110kW电励磁双凸极电机计算与分析

110kW电励磁双凸极电机计算与分析
110kW电励磁双凸极电机计算与分析

三相电机的电流计算公式

三相电机的电流计算公式 如果一台排风扇是三相电机,它的标签上只写了电压380V,功率是4KW,还有转速,那么怎么计算它的电流呢? 公式是什么呢 A=KW/(1.732*0.38*COS) COS=功率因数 第 2.0.1条电力负荷应根据对供电可靠性的要求及中断供电在政治、经济上所造成损失或影响的程度进行分级,并应符合下列规定: 一、符合下列情况之一时,应为一级负荷: 1.中断供电将造成人身伤亡时。 2.中断供电将在政治、经济上造成重大损失时。例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等。 3.中断供电将影响有重大政治、经济意义的用电单位的正常工作。例如:重要交通枢纽、重要通信枢纽、重要宾馆、大型体育场馆、经

常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷。 在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷。 二、符合下列情况之一时,应为二级负荷: 1.中断供电将在政治、经济上造成较大损失时。例如:主要设备损坏、大量产品报废、连续生产过程被打乱需较长时间才能恢复、重点企业大量减产等。 2.中断供电将影响重要用电单位的正常工作。例如:交通枢纽、通信枢纽等用电单位中的重要电力负荷,以及中断供电将造成大型影剧院、大型商场等较多人员集中的重要的公共场所秩序混乱。 三、不属于一级和二级负荷者应为三级负荷。 第2.0.2条一级负荷的供电电源应符合下列规定: 一、一级负荷应由两个电源供电;当一个电源发生故障时,另一个电源不应同时受到损坏。 二、一级负荷中特别重要的负荷,除由两个电源供电外,尚应增设应急电源,并严禁将其它负荷接入应急供电系统。 第2.0.3条下列电源可作为应急电源:

永磁直流电机设计

永磁直流電機設計 1.電機主要尺寸與功率,轉速的關系: 與異步電機相似,直流電機的功率,轉速之間的關系是: D22*Lg=6.1*108*p’/(αP*A*Bg*Ky*n) (1) D2 電樞直徑(cm) 電机初設計時的主要尺寸 Lg 電樞計算長度(cm) 根據電机功率和實際需要確定 p’計算功率(w) p’=E*Ia=(1+2η)*P N/3η E=Ce*Φ*n*Ky=(P*N/60*a)*Φ2*n*Ky*10-8 Ce 電勢系數 a 支路數在小功率電機中取a=2 p 极數在小功率電機中取p=2 N 電樞總導体數 n 電机額定轉速 Ky 電樞繞組短矩系數小功率永磁電机p=2時,采用單疊繞組Ky=Sin[(y1/τ)*π/2] y1繞組第一節矩 αP 極弧系數一般取αP=0.6~0.75 正弦分布時αP=0.637 Φ每極磁通Φ=αP*τ*Lg*Bg τ極矩(cm) τ=π*D2/P Bg 氣隙磁密(Gs) 又稱磁負荷對鋁鎳Bg=(0.5~0.7) Br 對鐵氧体Bg=(0.7~0.85) Br, Br為剩磁密度 A 電樞線負荷 A=Ia*N/(a*π*D2)Ia電樞額定電流對連續運行的永磁電動机,一般取A=(30~80)A/cm另外電機負荷Δ= Ia/(a*Sd),其中Sd=π*d2/4 d為導線直徑.為了保証發熱因子A*Δ≦1400 (A/cm*A/mm2 )通常以電樞直徑D2和電樞外徑La作為電机主要尺寸,而把電動機的輸出功率和轉睦為電机的主要性能,在主要尺寸和主要性能的基礎上,我們就可以設計電機了. 在(1)式的基礎上經過變換可為:

D22*Lg*n/P’=(6.1*108/π2)*1/(αP*Bg*A)=C A 由上式可以看, C A的值並不取決於電機的容量和轉速,也不直接與電樞直徑和長度有關,它 僅取決於氣隙的平均磁密及電樞線負荷,而Bg和A的變化很小,它近似為常數,通常稱為電機 常數,它的導數K A=1/C A=(p’/n)/(D22* Lg)∞αP*Bg*A 稱為電機利用系數,它是正比於單位電 樞有效体積產生的電磁轉矩的一個比例常數. 2.直流電機定子的確定 2.1磁鋼內徑 根據電機電樞外徑D2確定磁鋼內徑 Dmi=D2+2g+2Hp 其中g為氣隙長度,小功率直流電機g=0.02-0.06cm ,鐵氧體時g可取得大些,鋁鎳鈷磁 鋼電機可取得較小,因鐵氧體H C較大.氣隙對電機的性能有很大的影響,較小的g可以使電樞 反應引起的氣隙磁場畸變加劇,使電機的換向不良加劇,及電機運行不穩定,主極表面損耗和 噪音加劇,以及電樞撓度加大,較大的氣隙,使電機效率下降,溫升提高. 有時電機磁鋼采用極靴,這樣可以起聚磁作用,提高氣隙磁密,還可稠節極靴 形狀以改善空載氣隙磁場波形,負載時交軸電樞反應磁通經極靴閉,合對永磁磁 極的影響較小.但這樣會使磁鋼結構复雜,制造成本增加,漏磁系數較大,外形尺 寸增加,負載時氣隙磁場的畸變較大.而無極靴時永磁體直接面向氣隙,漏磁系數小,能產生較多的磁通,材料利用率高,氣隙磁場畸變,而且結構簡單,便於生產. 其缺點是容易引起不可逆退磁現象. Hp 極靴高(cm) 無極靴結構時Hp=0 2.2磁鋼外徑 Dm0=Dmi+2Hm (瓦片形結構) Hm 永磁體磁路長度,它的尺寸應從滿足(1)有足夠的氣隙磁密(產生不可逆退磁),(2)在要求的任何情運行狀態下會形成永久性退磁等方面來確定,一般Hm=(5~15)g Hm越大,則氣隙磁密也越大,否則,則氣隙磁密也越小. 2.3磁鋼截面積Sm 對于鐵氧體由于Br小,則Sm取較大值,而對于鋁鎳鈷來說, Br較大,則Sm取小值. 環形鐵氧體磁鋼截面積: Sm=αP*π*(Dmi+Hm)Lg/P (cm)

凸极同步发电机电磁计算程序

凸极同步发电机电磁计算程序 额定数据和主要尺寸 1.额定电压 U N V 600= 2.额定转速 n N 1500/m in r = 3.额定频率 ?HZ 50= 4.额定功率因数 cos ?=0.8 5.额定电流 80N I A = 6.相数 m=3 7.确定功率: 600800.8 1.173.16P k w = ???= 8.根据功率取对应T2X-250L 电机,额定功率75N P k w = 9.效率 91.4% η = 10.极数 2p 120120504 1500 N f n ?== = 11.计算功率: ' 1.0875 101.25c o s 0.8 E N K P P k w ? ?= = = 式中 1.08 E K =(对于同步发电机取值) 12.极弧系数:极弧长度(0.630.72)p b τ =~

取'p α= 0.67 p b τ = 13.气隙磁密 (0.7 1.07B T δ=~ 取0.8B T δ = 14.取线负荷 280/280/ A K A m A c m == 15.电机的计算体积 3 ' 2 '16.110 il p B d p N P D le f K K A B n δ α ? ???= ? ?? 3 3 3 3 6.110101.2510 0.67 1.110.92280000.81500 27.110 m -???= ?????=? 16.主要尺寸比:0.6 2.5 λ =~ 17.定子铁心内径取值范围 il D = 0.23990.3860m = =~ 18.定子铁心铁外径: ()111.42 1.420.23990.3407i D D m ===~0.3860~0.5481 按标准选取1 430D m m = 则定子内径: 11430302.823001.42 1.42 i D D c m m m = =≈≈ 19.定子铁心有效长度: 2 3 122 1 27.110 0.30113000.3 i i D lef l lef m m m D -??≈= = ≈≈ 20.定子铁心净长度: ()3000.92276F et F et k k F et l K l n b K l m m =-= ?=?= 式中F e t K =0.92(对0.5mm 厚硅钢片) 在对发电机的计算中,k k n b 不计入F e t l 中

