应用时间序列分析第三版王燕课后答案
时间序列分析第一章王燕习题解答

时间序列分析习题解答第一章 P. 7 1.5 习题1.1 什么是时间序列?请收集几个生活中的观察值序列。
答:按照时间的顺序把随机事件变化发展的过程记录下来就构成一个时间序列。
例1:1820—1869年每年出现的太阳黑子数目的观察值;年份黑子数年份黑子数年份黑子数年份黑子数年份黑子数1820 16 1830 71 1840 63 1850 66 1860 96 1821 7 1831 48 1841 37 1851 64 1861 77 1822 4 1832 28 1842 24 1852 54 1862 59 1823 2 1833 8 1843 11 1853 39 1863 44 1824 8 1834 13 1844 15 1854 21 1864 47 1825 17 1835 57 1845 40 1855 7 1865 30 1826 36 1836 122 1846 62 1856 4 1866 16 1827 50 1837 138 1847 98 1857 23 1867 7 1828 62 1838 103 1848 124 1858 55 1868 37 1829 67 1839 86 1849 96 1859 94 1869 74 例2:北京市城镇居民1990—1999年每年的消费支出按照时间顺序记录下来,就构成了一个序列长度为10的消费支出时间序列(单位:亿元)。
1686,1925,2356,3027,3891,4874,5430,5796,6217,6796。
1.2 时域方法的特点是什么?答:时域方法特点:具有理论基础扎实,操作步骤规范,分析结果易于解释的优点,是时间序列分析的主流方法。
1.3 时域方法的发展轨迹是怎样的?答:时域方法的发展轨迹:一.基础阶段:1. G.U. Yule 1972年AR模型2. G.U.Walker 1931年 MA模型、ARMA模型二.核心阶段:G.E.P.Box和G.M.Jenkins1. 1970年,出版《Time Series Analysis Forecasting and Control》2. 提出ARIMA模型(Box-Jenkins模型)3. Box-Jenkins模型实际上主要运用于单变量、同方差场合的线性模型三.完善阶段:1.异方差场合:a.Robert F.Engle 1982年 ARCH模型b.Bollerslov 1985年 GARCH模型2.多变量场合:C.Granger 1987年提出了协整(co-integration)理论3.非线性场合:汤家豪等 1980年门限自回归模型1.4 在附录1中选择几个感兴趣的序列,创建数据集。
时间序列分析——基于R(王燕)第四章

第四章:非平稳序列的确定性分析题目一:()()()()()()()12312123121231ˆ14111ˆˆ2144451.1616T T T T T T T T T T T T T T T T T T T T T xx x x x xx x x x x x x x x x x x x x x -------------=+++⎡⎤=+++=++++++⎢⎥⎣⎦=+++ 题目二:因为采用指数平滑法,所以1,t t x x +满足式子()11t t t x x x αα-=+-,下面式子()()11111t t t t t tx x x x x x αααα-++=+-⎧⎪⎨=+-⎪⎩ 成立,由上式可以推导出()()11111t t t t x x x x αααα++-=+-+-⎡⎤⎣⎦,代入数据得:2=5α. 题目三:()()()21221922212020192001ˆ1210101113=11.251ˆ 1010111311.2=11.04.5ˆˆˆ10.40.6.i i i xxxx x x x x αα-==++++=++++===+-=⋅∑(1)(2)根据程序计算可得:22ˆ11.79277.x= ()222019181716161ˆ2525xx x x x x =++++(3)可以推导出16,0.425a b ==,则425b a -=-. 题目四:因为,1,2,3,t x t t ==,根据指数平滑的关系式,我们可以得到以下公式:()()()()()()()()()()()()()()()221221 11121111 1111311. 2t t t t t tt x t t t x t t αααααααααααααααααααα----=+-------=-+---+--+++2+, ++2+用(1)式减去(2)式得:()()()()()221=11111.t t tt x t αααααααααααα-------------所以我们可以得到下面的等式:()()()()()()122111=11111=.t t t tt x t t αααααααα+-----------------()111lim lim 1.ttt ttxt tααα+→∞→∞----==题目五:1. 运行程序:最下方。
人大(王燕)时间序列课后习题答案)

