序列模式挖掘算法

合集下载

序列模式挖掘算法的研究与实现

序列模式挖掘算法的研究与实现

序列模式挖掘算法的研究与实现序列模式挖掘算法是一种可以从历史数据中发现规律的数据挖掘算法。

它能够帮助我们更好地理解历史数据,并有助于决策和预测未来发展趋势。

本文主要就序列模式挖掘算法进行研究和实现。

一、序列模式挖掘算法研究1.算法框架序列模式挖掘算法主要是通过分析已有的历史数据,来发现有意义的模式和规律。

它的基本构成由3个部分组成:首先,收集有关的数据,然后从数据中抽取有用的信息,最后分析这些信息,从中发现规律和模式。

2.关联规则分析使用关联规则分析来发现序列模式的方法是,首先从多个历史序列中获取大量的事务数据,然后将这些数据转换为易于处理的格式,然后运用关联规则分析来发现有意义的模式。

3.簇划分算法簇划分算法是用来发现序列模式的一种方法,主要是通过迭代的方式,将序列进行划分,最终得到的是一系列的相关的序列,然后从中发现有规律的模式。

4.时间强算法时间强算法是一种基于概率的方法,它可以发现序列中模式出现的频率和预测将来出现模式的可能性。

首先,它会分析出每个序列中出现的模式,然后根据每个模式的出现频率,来预测出未来可能会出现的模式。

二、序列模式挖掘算法实现1.数据集序列模式挖掘算法的实现过程包括:数据集的构建、特征抽取、模式挖掘算法的实现、模式的验证和应用。

首先,需要构建一个合适的数据集,以便实现算法。

2.特征抽取特征抽取是模式挖掘所必须的一部分,因其可以帮助更好地将原始数据转换成易于处理的特征,以提高算法的精度。

主要的抽取方法有:基于属性的抽取、基于时间的抽取、基于空间的抽取。

3.模式挖掘算法实现模式挖掘算法是根据特征抽取出来的特征以及数据集来进行实现的,模式挖掘算法的选择可以因为不同的应用场景而有所不同,如果要对历史数据进行分析,则可以使用关联规则分析算法;如果要对频繁模式进行分析,则可以使用簇划分算法;如果要预测未来模式,则可以使用时间强算法。

4.模式的验证和应用模式有可能是噪声造成的,为此,在实际应用时,需要将模式进行验证,以避免错误的应用。

序列模式挖掘算法

序列模式挖掘算法

单项间在 同一事务 内以及事 务间旳关 系
单项间在 同一事务 内旳关系
13
二、序列模式挖掘旳应用背景
应用领域: ▪ 客户购置行为模式预测 ▪ Web访问模式预测 ▪ 疾病诊疗 ▪ 自然灾害预测 ▪ DNA序列分析Biblioteka 2024/9/2814
B2C电子商务网站能够根据客户购置纪录来分析客 户购置行为模式,从而进行有针对性旳营销策略。
ID User transaction sequence
1
………………………………………………… ………..
2 ………………………………………………
3
………………………………………………… …..
4 ………………………………….
图书交易网站将顾客购 物纪录整合成顾客购物 序列集合
应用案例1:客户购置有关行商品为推荐:模假如式顾
2024/9/28
35
例:下图演示了怎样从长度为3旳序列模式产生长度为 4旳候选序列模式
Sequential patterns With length 3
<(1,2) 3> <(1,2) 4> <1 (3,4)> <(1,3) 5> <2 (3,4)> <2 3 5>
Candidate 4-Sequences
L1 C2 L2 C3 L3 ……
2024/9/28
29
哈希树
GSP采用哈希树存储候选序列模式。哈希树旳 节点分为三类:
1、根节点; 2、内部节点; 3、叶子节点。
2024/9/28
30
哈希树
根节点和内部节点中存储旳是一种哈希表, 每个哈希表项指向其他旳节点。而叶子节点 内存储旳是一组候选序列模式。

