北邮-微波测量实验报告

合集下载

北邮电磁场实验三微波驻波比的测量

北邮电磁场实验三微波驻波比的测量

北京邮电大学电磁场与微波测量实验实验三微波驻波比的测量学院:电子工程学院班级: 2011211207组员:邹夫、李贝贝、马睿执笔:李贝贝目录1.实验内容 11.1实验目的 11.2实验设备 12.实验原理 13.实验内容及数据处理 33.1直接法测量驻波系数 33.1.1实验框图 33.1.2实验步骤 33.1.3实验数据 33.2等指示度法测量驻波系数 43.2.1实验框图 43.2.2实验步骤 43.2.3实验数据 44.思考题 55.实验心得与体会 61. 实验内容1.1实验目的1、了解波导测量系统,熟悉基本微波元件的作用。

2、掌握驻波测量线的正确使用和用驻波测量线校准晶体检波器特性的方法。

3、掌握大、中、小电压驻波系数的测量原理和方法。

1.2实验设备1.DH1121C型微波信号源2.DH364A00型3cm测量线2.实验原理1、直接法直接测量沿线驻波的最大点与最小点场强,从而求得驻波系数的方法称为直接法。

若驻波腹点和节点处电表读数分别为Umax、Umin,则电压驻波系数当驻波系数1.55时直接可读出Umax、Umin即可。

当电压驻波系数在1.051.5时,驻波的最大值和最小值相差不大,且不尖锐,不易测准,为了提高测量准确度,可移动探针到几个波节和波腹记录数据,然后取平均值。

2、等指示度法:当被测器件的驻波系数大于10时,由于驻波最大与最小处的电压相差很大,若在驻波最小点处使晶体输出的指示电表上得到明显的偏转,那么在驻波最大点时由于电压较大,往往使晶体的检波特性偏离平方律,这样用直接法测量就会引入很大的误差。

等指示度法是通过测量驻波图形在最小点附近场强的分布规律,从而计算出驻波系数,如图五所示。

若最小点处的电表指示为Z,在最小点两边取等指示点,两等指示度点之间的距离为W,有,设晶体检波律为n,由驻波场的分布公式可以推出: (1)通常取K=2(二倍最小法),且设n=2,有 (2)WD图五等指示度法波节点附近场分布当ρ>10时,上式可简化为 (3)这种方法取k=2时进行测量,所以也称为“二倍最小值”法,或3分贝方法。

