深基坑支护结构设计分析
深基坑支护设计方案

深基坑支护设计方案深基坑支护设计方案一、背景说明深基坑施工是指地下工程中特别要挖掘深且边坡陡峭的基坑,为了确保基坑的稳定性和安全性,需要进行科学合理的支护设计。
本文以某深基坑为例,制定深基坑支护设计方案。
二、工程概况某深基坑位于城市中心,地下水位较高,设计挖掘深度达到20米,基坑边坡倾斜角度为45度。
三、支护设计方案1.针对地下水位较高的情况,采取暂时性降水措施。
通过使用井点降水、水泵降水等方式,将基坑内的地下水位降至工作面以下。
2.针对基坑边坡的倾斜角度,采取钢支撑和锚杆加固相结合的方式来进行支护。
钢支撑方案:在基坑边缘设置钢支撑,通过截斜杆和上中下横梁相结合的方式,构成一个合理的支撑系统,以增加边坡的稳定性。
锚杆加固方案:基坑边坡上设置锚杆,锚杆与边坡土体形成一个整体,通过锚杆的强固作用,提高边坡的抗滑性能。
3.为了确保支护结构的稳定性和安全性,在设计中需要进行相应的计算和分析。
对钢支撑和锚杆进行荷载承载力计算,确定材料和规格。
对支护结构进行稳定性分析,检查是否满足工程要求。
4.在施工过程中,要严格控制工况和施工要求。
特别是在挖掘基坑和安装支撑结构时,要逐级逐段进行,按照设计要求进行施工。
确保每个施工环节的质量和安全。
5.对于基坑挖掘完毕后的支护结构,需要进行监测和定期维护。
监测土体位移和支护结构的变形,及时采取相应的补充加固措施。
定期维护支护结构,修补损坏部分,确保支护结构的完好性。
综上所述,本深基坑支护设计方案针对具体工程情况,通过暂时性降水、钢支撑和锚杆加固相结合的方式,确保了基坑的稳定性和安全性。
在实际施工中,要严格按照设计要求和施工规范进行施工,确保工程质量。
同时要加强监测和维护工作,及时发现问题并采取措施加以解决。
深基坑结构的支护设计与监测分析

深基坑结构的支护设计、施工与监测分析1、工程概况1.1 工程简介该高层建筑工程于主干道旁,周边分别为酒店和商住楼,建设施工空间狭小,地下3层地下室面积451 1.65m2,地上28层,建筑面积32 253.24mz,建筑总高度91.2m,基坑面积约2 500m2,周长约200m,现场地面相对标高为一0.6m,地下室底板相对标高为一12.6m,承台底标高为一12.9m,筏板基础底板标高为-14.5m,基坑安全等级为一级。
1.2 工程地质及水文地质概况工程钻探地质揭露地层分布为:(1)杂填土1.1~1.92m,(2)粉质黏土O.38~1.28m,(3)淤泥12.9~17.24m,(4)含卵石砾砂1.09 9.37m,(5)粗砂(或砾粗砂)1.7~7.27m,(6)砂砾卵石1.5~5.92m,(7)细砂0.78~2.38m,(8)强风化花岗岩0.32~8.5m,(9)中风化花岗岩,(10)微风化花岗。
地下水初见水位埋深1.06~2.30m,地质主要含水层为4.70m,稳定水位埋深2.5m左右,属承压水主要赋存于基岩裂隙水中,水位随季节和降雨量变化而变化。
2、支坑方案的选择和理论计算结果该工程支护结构为临时性结构物,因此,在确保土方开挖围护结构安全的前提下,尽量节约投资。
本工程地处市区繁华地带,相邻的道路下埋有给排水、煤气、通讯、电力等管线。
根据工程地质资料,土质又是呈流塑状的深淤泥层,因此,在确定本工程支护结构的设计原则为:(1)首先要保证围护结构的安全稳定;(2)保证土体结构的稳定,避免土体挠动、隆起等对工程桩的影响;(3)保证该场地相邻道路下管线的安全;(4)施工场地地下水位高,防止降水对周围环境及地下管网的不良影响。