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

新型轴向磁通双凸极永磁发电机的设计与分析

第48卷 2015年 第6期6月 MICROMOTORS Vol.48.No.6 Jun.2015 新型轴向磁通双凸极永磁发电机的设计与分析 彭 鹏,张广明,梅 磊,王德明 (南京工业大学自动化与电气工程学院,南京211816) 摘 要:提出了一种新型结构轴向磁通的双凸极电机。通过磁路法和有限元法实现发电机参数设计,给出定转子尺寸,永磁体大小,绕组数等参数。利用有限元方法对提出的新型电机进行了静态分析,得到空载情况下,不同转子位置时的磁场分布,磁链等特性。仿真结果证明所设计的新型电机同时具有双凸极和轴向磁通电机的特性,与理论分析一致,具有实用性。 关键词:双凸极永磁;轴向磁通;有限元分析 中图分类号:TM352 文献标志码:A 文章编号:1001-6848(2015)06-0028-04 DesignandAnalysisofaNovelAxialFluxPermanentMagnet GeneratorWithDoublySalientStructure PENGPeng,ZHANGGuangming,MEILei,WANGDeming (SchoolofAutomationandElectricalEngineering,NanjingUniversityofTechnology,Nanjing211816,China)Abstract:Anewtypeofaxialfluxpermanentmagnetgeneratorwithdoublysalientstructurewasproposed.Bymeansofmagneticcircuitmethodandfiniteelementmethod,parametersofthenewgeneratorwereobtained,includingsizeofstators,rotorsandmagnet,numbersofwindings,etc.ThenewlyproposedgeneratorwasanalyzedbyFEM.Fielddistributions,linkageandothercharacteristicswithdifferentrotorpositionsinno-loadoperationswereachieved.Thesimulationtestifiesthat,inaccordwiththeoreticalanalysis,thenewlydesignedgeneratorwithcharacteristicsofbothdoublysalientmotorsandaxialfluxmotorsispractical.Keywords:doublysalientpermanentmagnet;axialflux;finiteelementanalysis 收稿日期:20140910 基金项目:国家自然科学基金项目(51277092,51307080)作者简介:彭 鹏(1990),硕士,研究方向为电机设计与分析。 张广明(1965),博士,教授,研究方向为智能控制理论及应用、机电系统综合控制。 梅 磊( 1979),博士,研究方向为飞轮储能技术的研究,电机起动/发电技术、磁悬浮轴承技术。王德明( 1956),博士,教授,研究方向为电磁与能量转换,机电工程。0 引 言 双凸极永磁电机(DoublySalientPermanentMag-netMotor)[1-2] 由美国的T.ALipo教授率先进行研究, 其结构与开关磁阻电机类似,具有结构简单、效率高、功率密度高、转矩/ 电流比大等特点。双凸极永磁电机的永磁体位于定子上,消除了不可逆去磁,转子上无绕组,机械稳定性高。 随后,东南大学程明教授[3-7] 提出设计了8/6结 构和12/ 8结构双凸极电机,对定子双馈电双凸极电机进行电磁分析。文献[8]对双凸极变速电机建立了变结构等效磁路模型,并与有限元分析进行了对比。磁通切换型双凸极电机由HoangE教授提出,文献[ 9]对其进行了静态特性的研究。山东大学李光友教授对磁通反向双凸极电机进行了设计和分 析[10-11] 。南京航空航天大学严仰光教授对永磁式和 混合励磁式双凸极电机的设计和控制进行了大量 研究[12-16]。 此前提出的双凸极电机的气隙磁场方向均为径向,其散热性能不佳,为了充分利用双凸极电机定位力矩小,效率高以及轴向磁通电机散热好,结构扁平的特点,本文将双凸极电机与轴向磁通电机的结构进行了融合,提出设计一种盘式结构的双凸极永磁发电机并应用于小型分布式风力发电系统。该设计考虑了极尖磁饱和,边缘效应以及永磁磁通与电枢反应的交互作用。电机漏磁也作为参数设计的重要参考。文章利用所计算的发电机参数进行实体建模,利用有限元分析,给出仿真结果,从而初步

电机的启动电流怎么算

电机的启动电流怎么算 [ 标签:电机, 启动电流]ㄨ只④我不配2011-06-01 08:43 满意答案好评率:100% 电动机启动冲击电流,与负载性质(恒转矩、恒功率、通风机类)和启动方式(直接启动、自藕降压启动、星三角、延边三角、频敏变阻、变频启动)有关。 通常,以星三角启动380/3交流异步电动机为例,可以这样估算: 110KW电动机,额定工作电流约200A(也可以按功率的2倍估算), 直接启动时,电流按6倍额定电流估算,约1200A; 星三角启动时,启动电流为直接启动方式时的1/3,则为400A。 200KW电动机的断路器开关额定电流选多大 三相异步电机额定电流的估算: 额电电压~660V I≈ ~380V I≈2P ~220V I≈ P-电动机额定功率KW 主开关电流选择:主开关额定电流=设备额定电流(分支额定电流总和)*~ 既(200*2)*=520A选型时选600A

11千瓦电动机启动热过载电流是多少 11千瓦电动机启动热过载电流是多少 匿名提问 2009-08-24 09:54:43 发布 工程学术 2个回答 oncsqufpi| 2009-08-24 09:54:53 有0人认为这个回答不错 | 有0人认为这个回答没有帮助 根据用电设备的功率,算出总功率以后,I=P/U按公式后在乘的系数~!