北邮电磁场与电磁波测量实验报告5-信号源-波导波长

北邮电磁场与电磁波测量实验报告5-信号源-波导波长

北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;(3) 学习用微波作为观测手段来研究物理现象。

二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。

该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。

在教学方式下,可实时显示体效应管的工作电压和电流的关系。

仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。

2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。

3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。

衰减器起调节系统中微波功率从以及去耦合的作用。

4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。

当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

5.测量线测量线是测量微波传输系统中电场的强弱和分布的精密仪器。

由开槽波导、不调谐探头和滑架组成。

在波导的宽边有一个狭槽,金属探针经狭槽伸入波导。

线开槽波导中的场由不调谐探头取样,探头的移动靠滑架上的传动装置,探头的输出送到显示装置,就可以显示沿波导轴线的电磁场变化信息。

微波基本测量实验报告

微波基本测量实验报告

微波基本测量实验报告微波基本测量实验报告引言:微波技术是现代通信、雷达、天文学等领域的重要组成部分。

为了更好地了解微波的特性和应用,本实验旨在通过基本的测量实验,探索微波的传输、反射和干涉等现象,并对实验结果进行分析和讨论。

一、实验装置和原理本实验使用的实验装置包括微波发生器、微波导波管、微波检波器、微波衰减器等。

微波发生器产生微波信号,经由微波导波管传输到被测物体,再通过微波检波器接收并测量微波信号的强度。

微波衰减器用于调节微波信号的强度,以便进行不同强度的测量。

二、实验过程和结果1. 传输实验将微波发生器与微波检波器分别连接到微波导波管的两端,调节发生器的频率和功率,记录检波器的读数。

随着发生器功率的增加,检波器读数也相应增加,说明微波信号能够稳定传输。

2. 反射实验将微波发生器与微波检波器连接到微波导波管的同一端,将导波管的另一端暴露在空气中,调节发生器的功率,记录检波器的读数。

随着功率的增加,检波器读数也增加,表明微波信号在导波管与空气之间发生了反射。

3. 干涉实验将两根微波导波管分别连接到微波发生器和微波检波器上,将两根导波管的另一端合并在一起,调节发生器的功率,记录检波器的读数。

随着功率的增加,检波器读数呈现周期性的变化,表明微波信号在导波管之间发生了干涉。

三、实验结果分析1. 传输实验结果表明,微波信号能够稳定传输,说明微波导波管具有良好的传输特性。

传输实验中,微波信号的强度与发生器功率呈正相关关系,这与微波信号的传输损耗有关。

2. 反射实验结果表明,微波信号在导波管与空气之间发生了反射。

反射实验中,微波信号的强度与发生器功率呈正相关关系,说明反射信号的强度与输入信号的强度相关。

3. 干涉实验结果表明,微波信号在导波管之间发生了干涉。

干涉实验中,微波信号的强度呈现周期性的变化,这与导波管的长度和微波信号的频率有关。

当导波管的长度等于微波信号的波长的整数倍时,干涉现象最为明显。

四、实验总结通过本次微波基本测量实验,我们对微波的传输、反射和干涉等现象有了更深入的了解。

微波测量实验报告

微波测量实验报告

《微波测量实验报告》指导老师:**专业:班级:学号:姓名:实验一微波测试系统的认识与调试一、实验目的1. 了解微波测试系统。

2. 三厘米波导系统的安装与调试。

二、实验原理1. 微波测试系统微波测试系统常用的有同轴和波导两种系统。

同轴系统频带宽,一般用在较低的微波频段(二厘米波段以下);波导系统(常用矩形波导)损耗低、功率容量大,一般用在较高频段(厘米波段直至毫米波段)。

微波测试系统通常由三部分组成,如图 1 - 1 ( a )所示。

图 1 - 1 微波测试系统(1)等效电源部分(即发送端)这部分包括微波信号源,隔离器,功率、频率监视单元。

信号源是微波测试系统的心脏。

测量技术要求具有足够功率电平和一定频率的微波信号,同时要求一定的功率和频率稳定度。

功率和频率监视单元是由定向耦合器取出一小部分微波能量,经过检测指示来观察源的稳定情况,以便及时调整。

为了减小负载对信号源的影响,电路中采用了隔离器。

( 2 )测量装置部分(即测量电路)包括测量线、调配元件、待测元件、辅助器件(如短路器、匹配负载等),以及电磁能量检测器(如晶体检波架、功率计探头等)。

( 3 )指示器部分(即测量接收器)指示器是显示测量信号特性的仪表,如直流电流表、测量放大器、功率计、示波器、数字频率计等。

当对微波信号的功率和频率稳定度要求不太高时,测量系统可简化如图 1 - 1 ( b )所示,微波信号源直接与测量装置连接,其工作频率可由波长计测得。

2. 微波信号源通常,微波信号源有电真空和固态的两种。

3. 测量指示器常用指示器有指示等幅波的直流微安表、光点检流计、微瓦功率计,有指示调制波的测量放大器、选频放大器。

此外,还可用示波器、数字电压表等作指示器。

实验室常用测量放大器和选频放大器作指示器,因为这类仪表灵敏度高,能对微弱信号进行宽带或选频放大,接在测量线、晶体检波器、热敏电阻架及其它测试设备的输出端可进行各类测量。