2.1 基坑支护结构的优选本工程地下水较丰富,土层软弱以及对环境和工程安全等要求,经过各种支护结构适应性对比分析论证,本工程决定先钻孔灌注桩作为基坑围护结构。
2.2 基坑支护结构的选型钻孔灌注桩由于抗侧刚度大,抗弯能力强,变形相对较小,有利于保护周围建筑物和市政设施安全,采用钻孔灌注桩及水平支撑梁系构成空间稳定的围护结构,承受水平力是较为合适的。
深基坑支护结构设计的优化方法8篇

深基坑支护结构设计的优化方法8篇第1篇示例:深基坑支护是指在进行基坑开挖施工过程中为了防止地基塌方、保护周边建筑物和道路安全而采取的支护措施。
深基坑开挖和支护工程是城市建设中常见的施工项目,而深基坑支护结构设计的优化方法成为了工程领域中的研究热点。
深基坑支护结构设计的优化方法包括多个方面,例如支护结构的选择、设计参数的优化、施工工艺的优化等。
在选择支护结构时,需要考虑地下水位、土质情况、周边建筑物、施工工艺等因素,以便选择最合适的支护结构类型。
设计参数的优化包括墙体厚度、支撑间距、钢筋配筋等参数的优化,以提高支撑结构的安全性和经济性。
而施工工艺的优化可以通过优化施工顺序、采用先进的施工技术等手段来提高深基坑支护工程的施工效率和质量。
在深基坑支护结构设计的优化方法中,最重要的是要充分考虑地质条件和周边环境,以便选择最适合的支护结构类型。
还需要充分利用先进的计算机软件和施工技术,以实现对设计参数和施工工艺的优化。
通过系统的研究和实践,不断改进深基坑支护结构的设计和施工方法,可以有效提高支护结构的安全性和经济性,为城市建设提供更可靠的保障。
在深基坑支护结构设计的优化方法中,需要充分考虑地质条件和周边环境。
地质条件主要包括土质情况、地下水位和地表荷载等因素。
土质情况对支护结构的稳定性和变形有着直接影响,需要通过地质勘察和试验数据来评价土的承载力和变形特性。
地下水位对基坑开挖和支护工程的施工和稳定性都有很大影响,需要根据地下水位情况选择适当的支护结构类型和设计参数。
地表荷载主要包括来自道路、建筑物、地铁等周边结构的荷载,需要通过结构分析和计算来评价其对支护结构的影响。
在选择支护结构类型时,需要充分考虑地质条件和周边环境因素。
深基坑支护结构种类繁多,包括钢支撑、混凝土墙、挡墙、桩墙等各种类型,需要根据具体的地质条件和施工要求来选择最适合的支护结构类型。
钢支撑结构适用于较宽的基坑和较小的变形要求,能够快速安装和拆除,适合于快速施工的项目;混凝土墙结构适用于较深的基坑和较大的变形要求,能够提供较大的稳定性和承载力,适合于长期固定的项目;桩墙结构适应于较软的土层和需要较高的承载能力和变形控制的项目,能够提供较好的抗浪涌能力,适合于复杂环境下的项目。
建筑工程中深基坑中支护施工技术分析

建筑工程中深基坑中支护施工技术分析在现代城市建设中,由于地价的不断上涨,越来越多的建筑工程需要在狭小的场地中进行。
深基坑工程已经成为城市建设中常见的工程类型之一。
深基坑工程的施工需要面对地质条件复杂、地下设施众多等诸多挑战,尤其是在深基坑中支护施工技术方面更是考验施工单位的专业水平。
下面将对深基坑中支护施工技术进行详细的分析。
一、预处理阶段在深基坑中支护施工的预处理阶段,首先需要对地下的地质情况进行详细的勘探和分析。
根据地下的土层情况和地下水的情况,结合工程要求和工程技术限制,选择合适的支护方案。