如果比较麻烦的话就是一个千瓦2个安培的电流~!是最通用的,里面包括了抛出的电流容量。1KW=2A 选择电缆也有方法 按电流计算,下面给出的比较简单的选择算法以铝芯线为计算项目 十下五:百上二:二五三五四三界,七零九五两倍半~!这个是口诀 十平方毫米以下的BLV线电流可以承载线径的五倍~! 一百平方毫米以上的BLV线电流承载线径的二倍。 25mm2和35mm2的BLV电流承载在4倍和3倍的分割线。 70mm2和95mm2的电流容量是线径的倍。 除此内容以外,有铜芯线的按照铝线的升级倍数来算,也就是说BV-10mm2按照BLV-16mm2的电流来算其他的也如此 导线在穿塑料管或是PVC管,算出的电流要乘上的系数 导线在穿钢管的情况下,计算的电流在乘上 导线在高温的场所通过,计算的电流结果在乘上 如果导线在以上三种情况都有的话先乘在乘或者直接打到也可以

永磁电机磁路结构和设计计算

1.1 磁路结构和设计计算 永磁发电机与励磁发电机的最大区别在于它的励磁磁场是由永磁体产生的。永磁体在电机中既是磁源,又是磁路的组成部分。永磁体的磁性能不仅与生产厂的制造工艺有关,还与永磁体的形状和尺寸、充磁机的容量和充磁方法有关,具体性能数据的离散性很大。而且永磁体在电机中所能提供的磁通量和磁动势还随磁路其余部分的材料性能、尺寸和电机运行状态而变化。此外,永磁发电机的磁路结构多种多样,漏磁路十分复杂而且漏磁通占的比例较大,铁磁材料部分又比较容易饱和,磁导是非线性的。这些都增加了永磁发电机电磁计算的复杂性,使计算结果的准确度低于电励磁发电机。因此,必须建立新的设计概念,重新分析和改进磁路结构和控制系统;必须应用现代设计方法,研究新的分析计算方法,以提高设计计算的准确度;必须研究采用先进的测试方法和制造工艺。 1.2 控制问题 永磁发电机制成后不需外界能量即可维持其磁场,但也造成从外部调节、控制其磁场极为困难。这些使永磁发电机的应用范围受到了限制。但是,随着MOSFET、IGBTT等电力电子器件的控制技术的迅猛发展,永磁发电机在应用中无需磁场控制而只进行电机输出控制。设计时需要钕铁硼材料,电力电子器件和微机控制三项新技术结合起来,使永磁发电机在崭新的工况下运行。 1.3 不可逆退磁问题 如果设计和使用不当,永磁发电机在温度过高(钕铁硼永磁)或过低(铁氧体永磁)时,在冲击电流产生的电枢反应作用下,或在剧烈的机械振动时有可能产生不可逆退磁,或叫失磁,使电机性能降低,甚至无法使用。因而,既要研究开发适合于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构形式的抗去磁能力,以便在设计和制造时采用相应措施保证永磁式发电机不会失磁。 1.4成本问题 由于稀土永磁材料目前的价格还比较贵,稀土永磁发电机的成本一般比电励磁式发电机高,但这个成会在电机高性能和运行中得到较好的补偿。在今后的设计中会根据具体使用的场合和要求,进行性能、价格的比较,并进行结构的创新和设计的优化,以降低制造成本。无可否认,现正在开发的产品成本价格比目前通用的发电机略高,但是我们相信,随着产品更进一步的完美,成本问题会得到很好的解决。美国DELPHI(德尔福)公司的技术部负责人认为:“顾客注重的是每公里瓦特上的成本。”他的这一说法充分说明了交流永磁发电机的市场前景不会被成本问题困扰。 1.5永磁转子特点: 结构1: 并联磁场结构;转采用采用铸造压制而成,里面嵌放永磁体,能量大、重量轻、体积小、整体结构牢固可靠,最大工作转速大于15000转/分。 专利号;ZL96 2 47776.1 结构2: 串联磁场式结构;转子采用钢结构,表面按顺序嵌放永磁铁,转子表面磁通强、重量轻、体积小、整体结构牢固可靠,最大工作转速大于15000转/分。 专利号:ZL98 2 33864.3 整机稳压系统特点: 采用可控硅和二极管组成半控桥式整流电路。稳压系统是一种斩波调制型稳压装置,其稳压精度为正负0.1v,故该发电机具有能瞬间承受较大电流、运行可靠和耐用等特点,又因可直接利用发电机发出的交流电的反向电压使可控硅自行关断,故无需加关断电路,使电路结构简单、可靠。 2、永磁发电机的优点