三、实验内容和步骤了解微波测试系统:1. 观看按图 1 - 1 ( a )装置的微波测试系统。

北邮电磁场实验 微波测量系统的使用和信号源波长功率的测量

北邮电磁场实验 微波测量系统的使用和信号源波长功率的测量
DH1121C型微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。在教学方式下,可实时显示体效应管的工作电压和电流的关系。仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。
2.隔离器
位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。
5.按图一所示的框图连接微波实验系统。
6.微调单螺调配器,使腔偏离区配状态,检波电流计上有一定示数;
7.调节波长计使检波电流计再次出现最小值的时刻,读出此处波长计的刻度值;
8.按照波长计的刻度值去查找“波长计-频率刻度对照表”,就可以得到相应的信号源频率值;
9.改变信号频率,从8.6G开始测到9.6G,0.1G测一次,记录在数据表格中。
5.按照波长计的刻度值去查找“波长计-频率刻度对照表”,刻度值存在误差导致对应的频率也有误差
4
这次实验要比前两次难,主要在于又学习了不少新仪器的使用方法及了解它们的工作原理,也须回顾以前学过的微波技术基础的知识,而且实验仪器不是很完整,仪器误差较大。而且需要极大的耐心,转动手柄时必须要非常缓慢。发现同学们的学习热情都很高,大家遇到问题不仅组内积极讨论组与组之间也积极讨论,表示自己的疑惑或者提出自己的建议、解决问题的办法,我想这才是实验最有益的地方,让我们主动去积极思考,主动去互相讨论。
9.0
8.058
8.970
0.030
9.1
7.270
9.051
0.049
9.2
6.250
9.166
0.034
9.3

北邮电磁场与微波测量实验实验一电磁波反射和折射实验

北邮电磁场与微波测量实验实验一电磁波反射和折射实验

实验一电磁波反射和折射实验学院:电子工程学院班级:2011211204学号:2011210986执笔人姓名:北邮电子204电磁场与微波测量实验组员:一、实验目的1、熟悉S426型分光仪的使用方法。

2、掌握分光仪验证电磁波反射定律的方法。

3、掌握分光仪验证电磁波折射定律的方法。

二、实验设备与仪器S426型分光仪三、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。

验证均匀平面波在无耗媒质中的传播特性;均匀平面波垂直入射理想电解质表面的传播特性。

四、实验内容与步骤1、熟悉分光仪的结构和调整方法。

2、连接仪器,调整系统。

如下页图1所示,仪器连接时,两喇叭口面应互相正对,他们各自的轴线应在一条直线上。

指示两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上,并利用平台上的定位销和刻线对正支座(与支座上刻线对齐)拉起平台上四个压紧螺钉旋转一个角度放下,即可压紧支座。

测量入射角和反射角反射金属板放到支座上时,应使金属板平面与支座线面的小圆盘上的某一对刻线一致。

而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应90刻度的一对刻线一致。

这时小平台上的0刻度就与金属板的法线方向一致。

转动小平台,使固定臂指针指在某一角度处,这角度的读数就是入射角,然后转动活动臂在电流表上找到最大指示处,此时活动臂的指针所指的刻度就是反射角。

如果此时表头指示太呆或太小,应调整衰减器、固态振荡器或晶体检波器,使表头指示接近满量程。

做此项实验,入射角最好取30至65度之间。

因为入射角太大接受喇叭有可能直接接受入射波。

系统的调整和周围环境的影响。

图1 :反射实验仪器的布置五、实验结果及其分析记录实验测得数据,验证电磁波的反射定律1)数据分析:由表格可知,入射角与反射角近似相等,可以验证电磁波的反射定律。

完整微波基本参数测量实验报告

完整微波基本参数测量实验报告

(完整)微波基本参数测量实验报告微波基本参数测量实验报告【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,微波的基本性质通常呈现为穿透、反射、吸收三个特性。

微波成为一门技术科学,开始于20世纪30年代。

微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。

在第二次世界大战中,微波技术得到飞跃发展。

因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。

至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。

【实验设计】一、实验原理1、微波微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。

微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。

微波作为一种电磁波也具有波粒二象性。

微波的基本性质通常呈现为穿透、反射、吸收三个特性。

对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。

对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。

2、微波的似声似光性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。

使得微波的特点与几何光学相似,即所谓的似光性。

因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。

由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。

3、波导管波导管是一种空心的、内壁十分光洁的金属导管或内敷金属的管子。

北邮电磁场与电磁波测量实验报告5-信号源-波导波长

北邮电磁场与电磁波测量实验报告5-信号源-波导波长

北邮电磁场与电磁波测量实验报告5-信号源-波导波长————————————————————————————————作者:————————————————————————————————日期:北京邮电大学电磁场与电磁波测量实验实验报告实验内容:微波测量系统的使用和信号源波长功率的测量波导波长的测量学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日实验一微波测量系统的使用和信号源波长功率的测量一、实验目的(1) 学习微波的基本知识;(2) 了解微波在波导中传播的特点,掌握微波基本测量技术;(3) 学习用微波作为观测手段来研究物理现象。