7
0.034
-0.077
44.572
0.000
.*|.|
. *|.|
8
-0.074
-0.077
44.771
0.000
. *|.|
.*| .|
9
-0.170
-0.075
45.921
0.000
.**|.|
.*| . |
10
-0.252
-0.072
48.713
0.000
.**|.|
.*|.|
11
-0.319
-0.067
53.693
0.000
***| .|
.*|.|
12
-0.370
-0.060
61.220
0.000
该图的自相关系数衰减为0的速度缓慢,可认为非平稳。
4、
LB(6)=1.6747LB(12)=4.9895
(6)=12.59 (12)=21.0
显然,LB统计量小于对应的临界值,该序列为纯随机序列。
注:括号内的结果为近似公式所计算。
(3)样本自相关图:
Autocorrelation
PartialCorrelation
AC
PAC
Q-Stat
Prob
. |*******|
.|*******|
1
0.850
0.850
16.732
0.000
. |*****|
. *|. |
2
0.702
-0.076
28.761
不论c取何值,都会有一特征根等于1,因此模型非平稳。
6、解:(1)错, 。
(2)错, 。
应用时间序列分析习题答案

第二章习题答案2.1(1)非平稳(2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376(3)典型的具有单调趋势的时间序列样本自相关图2.2(1)非平稳,时序图如下(2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图2.3(1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118(2)平稳序列(3)白噪声序列2.4,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。
显著性水平=0.05不能视为纯随机序列。
2.5(1)时序图与样本自相关图如下(2) 非平稳 (3)非纯随机 2.6(1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机第三章习题答案3.1 解:1()0.7()()t t t E x E x E ε-=⋅+0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01(t t t B B B x εε)7.07.01()7.01(221 +++=-=- 229608.149.011)(εεσσ=-=t x Var49.00212==ρφρ 022=φ3.2 解:对于AR (2)模型:⎩⎨⎧=+=+==+=+=-3.05.02110211212112011φρφρφρφρρφφρφρφρ 解得:⎩⎨⎧==15/115/721φφ3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E原模型可变为:t t t t x x x ε+-=--2115.08.02212122)1)(1)(1(1)(σφφφφφφ-+--+-=t x Var2)15.08.01)(15.08.01)(15.01()15.01(σ+++--+==1.98232σ⎪⎩⎪⎨⎧=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ⎪⎩⎪⎨⎧=-====015.06957.033222111φφφρφ 3.4 解:原模型可变形为:t t x cB B ε=--)1(2由其平稳域判别条件知:当1||2<φ,112<+φφ且112<-φφ时,模型平稳。
时间序列分析第二章王燕第四到第六题习题解答

时间序列分析习题解答第二章 P.33 2.3 习 题2.4 若序列长度为100,前12个样本自相关系数如下:1^ρ=0.02 2^ρ=0.05 3^ρ=0.10 4^ρ=-0.02 5^ρ=0.05 6^ρ=0.01 7^ρ=0.12 8^ρ=-0.06 9^ρ=0.08 10^ρ=-0.05 11^ρ=0.02 12^ρ=-0.05该序列能否视为纯随机序列? 解:假设 12210H ρρρ=== ::1H 至少存在某个12k 10k ≤≤≠,ρ计算Q 统计量: 21ˆm k k Q n ρ==∑, ∑=-∧+=mk kn kn n LB 12)2(ρ其中n 为序列长度100,12m =,(1,2,,12)k k ρ=…为12个样本自相关系数。
计算得到: 4.57Q =, LB=4.99查表得:975.0)1212P 23.51240.4122975.02295.02975.0=>==)()(()(,)(χχχχ 因为 4.57Q =与LB=4.99 均介于4.40与5,23之间,故P 值约为0.96,显著大于显著性水平0.05。
所以不能拒绝纯随机的原假设,可以认为该序列为白噪声序列,即认为该序列为纯随机序列。
(注:计算在EXCEL 中进行)2.5 下表数据是某公司在2000-2003年期间每月的销售量。
——————————————————————————— 月份 2000年 2001年 2002年 2003年 1月 153 134 145 117 2月 187 175 203 178 3月 234 243 189 149 4月 212 227 214 178 5月 300 298 295 248 6月 221 256 220 202 7月 201 237 231 162 8月 175 165 174 1359月 123 124 119 12010月 104 106 85 9611月 85 87 67 9012月 78 74 75 63 —————————————————————————————(1)绘制该序列时序图及样本自相关图;(2)判断该序列的平稳性;(3)判断该序列的纯随机性。
时间序列分析第二章王燕第四到第六题习题解答