在这个阶段,地质勘探专业公司需要对地下土体进行地质勘查,判断土体的性质、土层的分布、地下水位等情况,为支护工程的设计提供准确可靠的数据。
在预处理阶段,还需要进行地质灾害评估和地质灾害防治方案的制定。
在一些地质条件较差的地区,可能存在地质灾害的风险,这就需要专业的地质灾害评估单位对地质灾害的风险进行评估,并提出相应的地质灾害防治方案。
二、支护结构设计在深基坑工程中,支护结构的设计是至关重要的。
合理的支护结构设计可以保证工程的安全和稳定,防止基坑工程中的地下水渗透和土体塌方。
常见的支护结构包括钢支撑、混凝土支撑和土方支撑等。
首先在设计支护结构时,需要考虑基坑的深度、周边环境条件、地质情况、地下管线等因素。
根据实际情况选择合适的支护结构,然后利用专业的设计软件进行支护结构的计算和分析。
在设计过程中,还需要考虑地下水位的影响、支撑结构的选型、支护结构的受力情况等。
三、支护材料选型在支护施工中,选用合适的支护材料对于保证支护工程的质量和安全至关重要。
常见的支护材料包括混凝土、钢材、玻璃钢、预制支撑体等。
在选用支护材料时,需要考虑支护材料的强度、耐久性、施工便利性、成本等方面。
在选材的过程中,需要充分考虑工程的实际情况和要求,结合支护结构的设计方案,综合考虑各种因素,选择合适的支护材料。
还需要对支护材料的生产厂家进行严格的品质评估和审核,确保所选用的支护材料具有良好的品质和可靠性。
深基坑支护结构设计的优化方法8篇

深基坑支护结构设计的优化方法8篇第1篇示例:深基坑支护结构设计的优化方法随着城市建设的不断发展,深基坑工程在城市建设中扮演着重要的角色。
深基坑工程是指地下结构物深度超过一定范围,需要对周边土体进行支护和加固的工程。
在深基坑工程中,基坑支护结构设计的优化是提高工程施工效率和确保工程安全的关键。
本文将从不同的角度探讨深基坑支护结构设计的优化方法。
在深基坑工程中,基坑支护结构设计的基本原则是保证工程施工的安全性和稳定性。
基坑支护结构设计的基本原则包括以下几点:1. 根据地质条件确定支护结构类型:在进行基坑支护结构设计时,首先要根据地质勘察结果确定地下结构的地质条件,包括土层性质、地下水位等信息,以选择合适的支护结构类型。
2. 合理确定基坑支护结构的深度:基坑支护结构的深度应根据周边土体的承载能力和基坑深度等因素综合考虑,避免过度挖掘导致地基沉降或支护结构失稳。
3. 选择合适的支护材料和施工工艺:基坑支护结构设计应根据具体情况选择合适的支护材料和施工工艺,确保支护结构的稳定性和耐久性。
2. 地下水位控制:地下水位是影响基坑支护结构稳定的重要因素,过高的地下水位容易导致基坑支护结构失稳。
在基坑支护结构设计中需要采取有效的地下水位控制措施,如井点降水、深井抽水等。
3. 优化支护结构类型:在进行基坑支护结构设计时,应根据地质条件和基坑深度选择合适的支护结构类型,如横向支撑结构、嵌岩支护结构等,避免因支护结构类型选择不当导致工程事故。
4. 采用新型支护材料:随着科技的发展,新型支护材料的不断推出,如钢筋混凝土、高分子材料等,这些新型支护材料具有更好的抗压强度和耐用性,可以提高基坑支护结构的稳定性和安全性。
5. 结构优化设计:在进行基坑支护结构设计时,可以采用计算机模拟分析等方法,对支护结构进行优化设计,提高支护结构的承载能力和稳定性,减少施工成本和工程周期。
三、总结深基坑支护结构设计的优化是保障工程安全和提高施工效率的关键。