二、实验仪器1.微波信号源微波信号源由振荡器、可变衰减器、调制器、驱动电路、及电源电路组成。

该信号源可在等幅波、窄带扫频、内方波调制方式下工作,并具有外调制功能。

在教学方式下,可实时显示体效应管的工作电压和电流的关系。

仪器输出功率不大,以数字形式直接显示工作频率,性能稳定可靠。

2.隔离器位于磁场中的某些铁氧化体材料对于来自不同方向的电磁波有着不同吸收,经过适当调节,可使其对微波具有单方向传播的特性,隔离器常用于振荡器与负载之间,起隔离和单向传输的作用。

3.衰减器把一片能吸微波能量的吸收片垂直于矩形波导的宽边,纵向插入波导管即成,用以部分衰减传输功率,沿着宽边移动吸收片可改变衰减量的大小。

衰减器起调节系统中微波功率从以及去耦合的作用。

4.波长计电磁波通过耦合孔从波导进入频率计的空腔中,当频率计的腔体失谐时,腔里的电磁场极为微弱,此时,它基本不影响波导中波的传输。

当电磁波的频率计满足空腔的谐振条件时,发生谐振,反映到波导中的阻抗发生剧烈变化,相应地,通过波导中的电磁波信号强度将减弱,输出幅度将出现明显的跌落,从刻度套筒可读出输入微波谐振时的刻度,通过查表可得知输入微波谐振频率。

5.测量线测量线是测量微波传输系统中电场的强弱和分布的精密仪器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-- -- 微波测量实验报告

ﻩﻩ ﻩﻩ班级:2012211xxx ﻩ ﻩ姓名:xxxx ﻩﻩﻩﻩﻩ学号:201221xxxx --

-- 《微波测量》课程实验

实验一 熟悉微波同轴测量系统 一、实验目的 1、了解常用微波同轴测量系统的组成,熟悉其操作和特性。 2、熟悉矢量网络分析仪的操作以及测量方法。 二、实验内容

ﻩ1、常用微波同轴测量系统的认识,简要了解其工作原理。 微波同轴测量系统包括三个主要部分:矢量网络分析仪、同轴线和校准元件或测量元件。各部分功能如下:

1)矢量网络分析仪:对RF领域的放大器、衰减器、天线、同轴电缆、滤波器、分支分配器、功分器、耦合器、隔离器、环形器等RF器件进行幅频特性、反射特性和相频特性测量。 2)同轴线:连接矢量网络分析仪和校准元件或测量元件。 3)校准元件:对微波同轴侧量系统进行使用前校准,以尽量减小系统误差。 测量元件:待测量的原件(如天线、滤波器等),可方便地通过同轴线和矢量网络分析仪连起来。

ﻩ2、掌握矢量网络分析仪的操作以及测量方法。 -- -- 注意在实验报告中给出仪器使用报告包括下列内容:

a) 矢量网络分析仪的面板组成以及各部分功能

(1)CRT显示器 显示仪器当前工作状态和测试结果。 (2)BEGIN (开始)

在测量放大器、滤波器、宽带无源器件、电缆等被测时

能快速、简便的配置仪器,可引导用户完成初始步骤,根据用户的选择自动配置仪器。

(3)ENTRY (数据输入) 数字键、旋轮和上下键,用于数据输入。

(4)SYSTEM (系统功能)

SAVERECALL:存储或调用数据。

HARD COPY:打印或者存储测量曲线、数据。 SYSTEM OPTIONS:系统选项。

(5)PRESET (复位) 复位仪器。

(6)CONFIGURE (配置) SCALE:设置垂直方向的分辨率和参考位置等。 DISPLAY:显示设置。 CAL:校准菜单。 MARKER:频标功能键。 FORMAT:数据显示格式。 AVG:平均功能设置和中频带宽设置。

