间序列分析第二章
v Q统计量
检验统计量
v LB统计量
时间序列分析第二章
判别原则
v 拒绝原假设
§ 当检验统计量大于
分位点,或该统计量
的P值小于 时,则可以以 的置信水平拒绝
原假设,认为该序列为非白噪声序列
v 接受原假设
§ 当检验统计量小于
分位点,或该统计量
的P值大于 时,则认为在 的置信水平下无
时间序列分析第二章
平稳时间序列的统计性质
❖ 常数均值 ❖ 自协方差函数和自相关函数只依赖于时间的平移长度
而与时间的起止点无关
▪ 延迟 自协方差函数
▪ 延迟 自相关系数
时间序列分析第二章
v 规范性 v 对称性 v 非负定性 v 非唯一性自Βιβλιοθήκη 关系数的性质时间序列分析第二章
时间序列数据结构的特殊性
❖ 传统统计分析的数据结构
概率分布
v 概率分布的意义
§ 随机变量族的统计特性完全由它们的联合分布函数或联合密 度函数决定
v 时间序列概率分布族的定义
v 实际应用的局限性
时间序列分析第二章
v 均值 v 方差 v 自协方差 v 自相关系数
特征统计量
时间序列分析第二章
平稳时间序列的定义
v 严平稳
§ 严平稳是一种条件比较苛刻的平稳性定义,它认为只有当序 列所有的统计性质都不会随着时间的推移而发生变化时,该 序列才能被认为平稳。
v 例2.3
§ 检验1949年——1998年北京市每年最高气温序列的平稳性
时间序列分析第二章
例2.1:中国纱年产量时序图
时间序列分析第二章
例2.1自相关图
时间序列分析第二章
例2.2:奶牛月产奶量时序图
时间序列分析第二章
例2.2 自相关图
时间序列分析第二章
例2.3:北京市每年最高气温时序图
时间序列分析第二章
v 自相关图检验
§ 平稳序列通常具有短期相关性。该性质用自相关系 数来描述就是随着延迟期数的增加,平稳序列的自 相关系数会很快地衰减向零
时间序列分析第二章
例题
v 例2.1
§ 检验1964年——1999年中国纱年产量序列的平稳性
v 例2.2
§ 检验1962年1月——1975年12月平均每头奶牛月产奶量序列 的平稳性
时间序列分析第二章
白噪声序列的性质
v 纯随机性
§ 各序列值之间没有任何相关关系,即为 “没有记忆”的序 列
v 方差齐性
§ 根据马尔可夫定理,只有方差齐性假定成立时,用最小二乘 法得到的未知参数估计值才是准确的、有效的
时间序列分析第二章
v 检验原理 v 假设条件 v 检验统计量 v 判别原则
纯随机性检验
相关文档
最新文档