应用时间序列分析习题答案解析整理

合集下载

8章时间序列分析练习题参考答案

8章时间序列分析练习题参考答案

8章时间序列分析练习题参考答案第⼋章时间数列分析⼀、单项选择题1.时间序列与变量数列( )A 都是根据时间顺序排列的B 都是根据变量值⼤⼩排列的C 前者是根据时间顺序排列的,后者是根据变量值⼤⼩排列的D 前者是根据变量值⼤⼩排列的,后者是根据时间顺序排列的 C2.时间序列中,数值⼤⼩与时间长短有直接关系的是( )A 平均数时间序列B 时期序列C 时点序列D 相对数时间序列 B3.发展速度属于( )A ⽐例相对数B ⽐较相对数C 动态相对数D 强度相对数 C4.计算发展速度的分母是( )A 报告期⽔平B 基期⽔平C 实际⽔平D 计划⽔平 B5.某车间⽉初⼯⼈⼈数资料如下:则该车间上半年的平均⼈数约为( )A 296⼈B 292⼈C 295 ⼈D 300⼈ C6.某地区某年9⽉末的⼈⼝数为150万⼈,10⽉末的⼈⼝数为150.2万⼈,该地区10⽉的⼈⼝平均数为( )A 150万⼈B 150.2万⼈C 150.1万⼈D ⽆法确定 C7.由⼀个9项的时间序列可以计算的环⽐发展速度( ) A 有8个 B 有9个 C 有10个 D 有7个 A8.采⽤⼏何平均法计算平均发展速度的依据是( )A 各年环⽐发展速度之积等于总速度B 各年环⽐发展速度之和等于总速度C 各年环⽐增长速度之积等于总速度D 各年环⽐增长速度之和等于总速度 A9.某企业的科技投⼊,2010年⽐2005年增长了58.6%,则该企业2006—2010年间科技投⼊的平均发展速度为( ) A5%6.58 B 5%6.158 C6%6.58 D 6%6.158B10.根据牧区每个⽉初的牲畜存栏数计算全牧区半年的牲畜平均存栏数,采⽤的公式是( ) A 简单平均法 B ⼏何平均法 C 加权序时平均法 D ⾸末折半法 D11.在测定长期趋势的⽅法中,可以形成数学模型的是( )A 时距扩⼤法B 移动平均法C 最⼩平⽅法D 季节指数法12.动态数列中,每个指标数值相加有意义的是()。

人大版应用时间序列分析(第5版)习题答案

人大版应用时间序列分析(第5版)习题答案

第一章习题答案略第二章习题答案2.1答案:(1)不平稳,有典型线性趋势(2)1-6阶自相关系数如下(3)典型的具有单调趋势的时间序列样本自相关图2.2答案:(1)不平稳(2)延迟1-24阶自相关系数(3)自相关图呈现典型的长期趋势与周期并存的特征2.3答案:(1)1-24阶自相关系数(2)平稳序列(3)非白噪声序列2.4计算该序列各阶延迟的Q统计量及相应P值。

由于延迟1-12阶Q统计量的P值均显著大于0.05,所以该序列为纯随机序列。

2.5答案(1)绘制时序图与自相关图(2)序列时序图显示出典型的周期特征,该序列非平稳(3)该序列为非白噪声序列2.6答案(1)如果是进行平稳性图识别,该序列自相关图呈现一定的趋势序列特征,可以视为非平稳非白噪声序列。

如果通过adf检验进行序列平稳性识别,该序列带漂移项的0阶滞后P值小于0.05,可以视为平稳非白噪声序列(2)差分后序列为平稳非白噪声序列2.7答案(1)时序图和自相关图显示该序列有趋势特征,所以图识别为非平稳序列。