(7)SOURSE (源) FREQ:频率设置。 SWEEP:设置扫描方式、扫描时间。 POWER:RF信号输出开关或者设置RF信号输出功率。 MENU:设置扫描点数及单次扫描、连续扫描或保持等。

(8)MEAS (测量通道) MEAS1:设置通道1的测量方式。 MEAS2:设置通道2的测量方式。

(9)软键 对应的功能显示在左边显示屏上。 (10)亮度调节旋钮 调节显示器亮度。 -- -- (11)电源开关 打开或关闭整机电源。 (12)U盘接口 Usb盘接口 (13)RF OUT (射频输出) 射频信号输出口,N型K头。

(14)RF IN (射频输入) 射频信号输入口,N型K头。

b) S参数测量步骤 1、将一个待测的二端口网络通过同轴线接入矢量网络分析仪,组成一个微波同轴测量系统,如下图所示:

2、在矢量网络分析仪上【measure】键选择测量参数,按下后显示屏的软键菜单会显示[S11]、[S12]、[S21]、[S22]四个待选测试参数,通过按下相应软键来选择要测量的S参数。

被测 -- -- 利用光标读取测量结果:按下【marker】键就会在显示屏上的测试曲线上显示光标,对应显示屏的软键菜单处会显示光标编号[1]、[2]、[3]、[4]、[5],按下相应软键会显示对应编号的光标,默认会显示1号光标。通过旋转旋钮键就会移动光标的位置,而在显示屏右上角会显示光标对应位置的频率和测量值。而通过数字键输入频率值也可以确定光标的位置。 3、然后经过SOLT校准,消除系统误差; 4、在矢量网络分析仪上调处S参数测量曲线,读出相应的二端口网络的S参量,保存为s2p数据格式和cst数据格式的文件。

c) 如何看开路校准件的电容值设定(校准系数) 当传输线中端开路或者短路时,所有输入信号功率被反射到入射端。造成全反射。传输线中断开路时,开路端电流为0,端点反射信号电流与输入信号电流幅度相等,相位相反,而反射信号电压与输入电压同相。信号关系满足欧姆定理。

d) 如何看短路校准件的电感值设定(校准系数) 当传输线中端短路时,开路端电压为0,端点反射信号电压与输入信号电压幅度相等,相位相反,而反射信号电流与输入电流同相。信号关系满足欧姆定理。

e) 如何用Smith圆图显示所测结果以及如何与直角坐标转换 TOOLS工具栏下,下拉选项中可得到simth圆图的显示以及转换直角坐标。

f) 如何保存所测数据,以及可存的数据格式 文件菜单下另存为功能,将数据保存为jpeg图片格式或s2p,s1p文件格式方便后续分析。

g) 了解仪器提供的校准方法(SOLT) 上述用短路、开路、负载三个标准件和直通校准的方法称为SOLT校准法,这是普遍使用的校准方法。 -- -- 仪器提供SOLT校准方法,TRL校准方法等集中校准方法,实验中使用SOLT校准方法。短接校准,开路校准。 三、思考题 1、是否可以直接进行电路参数的测量,为什么?如何从测量的S参数导出电路参数。(给出S参数到Z参数的转换公式,以及如何在ADS中应用。) 不可以,因为矢量网络分析仪是用来处理来自网络的透射波和反射波的幅值和相位,可以直接测量得出S参数,通过S参数导出电路参数。

实验二 微波同轴测量系统校准方法 一、实验目的 1、了解常用微波同轴测量系统的校准方法。 2、熟悉矢量网络分析仪的SOLT校准步骤以及校准精度验证方法。 3、掌握并验证TRL校准方法。 二、实验内容 -- -- 1、总结常用微波同轴测量系统的校准方法,比如TRL和SOLT,了解其校准原理和优缺点。