深基坑支护结构优化设计

深基坑支护结构优化设计
支护结构经济性评价
支护结构经济性评价
▪ 支护结构经济性评价的重要性
1. 支护结构经济性评价是深基坑支护设计的重要环节,能够有 效降低工程成本,提高经济效益。 2. 通过经济性评价,可以对支护结构的材料、工艺、施工方法 等进行优化,从而达到降低成本、提高效率的目的。 3. 支护结构经济性评价还可以为决策者提供科学依据,帮助他 们做出最优的决策。
模糊逻辑优化设计
1. 模糊逻辑是一种处理不确定性信息的方法,它通过定义模糊集和模糊规则,使得系统能够处理不 精确的数据和知识。 2. 在深基坑支护结构优化设计中,可以利用模糊逻辑来处理设计参数的不确定性和复杂性,从而得 到更优的设计方案。 3. 模糊逻辑已经成为一种重要的优化工具,在土木工程等领域得到了广泛应用。
感谢聆听
深基坑支护结构设计原则
▪ 深基坑支护结构设计原则
1. 安全性:深基坑支护结构设计应确保施工过程中的安全,防止坍塌、滑坡等事故 的发生。 2. 稳定性:深基坑支护结构设计应保证其在各种工况下的稳定性,包括地下水位变 化、地震等。 3. 经济性:深基坑支护结构设计应考虑经济因素,尽可能降低施工成本,提高经济 效益。 4. 环保性:深基坑支护结构设计应考虑环保因素,尽可能减少对周围环境的影响。 5. 可施工性:深基坑支护结构设计应考虑施工条件,尽可能简化施工流程,提高施 工效率。 6. 可维护性:深基坑支护结构设计应考虑后期维护,尽可能降低维护成本,提高维 护效率。
深基坑支护结构优化设计
支护结构类型及其特点
支护结构类型及其特点
▪ 支撑结构类型
1. 土钉墙:采用钢筋混凝土或钢支撑与土体共同作用,具有施 工速度快、经济性好等优点。 2. 钢支撑:采用钢制支撑结构,具有承载能力强、稳定性好等 优点。 3. 混凝土支撑:采用混凝土支撑结构,具有承载能力强、稳定 性好等优点。 4. 混凝土防渗墙:采用混凝土防渗墙,具有防渗效果好、稳定 性好等优点。 5. 地下连续墙:采用地下连续墙,具有承载能力强、稳定性好 等优点。 6. 钢筋混凝土支撑:采用钢筋混凝土支撑结构,具有承载能力 强、稳定性好等优点。
深基坑工程支护结构设计计算分析

深基坑工程支护结构设计计算分析本文以重庆轻轨五号线巴山站基坑工程为例,对该深基坑工程的结构设计进行了研究。
通过该深基坑支护方案的设计计算分析、肋板锚杆挡墙支护方式介绍及对支护结构的内力分析,获得了一些工程经验,为当地的深基坑工程的推广和应用提供参考。
标签:深基坑工程;桩锚支护;设计计算;内力分析深基坑支护问题已经成为建筑界的热点和难点之一,我国的很多城市或地区相继发生多起深基坑事故。
造成基坑事故的原因有很多,其中基坑支护方案的设计就是其中一个重要的原因。
基坑支护设计是一个半理论半经验的设计,如何确保基坑的稳定,满足周边环境的要求,设计经济,并且在设计中考虑到尽可能多的因素,降低不可见因素的影响等等都具有着重要的现实意义。
下面,笔者以重庆轻轨五号线巴山站基坑工程为例,对该深基坑工程的结构设计进行了研究。
1.工程概况巴山站基坑位于金开大道西段,两侧有民用住宅,建筑密度较高,周边场地狭窄。
基坑起讫里程为YAK9+294.350~YAK9+564.350;基坑成矩形分布,南北方向宽23.2m,东西方向长272.0m,开挖面积达7000 ;设计±0.00标高为+307.50m,场地地面标高+306.90m~+307.30m,基坑最深开挖深度为20.24m,属于Ⅰ级基坑。