(2)单位根检验显示带漂移项0阶延迟的P值小于0.05,所以基于adf检验可以认为该序列平稳(3)如果使用adf检验结果,认为该序列平稳,则白噪声检验显示该序列为非白噪声序列如果使用图识别认为该序列非平稳,那么一阶差分后序列为平稳非白噪声序列2.8答案(1)时序图和自相关图都显示典型的趋势序列特征(2)单位根检验显示该序列可以认为是平稳序列(带漂移项一阶滞后P值小于0.05)(3)一阶差分后序列平稳第三章习题答案 3.10101()0110.7t E x φφ===--() 221112() 1.96110.7t Var x φ===--() 22213=0.70.49ρφ==()12122221110.490.7=0110.71ρρρφρρ-==-(4) 3.21111222211212(2)7=0.515111=0.30.515AR φφφρφφφρφρφφφ⎧⎧⎧=⎪=⎪⎪⎪--⇒⇒⎨⎨⎨⎪⎪⎪=+=+⎩⎩⎪⎩模型有:,2115φ=3.312012(1)(10.5)(10.3)0.80.15()01t t t t t tt B B x x x x E x εεφφφ----=⇔=-+==--,22121212()(1)(1)(1)10.15=(10.15)(10.80.15)(10.80.15)1.98t Var x φφφφφφ-=+--+-+--+++=()1122112312210.83=0.70110.150.80.70.150.410.80.410.150.70.22φρφρφρφρφρφρ==-+=+=⨯-==+=⨯-⨯=() 1112223340.70.15=0φρφφφ====-()3.41211110011AR c c c c c ⎧<-<<⎧⎪⇒⇒-<<⎨⎨<±<⎪⎩⎩() ()模型的平稳条件是 1121,21,2k k k c c k ρρρρ--⎧=⎪-⎨⎪=+≥⎩() 3.5证明:该序列的特征方程为:320c c λλλ--+=,解该特征方程得三个特征根:11λ=,2λ=3λ=无论c 取什么值,该方程都有一个特征根在单位圆上,所以该序列一定是非平稳序列。

应用统计学时间序列习题及答案

应用统计学时间序列习题及答案

计算题:34323*22562584*22582603*22602502*2250254++++++++++=a = (人计算(1)第一季度该店平均每月商品销售额(2)第一季度平均销售员人数(3)第一季度平均每个销售员的销售额 (4)第一季度平均每月每个销售员的销售额 解:(1)商品销售额为时期总量指标时间序列,4月不属一季度,该数据无用3280350300++=a = (万元)(2) 销售员人数是时点总量指标时间序列,间断间隔相等,用首尾折半法,4月初人数相当于3月末人数,这个数据有用32424045240+++=b = (人) (3)32424045240280350300+++++==平均人数一季度销售额c = (万元/人) (4)3324240452403028350300c d =+++++==平均人数一季度月平均销售额 = (万元/人)要求:(1)根据表中资料 ,计算并填制表中空白栏指标(2)计算该地财政收入的这几年的年平均发展水平、年平均增长水平(水平法)和平均增长速度(几何平均法)(3)超过平均增长速度的年份有哪些年?解:注意平均时项数的确定,写计量单位,我以下省略了单位1430%02.193*430116430%02.193*4307%02.193*4304554301)26n 0010-=-=-='-=-=∆+++=+++=a a V V n a a n a a a a n n n ((3)填全表中各年的环比增长速度,和年平均增长速度进行比较即可4. 某地1980~1990年间(以1979年为基期:a0),地区生产总值以平均 每年25%的速度增长(平均增长速度),而1991~2000年间地区生产总值以平均每年30%的速度增长(平均增长速度),2001~2012年间地区生产总值以平均每年18%的速度增长,则1980~2012年间,该地区的生产总值平均每年的增长速度是多少?(重点:正确确定时间段长短)解:注意是以1979年为基期,经过33年发展到2012年,求这段时间的平均增长速度1%118*%130*%125133121011-=-='V V5. 某地1980年的人口是120万人,1981~2000年间人口平均增长率为1.2%,之后下降到1%,按此增长率到2008年人口会达到多少?如果要求到2012年人口控制在170万以内,则2008年以后人口的增长速度应控制在什么范围内? 解:1)2(%101*%2.101*)140812*******-='==V V V a a a a ((1)分别用最小平方法的普通法和简捷法配合直线方程,并预测2010年该企业产值 (2)比较两种方法得出的结果有无异同。