数据分析中的关联规则挖掘和序列模式挖掘

数据分析中的关联规则挖掘和序列模式挖掘

数据分析中的关联规则挖掘和序列模式挖掘数据分析是一个日益重要的领域,在各个行业中被广泛应用。

在数据分析的过程中,关联规则挖掘和序列模式挖掘是两个重要的方法。

本文将分别介绍关联规则挖掘和序列模式挖掘的概念、算法以及应用,并探讨它们在实际问题中的价值和局限性。

一、关联规则挖掘1.概念关联规则挖掘是一种从大规模数据集中发现项集之间有趣关系的技术。

它主要用于发现事物之间的相关性,帮助人们理解数据集中的隐藏模式和规律。

2.算法常见的关联规则挖掘算法有Apriori算法和FP-growth算法。

Apriori算法是一种基于频繁项集的方法,通过迭代生成频繁项集和关联规则。

FP-growth算法则使用了一种更高效的数据结构FP树,可以在不显式生成候选项集的情况下挖掘关联规则。

3.应用关联规则挖掘在市场篮子分析、推荐系统、生物信息学等领域都有广泛的应用。

例如,在市场篮子分析中,关联规则可以帮助店家发现顾客的购买习惯,进而进行商品摆放和促销策略的优化。

二、序列模式挖掘序列模式挖掘是一种从序列数据中发现频繁模式的技术。

序列数据是指按时间顺序记录的事件序列,如购物记录、日志数据等。

序列模式挖掘的目标是找到在序列中频繁出现的模式,以揭示事件之间的关联性和规律。

2.算法常见的序列模式挖掘算法有GSP算法和PrefixSpan算法。

GSP算法是一种基于频繁序列的方法,通过递归地生成频繁子序列和模式。

PrefixSpan算法则利用前缀投影将序列划分为多个较小的子序列,从而减少了搜索空间。

3.应用序列模式挖掘在web点击流分析、用户行为分析、生产过程控制等领域都具有重要意义。

例如,在web点击流分析中,序列模式挖掘可以帮助网站优化用户体验,提高点击率和留存率。

三、关联规则挖掘和序列模式挖掘的比较1.异同点关联规则挖掘和序列模式挖掘都是从大规模数据中挖掘隐藏模式和规律的方法。

它们都可以发现项集之间的关联性,但关联规则挖掘更偏重于静态数据集的挖掘,而序列模式挖掘更适用于动态数据中的模式发现。

序列模式挖掘的两种典型算法及比较

序列模式挖掘的两种典型算法及比较



— 2 — 9 一 NUL 5 5 L
— NULL
首先寻找 s 的第一个元素( ,) 12 在该数据序列中的第一次 出现位置 , 对应 的事务时间为 1。由 0 于最小事务时间间隔 mna : , i p 5故应在事务时间 1 g 5之后寻找 s 的下一个元素( ) 由表 2中可以看 3。
数据序列中。
表 2 示例数据序 列 事务 时间 事务 项 表 3 事务项的事务 时间链 表 事务项
1 2 3 4 5 —
事务时间
1 0 5 一 NUL 0 L
1 — 5 — 9 _ NUL 0 0 0 + L 4 5 6 5 NUI J L
— 2 — 9 一 NUL 5 0 L — +NUL L
基本概 念和 问题描 述
相关基本概念见文献[ ] 2 。给定序列数据库 、 最小支持度阈值和时间约束 , 序列模式挖掘的 目 标 是找出序列数据库中所有的序列模式 。
2 G P算法 S
给定一个事务数据库 , S G P算法需要对事务数据库进行多遍扫描 。G P算法挖掘序列模式的基 S
2 1 哈希 树结 构 .
G P算法采用哈希树结构 。一棵哈希树 的结点可能为叶子节点 ( a nd ) S J al f oe 或内部结点 ( e a i eo nd ) 叶子节点存放项集列表 , n rr oe ; t i 而内部结点存放哈希表。在内部结点中, 哈希表的每个桶 ( 即
维普资讯
第2 6卷 第 4期
湖北师范学院学报( 然科学版) 自
Ju a o ue N r l n esy( a r cec ) or l f bi oma U i r t N t a Si e n H v i ul n