双凸极永磁电机的控制方案研究

双凸极永磁电机的控制方案研究 发表时间:2010-05-10T16:21:41.310Z 来源:《计算机光盘软件与应用》2010年第4期供稿作者:盛浩琪[导读] 双凸极永磁电机的主要特点是结构简单,适合于自动化制造。 盛浩琪 (宁波公运车辆检测有限公司,浙江宁波 315000)摘要:双凸极永磁电机的主要特点是结构简单,适合于自动化制造。与双凸极永磁电机设计有关,得到使定位转矩为零的充分条件。鉴于位置传感器的不精确和一种现存的无位置传感器方案的移相困难,提出了一种新的无位置传感器方案。仿真验证了新方案的精确性。实际可行性由一单片机系统初步证实。 关键词:双凸极;永磁电机;无位置传感器 中图分类号:TM3 文献标识码:A 文章编号:1007-9599 (2010) 04-0000-01 Doubly Salient Permanent Magnet Motor Control Scheme Sheng Haoqi (Ningbo Public Transport Vehicle Detection Co., Ltd.,Ningbo 315000,China) Abstract:The main characteristics of Doubly Salient Permanent Magnet Motor is simple structure,suitable for automated manufacturing.And the doubly salient permanent magnet motor design is related to positioning are sufficient conditions for zero torque.Given the imprecise position sensor and a non-existing program phase shift position sensor problems,a new Unposition sensor scheme.Simulation results show the accuracy of the new program Practical feasibility and initial confirmed by a microcomputer system. Keywords: Doubly Salient;Permanent magnet motor;Unposition sensor 双凸极永磁电机采用高性能永磁体激磁,工作在双极性状态下,其能量转化率和绕组利用率较传统变磁阻电机要高,因此它具有较高的转矩密度,与相同功率等级的传统变磁阻电机相比,其体积较小。由于高性能永磁体的采用,双凸极永磁电机设计时绕组匝数与相同功率等级的变磁阻电机相比要少,加之采用集中绕组和体积的减小,绕阻端部长度亦较小,故此电机铜耗较传统变磁阻电机要小。在小功率应用范围内,由于铜耗在总损耗中占较大分量,与传统变磁阻电机相比较,双凸极永磁电机在效率上的改进尤为明显。如果控制的设计能使用一个精确的模型,那么利用线性反馈技术和预先计算好的最优的转矩分配函数,就能导致最优的动态性能。然而,使用精确模型意味着复杂的在线计算,或者是巨大的用来查询的表格,这些暂时都难以实现;而实际上模型的不精确性是不可避免的,从而不可避免的使性能变坏;还有实际的测量的不精确。然而可以采用一种完全不同的思路,即使用一个简化的模型,而其中的参数被自适应的实时的调整。总之,改善双凸极电机的动态性能的控制方法正在不断完善。 一、位置传感器方案 “两相导通”策略下,控制器的主要任务是根据当前的转子位置决定哪个两相组合导通。事实上,导通原则只是间接地依赖于转子位置,而直接地依赖于反电势。换句话说,即:“总是选择线反电势较大的两相导通”。 由于反电势难以获知,而它与转子位置有固定的联系,因此改由检测转子位置来决定触发信号。如果反电势与转子位置的关系已知,那么,这样的传感器装置(比如槽形光耦配合遮光盘)不难设计。此时,控制器的作用就像一个简单的译码器,它接收3路位置传感器信号,而产生6路逆变桥控制信号。 二、无位置传感器方案 (一)位置传感器的缺点 使用位置传感器无疑是最简单的,同时也是可靠的。更为重要的是,它不存在起动困难。其缺点是控制器与电机的连线过多、传感器增加了系统的硬件成本、不能灵活地调整控制策略,以及在大极对数下对传感器的安装精度要求过高。为解决这个问题,可以通过无位置传感器方案来解决。 (二)一种经典的无位置传感器方案 这一方案的原理是:检测关断相反电势的过零点;在过零点之后,电机再转过30度电角,即换流时刻。通过检测三相端电位即可检测关断相反电势的过零点。 任何平顶宽度达到或超过120度电角的反电势都能够保证,在某相成为关断相期间,另外两相的反电势的幅值始终相等。事实上,对反电势的要求无需如此苛刻。确切地说,只需在关断相反电势的过零点位置,导通两相的反电势具有相等的幅值即可。换句话说,在关断相反电势过零点位置的两边,中心点电位可以偏离导通两相端电位的中点。这样并不会引起检测过零点位置的误差。把这一要求称为对反电势的最小约束[1]。可以证明,反电势波形的峰(谷)若左右对称如正弦波、等腰梯形波,即可满足上述要求。当然,中心点电位的偏离不能太大,那样的话,将产生多余的伪过零点。如果反电势满足最小约束,则在此过零点位置,同样满足两相的电感相等,因为此时两相绕组处于相同的磁路环境。因此,与反电势的情况相同,即使在其它位置“电感相等”的条件不能满足,也不会影响过零点判断的精度。可见,过零点的判断几乎不依赖于电机参数;换句话说,过零点判断在理论上几乎没有误差。这是这一方案最(或许也是唯一)迷人的地方。