时间序列分析课后习题答案

时间序列分析课后习题答案

时间序列分析课后习题答案TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】第9章 时间序列分析课后习题答案第10章(1)30× 31.06×21.05= 30×1.3131 = 39.393(万辆)(2117.11%= (3)设按7.4%的增长速度n 年可翻一番则有 1.07460/302n ==所以 n = log2 / log1.074 = 9.71(年)故能提前0.29年达到翻一番的预定目标。

第11章 (1)以1987年为基期,2003年与1987年相比该地区社会商品零售额共增长:(2)年平均增长速度为1%)8.61(%)2.81(%)101(15555-+⨯+⨯+=0.0833=8.33%(3) 2004年的社会商品零售额应为509.52)0833.01(307=+⨯(亿元)第12章 (1)发展总速度%12.259%)81(%)101(%)121(343=+⨯+⨯+ 平均增长速度=%9892.91%12.25910=-(2)8.561%)61(5002=+⨯(亿元)(3)平均数∑====415.142457041j j y y (亿元),2002年一季度的计划任务:625.1495.142%105=⨯(亿元)。

第13章(1)用每股收益与年份序号回归得^0.3650.193t Y t =+。

预测下一年(第11年)的每股收益为488.211193.0365.0ˆ11=⨯+=Y 元(2)时间数列数据表明该公司股票收益逐年增加,趋势方程也表明平均每年增长0.193元。

是一个较为适合的投资方向。

第14章 (1)移动平均法消除季节变动计算表(2)t T t ⨯+=63995.09625.8ˆ(3)趋势剔出法季节比例计算表(一)上表中,其趋势拟合为直线方程t T t ⨯+=63995.09625.8ˆ。

时间序列分析试题(卷)与答案解析

时间序列分析试题(卷)与答案解析

时间序列分析试卷1一、 填空题(每小题2分,共计20分)1. ARMA(p, q)模型_________________________________,其中模型参数为____________________。

2. 设时间序列{}t X ,则其一阶差分为_________________________。

3. 设ARMA (2, 1):1210.50.40.3t t t t t X X X εε---=++-则所对应的特征方程为_______________________。

4. 对于一阶自回归模型AR(1): 110t t t X X φε-=++,其特征根为_________,平稳域是_______________________。

5. 设ARMA(2, 1):1210.50.1t t t t t X X aX εε---=++-,当a 满足_________时,模型平稳。

6. 对于一阶自回归模型MA(1):10.3t t t X εε-=-,其自相关函数为______________________。

7. 对于二阶自回归模型AR(2):120.50.2t t t t X X X ε--=++则模型所满足的Yule-Walker 方程是______________________。

8. 设时间序列{}t X 为来自ARMA(p,q)模型:1111t t p t p t t q t q X X X φφεθεθε----=++++++则预测方差为___________________。

9. 对于时间序列{}t X ,如果___________________,则()~t X I d 。

10. 设时间序列{}t X 为来自GARCH(p ,q)模型,则其模型结构可写为_____________。

二、(10分)设时间序列{}t X 来自()2,1ARMA 过程,满足()()210.510.4ttB B X B ε-+=+,其中{}t ε是白噪声序列,并且()()2t t 0,E Var εεσ==。

《时间序列分析》第二章 时间序列预处理习题解答[1]

《时间序列分析》第二章 时间序列预处理习题解答[1]