^
11 =0.02
^
12 =-0.05
^
该序列能否视为纯随机序列? 解:假设 H 0: 1 2 12
H 1:至少存在某个 k 0 , 1 k 12
计算 Q 统计量:
ˆ k2 , Q n
k 1
m
LB n(n 2)
k 1
m
nk
k
因为 Q 4.57 与 LB=4.99 均介于 4.40 与 5,23 之间,故 P 值约为 0.96,显著 大于显著性水平 0.05。所以不能拒绝纯随机的原假设,可以认为该序列为白噪 声序列,即认为该序列为纯随机序列。 (注:计算在 EXCEL 中进行)
2.5 下表数据是某公司在 2000-2003 年期间每月的销售量。
sales 300
200
100
0 JAN00 MAR00 MAY00 JUL00 SEP00 NOV00 JAN01 MAR01 MAY01 JUL01 SEP01 NOV01 JAN02 MAR02 MAY02 JUL02 SEP02 NOV02 JAN03 MAR03 MAY03 JUL03 SEP03 NOV03 JAN04 time
——————————————————————————— 月份 2000 年 2001 年 2002 年 2003 年 1月 153 134 145 117 2月 187 175 203 178 3月 234 243 189 149 4月 212 227 214 178 5月 300 298 295 248 6月 221 256 220 202 7月 201 237 231 162 8月 175 165 174 135
图 a2. 输出的时序图:
时间序列第2-3章习题解答

则模型的传递形式为:
=
,确定该模型的 Green 函数,使该
故该模型的 Green 函数为: 该模型可以等价表示为无穷阶 MA 模型形式为:
13. 某 ARMR(2,2)模型为: .
解因
所以
,求 . 其中
, .
14. 证明 ARMR(1,1)序列 解 方法一 因为 所以
的自相关系数为:
第 3 章 习题(王燕)
1. 已知 AR(1)模型为 解由 . 由
。求 ,
,和 。
=
=
(常均值性),有
, ,(由平稳序列的方差常性)
又
,
,故
,
所以 =
。
根据 Yule–Walker 方程,有
,
即 ,
故 =
本题也可不要推导,由相关公式和性质直接给出结果。
2. 已知某 AR(2)模型为: 求 , 的值。
1.5
样本自相关系数图
1
0.5
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
-0.5
自相关系数如下:
延迟
1
2
3
4
5
6
7
8
自相关系数 0.5060 0.5385 0.3736 0.2907 0.2578 0.1475 0.2696 0.1862
延迟
9
10
11
12
13
14
15
16
自相关系数 0.1776 0.2584 0.2070 0.2263 0.1375 -0.0268 -0.0532 -0.1124
延迟
时间序列分析第二章王燕第一到第三题习题解答

时间序列分析习题解答第二章 P.33 2.3 习 题2.1 考虑序列{1,2,3,4,5,…,20}: (1) 判断该序列是否平稳;(2) 计算该序列的样本自相关系数k ^ρ(k=1,2,…,6); (3) 绘制该样本自相关图,并解释该图形。
解:(1) 由于不存在常数μ,使,t EX t T μ=∀∈,所以该序列不是平稳序列。
显然,该序列是按等步长1单调增加的序列。
(2) 1^ρ=0.85000 2^ρ=0.70150 3^ρ=0.556024^ρ=0.41504 5^ρ=0.28008 6^ρ=0.15263 (3) 样本自相关图该图横轴表示自相关系数,纵轴表示延迟时期数。
该图的自相关系数递减的速度缓慢,在6期的延迟时期里,自相关系数一直为正,说明该序列是有单调趋势的非平稳序列。
附:SAS 程序如下: data ex2_1; input freq@@; cards;1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ;proc arima data=ex2_1; identify var=freq Nlag=6; run;可得到上图的自相关图等内容, 更多结果被省略。
2.2 1975-1980年夏威夷岛莫那罗亚火山(Mauna Loa )每月释放的CO 2数据如下(单位:ppm )见下表。
330.45 330.97 331.64 332.87 333.61 333.55 331.90 330.05 328.58 328.31 329.41 330.63 331.63 332.46 333.36 334.45 334.82 334.32 333.05 330.87 329.24 328.87 330.18 331.50 332.81 333.23 334.55 335.82 336.44 335.99 334.65 332.41 331.32 330.73 332.05 333.53 334.66 335.07 336.33 337.39 337.65 337.57 336.25 334.39 332.44 332.25 333.59 334.76 335.89 336.44 337.63 338.54 339.06 338.95 337.41 335.71 333.68 333.69 335.05 336.53 337.81 338.16 339.88 340.57 341.19 340.87 339.25 337.19 335.49 336.63 337.74 338.36(1)绘制该序列时序图,并判断该序列是否平稳; (2)计算该序列的样本自相关系数k ^(k=1,2,…,24); (3)绘制该样本自相关图,并解释该图形。