Ansoft永磁同步电机 设计 报告

现代电机设计 利用Ansoft软件对异步起动永磁同步电动 机的分析计算 2013 年7 月

目录 第1章引言………… 第2章 RMxprt在永磁同步电机中的电机性能分析………… 2.1 Stator项设置过程………… 2.2 Rotor项设置过程………… 2.3 Line Start-Permanent Magnet Synchronous Machine的电机仿真………… 2.4 计算和结果的查看………… 第3章静态磁场分析………… 3.1 电机模型和网格剖分图………… 3.2 磁力线分布图…………………… 3.3 磁密曲线 3.3.1 气隙磁密分布………… 3.3.2 定子齿、轭部磁密大小………… 3.3.3 转子齿磁密大小………… 第4章瞬态场分析………… 4.1 额定稳态运行性能………… 4.1.1 电流与转矩大小………… 4.1.2 各部分磁密………… 4.2 额定负载启动………… 4.2.1 转矩-时间曲线………… 4.2.2 电流-时间曲线………… 4.2.3 转速-时间曲线………… 4.2.4 转矩-转速曲线…………

第1章引言 Ansoft Maxwell作为世界著名的商用低频电磁场有限元软件之一,在各个工程电磁场领域都得到了广泛的应用。它基于麦克斯韦微分方程,采用有限元离散形式,将工程中的电磁场计算转变为庞大的矩阵求解。该软件包括二维求解器、三维求解器和RMxprt旋转电动机分析专家系统这3个主要模块,不仅可以进行静磁场、静电场、交直流传导电场、瞬态电场、涡流场、瞬态磁场等不同的基本电磁场的特性分析,还可以通过RMxprt电动机模块仿真多种电动机模型,为实际电动机设计提供帮助。利用Ansoft软件进行仿真可以帮助我们了解电动机的结构特性。 本文是一台4极、36槽绕组永磁同步电动机,利用RMxprt模块进行电机的建模、仿真以及导入到Maxwell2D的有限元模块的方法,然后再对Maxwell2D 中的永磁体模型进行修正,最后对该电机在静态磁场和瞬态磁场的情况下进行分析。