, 24)
225.0 131.6 63.2 86.4
95.3 112.8 181.6 136.9
1 100.6 8 81.8 7 73.9 3 31.5
48.3 31.0 64.8 35.3
112.3 160.8 52.3 ; 26.2 112.8
143.0 80.5 144.3 62.5 49.5 158.2 116.1 7.6 165.9 54.1 106.7 92.2 63.2 67.3 77.0 148.6 159.3 85.3 59.4
时间序描述程序 data example1; input number@@; time=intnx('year','01jan1980'd, _n_-1); format time date.; cards; 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ; proc gplot data=example1; plot number*time=1; symbol1 c=black v=star i=join; run;
析: 分析 自相关图显示序列自 自相关系数 数长期位于零 零轴的一边 边, 这是具有 有单调趋势序 序列 的典 典型特征。
由下图可知 知,自相关系 系数长期位于 于零轴的一边 边,且自相关 关系数递减到 到零的速度较慢, 在 5 个延期中,自相关系数 数一直为正,说明这是一个 个有典型单调 调趋势的非平 平稳序列。
分析 析:自相关图显示该序 序列自相关系数较小,大致在零轴 轴附近波动 动,大多数控 控制 在 2 倍标准差 差范围内,所 所以认为该 该序列是平稳 稳的。
3.1945 年-19 950 年费城 城月度降雨量 量数据如下 下(单位:m mm) ,见教材 材 P35 表 2-8.

应用时间序列分析第4章答案

应用时间序列分析第4章答案

河南大学:姓名:汪宝班级:七班学号:1122314451 班级序号:685:我国1949年-2008年年末人口总数(单位:万人)序列如表4-8所示(行数据).选择适当的模型拟合该序列的长期数据,并作5期预测。

解:具体解题过程如下:(本题代码我是做一问写一问的)1:观察时序图:data wangbao4_5;input x@@;time=1949+_n_-1;cards;54167 55196 56300 57482 58796 60266 61465 6282864653 65994 67207 66207 65859 67295 69172 7049972538 74542 76368 78534 80671 82992 85229 8717789211 90859 92420 93717 94974 96259 97542 98705100072 101654 103008 104357 105851 107507 109300 111026112704 114333 115823 117171 118517 119850 121121 122389123626 124761 125786 126743 127627 128453 129227 129988130756 131448 132129 132802;proc gplot data=wangbao4_5;plot x*time=1;symbol1c=black v=star i=join;run;分析:通过时序图,我可以发现我国1949年-2008年年末人口总数(随时间的变化呈现出线性变化.故此时我可以用线性模型拟合序列的发展.X t=a+b t+I t t=1,2,3,…,60E(I t)=0,var(I t)=σ2其中,I t为随机波动;X t=a+b就是消除随机波动的影响之后该序列的长期趋势。

2:进行线性模型拟合:proc autoreg data=wangbao4_5;model x=time;output out=out p=wangbao4_5_cup;run;proc gplot data=out;plot x*time=1 wangbao4_5_cup*time=2/overlay ;symbol2c=red v=none i=join w=2l=3;run;分析:由上面输出结果可知:两个参数的p值明显小于0.05,即这两个参数都是具有显著非零,4:模型检验又因为Regress R-square=total R-square=0.9931,即拟合度达到99.31%所以用这个模型拟合的非常好。