2.支护工况根据工程特点及场地条件,经过对土体位移变化、基坑稳定性、施工速度、工程造价等方面综合考虑,决定该工程采用排桩(截面:1.5m×1.8m、间距:4.0m)进行支护,加五道锚索(分别距基坑顶2.5m、5.5.0m、8.5m、11.5m、14.5m)。
肋板锚杆挡墙支护形式在本地区应用比较广泛且技术成熟,其特点是施工速度较快,支护效果好,对其他工序的干扰较少,比较经济。
其工况图如图1所示。
图1 支护工况图3.基坑支护结构计算分析3.1 土压力计算模型及系数调整土压力计算采用朗肯土压力理论,“规程”分布模式,除砂土层采用水土分算外,其余土层均采用水土合算,计算所得土压力系数表如表1所示:表1 土压力系数表土层素填土 0.552 0.743 ——粉质粘土0.507 0.712 1.973 1.404砂岩0.832 0.937 2.572 1.603粉质泥岩0.725 0.862 2.035 1.4453.2 支护结构嵌固深度及桩长的确定支护结构的嵌固深度,目前常采用极限平衡法计算确定。
分析深基坑工程支护及开挖施工要点

分析深基坑工程支护及开挖施工要点深基坑工程是指在城市建设中,为了承载高层数地下建筑物的施工而进行的地下开挖工程。
这类工程常常伴随着开挖深度较大、土质条件复杂、周边环境要求高、施工风险大等特点。
而深基坑的支护和开挖施工是保障工程安全和顺利进行的重要环节。
以下就深基坑工程支护及开挖施工的要点进行分析。
一、地质勘察与分析在进行深基坑工程支护及开挖施工之前,进行地质勘察与分析是至关重要的。
地质勘察可以为工程设计提供准确的地质资料和地下水情况,同时也有助于确定支护结构的类型和尺寸。
通过地质勘察,可以对工程所在地的地层情况、地下水位、岩土性质等进行全面了解,为后续的支护设计和开挖施工提供重要数据支持。
二、支护结构的选择在深基坑工程中,支护结构的选择直接关系到工程的安全性和经济性。
一般来说,常用的支护结构包括土钉墙、钢支撑、预应力锚杆、混凝土桩等。
在选择支护结构时,需要考虑土层的稳定性、地下水位、工程开挖深度、周边环境等因素综合考虑,从而确定最合适的支护方案。
三、施工监测与控制在深基坑工程的支护及开挖施工过程中,施工监测是至关重要的一环。
通过施工监测,可以及时发现并解决可能出现的安全隐患,确保工程施工的安全顺利进行。
监测内容主要包括地下水位、土体变形、支护结构变形等多个方面,在监测过程中要及时采取相应的措施,确保工程施工的整体稳定性和安全性。
四、开挖施工的要点在进行深基坑工程开挖施工时,需要注意以下几个要点:1. 合理安排开挖顺序:一般来说,深基坑开挖时应采取逐层逐步开挖的原则,避免一次性过大范围的强烈挖掘。
通过逐层逐步开挖,可以有效减少地下土体的变形和沉降,保证工程的施工安全性。
2. 控制开挖坡度:根据不同的土质条件和工程要求,对开挖坡度进行合理控制,避免因坡度过大而导致土体塌方或者滑坡的危险。
3. 处理地下水:在深基坑工程中,地下水是一个重要的影响因素。
在开挖过程中,需要通过合理的排水系统对地下水进行处理,保证工程施工过程中的地下水位符合要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深基坑支护结构设计分析
近年来建设行业发展的速度较快,建筑施工技术也得以较快的发展起来,深基坑施工作为建筑施工中非常重要的一项工作,其不仅具有复杂性,而且对技术要求也较高。