表贴式双凸极永磁电机优化设计与电磁性能分析-殷佳宁

表贴式双凸极永磁电机优化设计与电磁性能分析 [殷佳宁] [江苏大学电气信息工程学院,212013] [ 摘要] 虽然双凸极永磁(double-salient permanent-magnet,DSPM)电机具有高效率高功率密度的优点,但是其永磁体漏磁严重,从而导致永磁体利用率偏低。在稀土资源价格日益上涨、剩余量 逐渐减少的情况下,如何提高电机永磁体利用率显得尤为重要。为了提高电机永磁体利用率, 本文提出了一种新型12槽10极表贴式双凸极永磁(Surface-mounted double-salient permanent-magnet,SM-DSPM)电机,并对此电机结构进行优化设计。在确定电机结构尺寸 的基础上,通过有限元分析软件对电机的磁通密度、气隙磁密、空载反电势以及输出转矩进行 了分析,并与传统的12槽8极DSPM电机进行比较。对比结果表明,12槽10极SM-DSPM 电机拥有更高正弦度的反电势和更小的转矩脉动,并且SM-DSPM电机永磁体用量更少,拥 有永磁体利用率更高的优点。可以预见,该电机在工业制造、电动汽车等领域有着很好的应用 前景。 [ 关键词]双凸极电机,永磁电机,表贴式,永磁体利用率 Optimal Design and Electromagnetic Performance Analysis of Surface-mounted Double-salient Permanent magnet Motor [Yin Jianing ] [School of Electrical and Information Engineering, Jiangsu University, 212013] [ Abstract ] Double-salient permanent-magnet (DSPM) motor has the advantages of high efficiency, high power density, but its permanent magnet flux leakage is serious, which results in the low utilization of permanent magnet. As the rare earth resources dwindle, it is significant to improve the utilization of the permanent magnet in the motor. In order to improve the utilization of the permanent magnet, a new 12-slot 10-pole Surface-mounted double-salient permanent-magnet (SM-DSPM) motor is proposed in this paper. In the paper, the structure design of the motor is optimized. After determining the structure size of the motor, electromagnetic performance such as magnetic flux density, air-gap flux density, back EMF, and the output torque were analyzed based on the finite element analysis software. And it is compared with the traditional 12-slot 8-pole DSPM motor. According to the comparative results, it is shown that the SM-DSPM motor has a higher-sinusoidal back EMF, less usage

各种计算电磁学方法比较和仿真软件

各种计算电磁学方法比较和仿真软件 各种计算电磁学方法比较和仿真软件微波EDA 仿真软件与电磁场的数值算法密切相关,在介绍微波EDA 软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell 方程组之上的,了解Maxwell 方程是学习电磁场数值算法的基础。计算电磁学中有众多不同的算法,如时域有限差分法(FDTD )、时域有限积分法(FITD )、有限元法(FE)、矩量法(MoM )、边界元法(BEM )、谱域法(SM)、传输线法(TLM )、模式匹配法(MM )、横向谐振法(TRM )、线方法(ML )和解析法等等。在频域,数值算法有:有限元法( FEM -- Finite Element Method)、矩量法(MoM -- Method of Moments ),差分法( FDM -- Finite Difference Methods ),边界元法( BEM --Boundary Element Method ),和传输线法 ( TLM -Transmission-Line-matrix Method )。在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD )、传输线法(TLM )、时域有限积分法(FITD )、有限元法(FEM )、矩量法(MoM )、线方法(ML )、边界元法(BEM )、谱域法(SM )、模式匹配法

各种电机电流计算方法

各种电机额定电流的计算 1、电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号3 UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 三相的计算公式: P=1.732×U×I×cosφ (功率因数:阻性负载=1,感性负载≈0.7~0.85之间,P=功率:W) 单相的计算公式: P=U×I×cosφ 空开选择应根据负载电流,空开容量比负载电流大20~30%附近。P=1.732×IU×功率因数×效率(三相的) 单相的不乘1.732(根号3) 空开的选择一般选总体额定电流的1.2-1.5倍即可。

经验公式为: 380V电压,每千瓦2A, 660V电压,每千瓦1.2A, 3000V电压,4千瓦1A, 6000V电压,8千瓦1A。 3KW以上,电流=2*功率;3KW及以下电流=2.5*功率 2功率因数(用有功电量除以无功电量,求反正切值后再求正弦值)功率因数cosΦ=cosarctg(无功电量/有功电量) 视在功率S 有功功率P 无功功率Q 功率因数cosΦ 视在功率S=(有功功率P的平方+无功功率Q 的平方)再开平方 而功率因数cosΦ=有功功率P/视在功率S 3、求有功功率、无功功率、功率因数的计算公式,请详细说明下。(变压器为单相变压器) 另外无功功率的降低会使有功功率也降低么?反之无功功率的升高也会使有功功率升高么? 答:有功功率=I*U*cosφ即额定电压乘额定电流再乘功率因数 单位为瓦或千瓦 无功功率=I*U*sinφ,单位为乏或千乏. I*U 为容量,单位为伏安或千伏安. 无功功率降低或升高时,有功功率不变.但无功功率降低时,电流要降低,线路损耗降低,反之,线路损耗要升高. 4、什么叫无功功率?为什么叫无功?无功是什么意思?