时间序列分析课后习题答案1

时间序列分析课后习题答案1

时间序列分析课后习题答案(上机第二章 2、328330332334336338340342(1时序图如上:序列具有明显的趋势和周期性,该序列非平稳。

(2样本自相关系数:(3该样本自相关图上,自相关系数衰减为 0的速度缓慢,且有正弦波状,显示序列具有趋势和周期,非平稳。

3、 (1样本自相关系数:(2序列平稳。

(3因 Q 统计量对应的概率均大于 0.05,故接受该序列为白噪声的假设,即序列为村随机序列。

5、 (1时序图和样本自相关图:50100150200250300350(2序列具有明显的周期性,非平稳。

(3序列的 Q 统计量对应的概率均小于 0.05,该序列是非白噪声的。

6、 (1根据样本相关图可知:该序列是非平稳,非白噪声的。

(2对该序列进行差分运算:1--=t t t x x y {t y }的样本相关图:该序列平稳,非白噪声。

第三章:17、 (1结论:序列平稳,非白噪声。

(2 拟合 MA(2 model:VariableCoefficient Std. Error t-Statistic Prob. C 80.40568 4.630308 17.36508 0.0000 MA(1 0.336783 0.114610 2.938519 0.0047 R-squared0.171979 Mean dependent var 80.29524 Adjusted R-squared 0.144379 S.D. dependent var 23.71981 S.E. of regression 21.94078 Akaike info criterion 9.061019 Sum squared resid 28883.87 Schwarz criterion 9.163073 Log likelihood -282.4221 F-statistic 6.230976 Durbin-Watson stat 2.072640 Prob(F-statistic 0.003477Residual tests(3拟合 AR(2model:C 79.71956 5.442613 14.64729 0.0000 AR(10.2586240.1288102.0077940.0493R-squared0.154672 Mean dependent var 79.50492 Adjusted R-squared 0.125522 S.D. dependent var 23.35053 S.E. of regression 21.83590 Akaike info criterion 9.052918 Sum squared resid 27654.79 Schwarz criterion 9.156731 Log likelihood -273.1140 F-statistic 5.306195 Durbin-Watson stat 1.939572 Prob(F-statistic 0.007651Inverted AR Roots.62-.36Residual tests:(4 拟合 ARMA (2, 1 model :Variable Coefficient Std. Error t-Statistic Prob. C 79.17503 4.082908 19.39183 0.0000 AR(1 -0.586834 0.118000 -4.973170 0.0000 AR(2 0.376120 0.082091 4.581756 0.0000 MA(11.1139990.09712211.470120.0000R-squared0.338419 Mean dependent var 79.50492 Adjusted R-squared 0.303599 S.D. dependent var 23.35053 S.E. of regression 19.48617 Akaike info criterion 8.840611 Sum squared resid 21643.51 Schwarz criterion 8.979029 Log likelihood-265.6386 F-statistic9.719104Inverted AR Roots .39-.97 Inverted MA Roots-1.11Estimated MA process is noninvertible残差检验:(5拟合 ARMA (1, (2 model:Variable Coefficient Std. Error t-Statistic Prob. C 79.52100 4.621910 17.205230.0000 AR(1 0.270506 0.125606 2.153603 0.0354 R-squared0.157273 Mean dependent var 79.55161 Adjusted R-squared 0.128706 S.D. dependent var 23.16126 S.E. of regression 21.61946 Akaike info criterion 9.032242 Sum squared resid 27576.65 Schwarz criterion 9.135167 Log likelihood -276.9995 F-statistic 5.505386 Durbin-Watson stat 1.981887 Prob(F-statistic 0.006423Inverted AR Roots.27残差检验:(6优化根据 SC 准则,最优模型为 ARMA(2,1模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章习题答案
2.1
(1)非平稳
(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376
(3)典型的具有单调趋势的时间序列样本自相关图
2.2
(1)非平稳,时序图如下
(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图
2.3
(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118
(2)平稳序列
(3)白噪声序列
2.4
,序列
LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。

显著性水平=0.05
不能视为纯随机序列。

2.5
(1)时序图与样本自相关图如下
(2) 非平稳 (3)非纯随机 2.6
(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机
第三章习题答案
3.1 解:1()0.7()()t t t E x E x E ε-=⋅+
0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01(
t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149
.011
)(εεσσ=-=
t x Var
49.00212==ρφρ 022=φ
3.2 解:对于AR (2)模型:
⎩⎨
⎧=+=+==+=+=-3.05
.02110211212112011φρφρφρφρρφφρφρφρ 解得:⎩⎨⎧==15/115
/72
1φφ
3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E
原模型可变为:t t t t x x x ε+-=--2115.08.0
2212122
)
1)(1)(1(1)(σφφφφφφ-+--+-=
t x Var
2)
15.08.01)(15.08.01)(15.01()
15.01(σ+++--+=
=1.98232σ
⎪⎩⎪⎨⎧=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ⎪⎩