所以需要对深基坑支护结构进行合理设计,确保其工程进度、质量和造价都能达到预期的标准。
文中从深基坑支护方案设计要点入手,对深基坑支护结构类型进行了分析,并进一步对深基坑支护结构中技术难点进行了具体阐述。
标签:深基坑支护;设计要点;结构类型;技术难点
1 深基坑支护方案设计要点
在深基坑支护施工中,由于对其影响因素较多,所以需要在设计方案上要进行详细的设计,明确的确定围护结构形式、支撑和锚固系统、地下水控制及深基坑检测等多方面的问题,确保深基坑支护方案的合理性。
1.1 影响深基坑支护方案确定的主要因素
在进行深基坑支护结构设计时,对其方案带来影响的因素较多,不仅需要受到深基坑所处场地的土层及土质物理学性质的影响,同时还会受到周边管线及临近建筑物的影响,地下水的分布及水位的高也会对深基坑支护方案的设计带来一定的影响,另外还要在方案设计时充分的考虑到深基坑的形状、主建筑物的位置、基坑深度、造价、工期及施工难度等多方面的因素,一旦在方案设计时考虑不周全,则极易给工程施工带来较大的影响。
1.2 深基坑工程总体方案主要有顺作法、逆作法、顺逆结合法
在深基坑工程施工中,顺作法是较为传统的施工方法,而且其施工工艺也较为成熟,支护结构和主体结构也较为独立,施工具有较好的便捷性。
而逆作法是近几年才开始应用的施工方法,其主要以地下室楼层梁板作为支撑,其支护结构和主体结构处于结合的状态,施工难度较大,但经济性较好。
目前在一些施工中,通常会将顺作法和逆作法有效的结合起来,利用中心位置顺作,而周边逆作的方式,充分的发挥这两种施工方法的优点,对推动深基坑支护技术的发展起到了积极的作用。
目前在深基坑工程施工时,通常利用排桩和地下连续墙来作为围护结构,这两种围护结构都处具自身的优势。
排桩多以混凝土灌注桩为主,不仅施工简单,而且能够灵活进行布置,成本较低。
地下连续墙具有较好的整体性,防水性能也较好,但由于其工艺复杂,入岩难度较大,工程造价一直居高不下。
另外就是深基坑的锚固系统,经常使用内支撑和锚杆来进行施工,内支撑虽然能够起到有效抑制变形的作用,而且也不需要侵入周边的地下空间,但在施工
完成后则需要拆除掉,费工费力,经济性较差。
锚杆相对于内支撑相比,其不仅具有较好的经济性,而且能够提供较大的空间,便于深基坑工程土方的开挖和地下结构的施工,但其由于需要侵入到周边的土体,所以对变形能力控制较弱。
2 深基坑支护结构类型
2.1 悬臂式支护结构
是指不加任何支撑或锚,只靠嵌入基坑底下一定深度的岩土体平衡上部土体的主动土压力、地面荷载以及水压力的支护结构。
有地下连续墙、排桩结构。
就该种支护结构而言,其嵌入深度极为关键。
但是因为基坑底以上部分呈悬臂状态,不具有任何支点作用,桩顶位移及构件弯矩值相对较大,对支护结构构件有很高的要求。
所以,该种结构应用广泛于基坑深度较小、土质条件较好以及对基坑水平位移要求不高的基坑。
2.2 内支撑结构
其结构形式由内支撑系统和挡土结构组成。
内支撑为挡土结构的稳定提供足够的支撑力,对两端围护结构上所承受的侧压力加以平衡,一般钢筋混凝土支撑和钢支撑应用较为普遍。
挡土结构主要承受基坑开挖所产生的水压力和土压力,通常采取排桩和地下连续墙结构。
内支撑结构形式广泛应用于市政工程施工中。
2.3 拉锚式支护结构
其结构形式由挡土结构和外拉系统组成。
外拉结构可分为两种:锚杆(索)支护结构和地面拉锚支护结构。