KW调速永磁同步电动机电磁设计程序文件

11KW 变频起动永磁同步电动机电磁设计程序 及电磁仿真 1永磁同步电动机电磁设计程序 1.1额定数据和技术要求 除特殊注明外,电磁计算程序中的单位均按目前电机行业电磁计算时习惯使用的单位,尺寸以cm(厘米)、面积以cm 2(平方厘米)、电压以V (伏)、电流以A (安)、功率和损耗以(瓦)、电阻和电抗以Ω(欧姆)、磁通以Wb(韦伯)、磁密以T(特斯拉)、磁场强度以A/cm(安培/厘米)、转矩以N (牛顿)为单位。 1额定功率kw P n 11= 2相数 31=m 3额定线电压V U N 3801= 额定相电压Y 接法V U U N N 39.2193/1== 4额定频率50f HZ = 5电动机的极对数P =2 6额定效率87.0, =N η 7额定功率因数78.0cos , =N ? 8失步转矩倍数2.2* =poN T 9起动转矩倍数2.2* =stN T 10起动电流倍数2.2* =stN I 11额定相电流62.2478.087.039.21931011cos 105 , ,15=????=?=A U m P I N N N N N ?η 12额定转速1000=N n r/min 13额定转矩m N n P T N N N .039.1051000 11 55.91055.93=?=?=

14绝缘等级:B 级 15绕组形式:双层叠绕Y 接法 1.2主要尺寸 16铁心材料DW540-50硅钢片 17转子磁路结构形式:表贴式 18气隙长度cm 07.0=δ 19定子外径cm D 261= 20定子内径cm D i 181= 21转子外径86.17)07.0218(212=?-=-=cm D D i δ 22转子内径cm D i 62= 23定,转子铁心长度cm l l 1521== 24铁心计算长度cm l l a 152== 铁心有效长度cm cm l l a ef 14.15)07.0215(2=?+=+=δ 25定子槽数136Q = 26定子每极每相槽数332/362/11??==p m Q q =2 27极距cm P D i p 728.932/1814.32/1=??==πτ 28定子槽形:梨形槽 定子槽尺寸 cm h cm r cm b cm b cm h 72.153.078.038.008.002110101===== 29定子齿距cm Q D t i 5708.136 181 1 1== = π π

电机常用计算公式及说明

电机电流计算: 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相 B相 C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式 p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 极对数与扭矩的关系 n=60f/p n: 电机转速 60: 60秒 f: 我国电流采用50Hz p: 电机极对数 1对极对数电机转速:3000转/分;2对极对数电机转速:60×50/2=1500转/分在输出功率不变的情况下,电机的极对数越多,电机的转速就越低,但它的扭矩就越大。所以在选用电机时,考虑负载需要多大的起动扭距。 异步电机的转速n=(60f/p)×(1-s),主要与频率和极数有关。 直流电机的转速与极数无关,他的转速主要与电枢的电压、磁通量、及电机的结构有关。n=(电机电压-电枢电流*电枢电阻)/(电机结构常数*磁通)。 扭矩公式 T=9550*P输出功率/N转速 导线电阻计算公式: 铜线的电阻率ρ=0.0172, R=ρ×L/S (L=导线长度,单位:米,S=导线截面,单位:m㎡) 磁通量的计算公式: B为磁感应强度,S为面积。已知高斯磁场定律为:Φ=BS 磁场强度的计算公式:H = N × I / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N × Ae)B=F/ILu磁导率 pi=3.14 B=uI/2R 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 感应电动势 1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率} 磁通量变化率=磁通量变化量/时间磁通量变化量=变化后的磁通量-变化前的磁通量 2)E=BLV垂(切割磁感线运动){L:有效长度(m)} 3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值} 4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)} 三相的计算公式:

电机电流计算

已知变压器容量,求其各电压等级侧额定电流 口诀a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数” 显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV 电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。(3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推导出的5个专用口诀,容量(kW)与电流(A)的倍数,则是各电压等级(kV)数除去0.76系数的商。专用口诀简便易心算,但应注意其误差会增大。一般千瓦数较大的,算得的电流比铭牌上的略大些;而千瓦数较小的,算得的电流则比铭牌上的略小些。对此,在计算电流时,当电流达十多安

相关文档
最新文档