⎨⎧=-====015.06957.033222111φφφρφ
3.4 解:原模型可变形为:
t t x cB B ε=--)1(2
由其平稳域判别条件知:当1||2<φ,112<+φφ且112<-φφ时,模型平稳。

由此可知c 应满足:1||<c ,11<-c 且11<+c 即当-1<c<0时,该AR(2)模型平稳。

3.5证明:已知原模型可变形为:
t t x cB cB B ε=+--)1(3
2
其特征方程为:0))(1(223=-+-=+--c c c λλλλλλ 不论c 取何值,都会有一特征根等于1,因此模型非平稳。

3.6 解:(1)错,)1/()(220
1θσγε-==t x Var 。

(2)错,)1/()])([(2
1210111θσθγργμμε-===---t t x x E 。

(3)错,T l
T x l x
1)(ˆθ=。

(4)错,112211)(+--+-++++++=T l l T l T l T T G G G l e εεεεΛ =11122111+--+-++++++T l l T l T l T εθεθεθεΛ
(5)错,2
21221
21111]1[1lim )]([lim )](ˆ[lim εεσθσθθ-=--==-∞→∞→+∞
→l l T l T l
T l l e Var l x x Var 。

3.7解:1241111
2112
11
1-=-+-=⇒+-=ρρθθθρ MA(1)模型的表达式为:1-+=t t t x εε。

3.8解法1:由1122=+t t t t x μεθεθε----,得111223=+t t t t x μεθεθε------,则
111212230.5=0.5+(0.5)(0.5)+0.5t t t t t t x x μεθεθθεθε------+--,
与123=10+0.5+0.8+t t t t t x x C εεε----对照系数得
12120.510,0.500.50.80.5C
μθθθθ=⎧⎪+=⎪⎨-=⎪⎪=⎩,故1
2
20,
0.5,0.55,0.275C μθθ=⎧⎪=-⎪⎨=⎪⎪=⎩。

解法2:将123100.50.8t t t t t x x C εεε---=++-+等价表达为
()23
23223310.82010.510.8(10.50.50.5)t t
t
B CB x B B CB B B B εε-+-=-=-+++++L 展开等号右边的多项式,整理为
2233
4423243
4
10.50.50.50.50.80.80.50.80.50.5B B B B B B B CB CB +++++--⨯-⨯-+++L L L
合并同类项,原模型等价表达为
2
330
20[10.50.550.5(0.50.4)]k k t t k x B B C B ε∞
+=-=+-+-+∑
当30.50.40C -+=时,该模型为(2)MA 模型,解出0.275C =。

3.9解::0)(=t x E
2
2222165.1)1()(εεσσθθ=++=t x Var 5939.065.198
.012
2
212111-=-=+++-=
θθθθθρ 2424.065
.14.01222122==++-=
θθθρ 30≥=k k ,ρ。

3.10解法1:(1))(21Λ+++=--t t t t C x εεε
)(3211Λ+++=----t t t t C x εεε
11111)1(------++=⎪⎭⎫
⎝⎛+-+=t t t t t t t t C x C x C x εεεεε
即 t t B C x B ε])1(1[)1(--=-
显然模型的AR 部分的特征根是1,模型非平稳。

(2) 11)1(---+=-=t t t t t C x x y εε为MA(1)模型,平稳。

2
2112
2111+--=+-=
C C C θθρ 解法2:(1)因为22()lim(1)t k Var x kC εσ→∞
=+=∞,所以该序列为非平稳序列。

相关文档
最新文档