用短路、开路、负载三个标准件和直通校准的方法称为SOLT校准法,这是普遍使用的校准方法。大多数网络分析仪用户最先熟悉的校准方法是SOLT。SOLT校准能够提供优异的精度和可重复性。这种校准方法要求使用短路、开路和负载标准校准件。如果被测件上有雌雄连接器,还需要分别为雌雄连接提供对应的标准件,连接两个测量平面,形成直通连接。 SOLT校准方法使用12项误差修正模型,其中被测件的正向有6项,反向有6项。操作正确的话,SOLT可以测量百分之一分贝数量级的功率和毫度级相位。常用的校准套件中都包含SOLT标准校准件。这些校准件包括各种连接器类型,并且价格相对便宜,小心使用的话可以用很多年。 有的SOLT校准套件包含滑动负载,因此可改变路径的线路长度,同时保持恒定的负载阻抗(通常为50Ω或75Ω)。滑动负载在高频时尤为重要,因为在这种情况下很难实施良好的固定负载。线路长度的变化会直接成比例地改变电长度,导致测量路径中发生相移。通过在校准过程中使用几种不同长度 的线路和相应的相移,可以更精确地测量网络分析仪的方向性。 双向直通SOL通常称为“未知直通”。这种方法允许在遵守一些基本原则的条件下,在校准过程中使用电缆、电路板线轨或Ecal模块作为直通路径。当处理非插入式设备(具有同性或不兼容的连接器,在校准期间需要使用适配器才能建立直通连接)时,未知直通尤为有用。该适配器会给校准带来一个误差。未知直通因为无需使用精密的或经过校准的适配器,并且可以最大限度地减少校准期间的电缆移动,所以非常有用。它通常比其他需要去除适配器的方法更 方便、更精确。 另一个二端口校准形式称为TRL校准(直通、反射和空气线)。TRL校准主要用在非同轴环境,如对波导进行测试、利用测试夹具或用探针进行晶片上测量。TRL校准极为精确,在大多数情况下,精确度甚至超过SOLT校准。然而绝大多数校准套件中都不包含TRL标准件。在要求高精度并且可用的标准校准件与被测件的连接类型不同的情况下,一般采用TRL校准。使用测试夹具进行测量或使用探头进行晶圆上的测量,通常都属于这种情况。因此,某些情况下需-- -- 要构建和表征与被测件配置介质类型相同的标准件。制造和表征三个TRL标准件比制造和表征四个SOLT标准件更容易。 TRL校准还有另一个重要优势:标准件不需要像SOLT标准件那样进行完整或精确的定义。虽然SOLT标准件是完全按照标准的定义进行表征和储存,而TRL标准件只建立模型而不进行完整表征,但是TRL校准的精度与TRL标准件的质量和可重复性成正比。物理中断(例如传输线路弯曲和同轴结构中的焊缝)将会降低TRL校 准的精度。接口必须保持清洁并允许可重复的连接。 在同轴应用中,SOLT通常是优先使用的校准技术。尽管不常用的同轴TRL比SOLT能提供更高的精度,但只有在使用质量很高的同轴传输线(如空气线)时才能实现。对于SOLT法,相位测试精度主要取决于开路器和短路器的精度,幅度的测试精度取决于所使用的匹配负载。用滑动负载的SOLT法,通过多次测量找圆心,测量精度高于用固定负载的SOLT法。

2、掌握矢量网络分析仪的SOLT校准步骤以及校准精度验证方法。 校准步骤:响应→校准→校准向导→校准类型→选择双端口SOLT→测量机械标准→依次选择1端口短路、开路、负载,直通,2端口短路、开路、负载进行校准。 1、用开路器校准件校准 网络仪端口一般都是N型50欧姆或75欧姆端口,如果被测件端口也是50欧姆或75欧姆,并且阴阳极性匹配,这时只需校准网络仪内部的系统误差。以下分析都假设被测件是二端口器件,系统误差模型采用全二端口模型。将已知标准校准件开路器的两端接入实际参考面PA1和PA2,即把开路校准件接入矢量网络分析仪。 2、用短路器校准件校准 与1原理相同,将已知标准校准件短路器的两端接入实际参考面PA1和PA2,即把短路校准件接入矢量网络分析仪。 3、用匹配器校准件校准

相关文档
最新文档