锚杆(索)支护是由挡土结构及锚固于基坑滑动面以外的稳定土体的锚杆(索)组成。
地面拉锚支护结构由挡土结构、拉杆(索)和锚固体组成。
常用于深度及规模不大的基坑。
2.4 土钉墙支护结构
又叫土钉支护技术,是在原位土中密集设置土钉,并在土边坡表面构筑钢丝网喷射混凝土面层,支护边坡或边壁主要借助面层、土钉以及原位土体三者的共同作用。
同时,土钉墙体构成了一个就地加固的类似重力式挡土结构。
相较于已有各种支护方法,土钉墙支护结构具有更大的优势,广泛应用于国内外的边坡加固与基坑支护中。
2.5 复合式支护结构
复合式支护结构就是由地下连续墙、排桩、预应力锚杆、土钉及喷射混凝土等组合形成的综合性支护结构。
在综合运用各种支护优点的基础上,复合式支护结构工程造价低,社会经济效益显著,但由于综合了各种支护结构,要求设计和施工要有较高水平。
3 深基坑支护设计中技术难点分析
3.1 支护结构侧向土压力的计算
支护结构的计算,首先是土压力的取值问题。
目前国内普遍采用古典的朗肯土压力理论,且假定支护结构是竖直的,土压力的作用方向水平,墙背光滑,不计土体对支护体的摩阻力。
朗肯土压力理论用到支护结构计算上时,由于该理论的主动土压力和被动力土压力是建立在极限平衡状态概念的基础上。
在实际工程中,由于支护结构常常不允许产生达到被动极限平衡状态时所需要的位移,实际的被动土压力一般均低于被动极限值。
因此,在进行支护结构计算时,用朗肯土压力理论计算所得到的被动土压力是偏大的,使用时需要折减。
折减系数的取值与被动区上体的土质和支护结构的型式密切相关,应根据被动区土体的土质和支护结构型式,以及对支护结构位移限制的程度,采用不同的折减系数。
3.2 用H.B1um理论计算悬臂式板桩墙支护结构
悬臂式板桩墙支护结构的内力计算,目前多用H.Blum理论来求解。
此理论假定坑底出现的被动土压力近似地发生在弯点下面,并在这部分阻力的中心处(C点)用一个反力Rc来代替,支护桩插入深度t0用X来表示,它必须满足围绕C点使∑Hc=0的条件。
由于土的阻力是向板桩方向逐渐增加,使用∑Hc=0的等式时会得到一个较小的插入深度,H.Blum建议计算所得的X增加20%,即插入深度t0=u+1.2X。
3.3 土水压力的计算
长期以来,在对深基坑侧上压力进行计算时,都是以朗肯理论和库仑理论为基础,但这两种理论在使用过程中都存在着一些缺陷,如围护墙达不到理论中的假设条件,同时还围护墙的变形也缺乏考虑,理论中的计算依据缺乏科学性。
实际开挖的深入越大,则会导致围护墙的变形和上压力也会随着发生变化。
而且理论计算方法中,对于深基坑周围存在的水位差和渗流效应缺乏考虑,这就导致计算出来的土水压力值的准确性会与实际值之间存在着一定的差距。
所以在进行土水压力时,需要考虑周全,不仅要对土体的应力状况和路径进行考虑,同时还要对孔隙水压力和边界条件等进行充分的考虑。
确保理论计算值与实际值之间相符合。
4 结束语
近年来,深基坑在建筑工程施工中应用的范围较广,由于其具有复杂、多变性,所以在施工方案考虑不周,极易导致突发问题发生,给财产和人员安全带来较大的威胁。
所以需要加强对深基坑技术的研究力度,确保技术能够得以不断完善,更好的适应当前现代化经济发展的需求。
参考文献
[1]黄镜华.深基坑支护结构设计理论及工程应用[J].科技信息,2009,35.
[2]单虹,深基坑支护结构设计探讨[J].城市建设理论研究,2012,12.。