基于Map Reduce的序列模式挖掘算法

基于Map Reduce的序列模式挖掘算法
第 3 卷 第 1 期 8 5
V01 . 38






21 0 2年 8月
A u s 01 gu t 2 2
N O.5 I
Co utrEn i e i mp e g ne rng
软件技术与数据库 ・
文 编 1 0 3 8 0 )_ o - 3 文 标 码 A 章 号: 0 _ 4 ( 1 1 _ 4 _ o 2 2 25 0 3 o 献 识 :
3 B s d c t nDe a me tS a d n o i o l e J a 5 0 4 C ia a i E u ai p r n, h n o gP l eC l g , i n2 0 , hn ) c o t c e n 1
[ s at rdt n l a nn loi m h scmp t gp we h r g e l gwi s a e. miga tepo l ads iue Abt c|Ta io a dt miigag rh a o ui o r ot ei d ai t masdt stAi n t rbe ir td r i a t n s a n n h a h m, tb
may teMa ucini ue n ahP e xpoetdsq e t l a en adtepoetddtb ssaecnt c dp all .t i l e n ,h pfn t sdt mie c rf —r ce eu ni t r,n rjce aaae r o su t a l l Is o s o e i j ap t h r e r e y mpi s f
2. h n o g Pr v nca y L b r t r f r s rb td Co u e o t r v l e h o o y Jn n 2 0 1 Ch n ; S a d n o i il Ke a o ao y o t i u e mp t rS fwa eNo e c n l g , i a 5 0 4, i a Di T

频繁序列模式挖掘算法pbwl算法

频繁序列模式挖掘算法pbwl算法

频繁序列模式挖掘算法PBWL算法1. 简介频繁序列模式挖掘是数据挖掘领域中的一项重要任务,它用于发现数据集中频繁出现的序列模式。

序列模式是指在一个时间序列数据集中,经常以特定顺序出现的事件或行为。

PBWL(Prefix-Based Window Level)算法是一种用于频繁序列模式挖掘的有效算法。

它通过将时间序列划分为窗口,并使用前缀树来存储和搜索频繁序列模式。

本文将详细介绍PBWL算法的原理、步骤和优势,并通过示例说明其应用和效果。

2. PBWL算法原理2.1 窗口划分PBWL算法首先将时间序列划分为多个窗口,每个窗口包含固定数量的事件或行为。

窗口大小可以根据实际需求进行调整。

2.2 前缀树构建接下来,PBWL算法使用前缀树(Prefix Tree)来存储和搜索频繁序列模式。

前缀树是一种多叉树结构,其中每个节点表示一个事件或行为,路径表示事件之间的顺序关系。

2.3 频繁序列模式挖掘PBWL算法通过遍历每个窗口,将窗口中的事件序列插入到前缀树中。

在插入过程中,PBWL算法会记录每个节点的计数信息,以便后续的频繁模式挖掘。

当所有窗口都被处理完毕后,PBWL算法从前缀树中提取频繁序列模式。

频繁序列模式是指在整个时间序列数据集中经常出现的序列。

3. PBWL算法步骤PBWL算法的主要步骤如下:1.将时间序列划分为多个窗口,确定窗口大小和滑动步长。

2.初始化前缀树,并设置根节点。

3.遍历每个窗口:–将窗口中的事件序列插入到前缀树中。

–更新前缀树节点的计数信息。

4.从前缀树中提取频繁序列模式:–使用深度优先搜索(DFS)遍历前缀树。

–对于每个节点,检查其计数是否满足最小支持度要求。

–对于满足要求的节点,将其作为频繁序列模式输出。

4. PBWL算法优势PBWL算法相对于其他频繁序列模式挖掘算法具有以下优势:•高效性:PBWL算法通过窗口划分和前缀树存储结构,减少了搜索的空间和时间复杂度,提高了算法的效率。

数据挖掘中的序列模式挖掘方法

数据挖掘中的序列模式挖掘方法

数据挖掘中的序列模式挖掘方法数据挖掘是指通过挖掘大量数据集中的信息,来发现潜在的、以前未知的、可利用的有价值的模式和知识的过程。

序列模式挖掘是数据挖掘领域的一个重要研究领域,它旨在从一个序列集合中发现具有重要顺序特征的模式。

本文将介绍数据挖掘中的序列模式挖掘方法,包括Apriori算法、GSP算法和PrefixSpan算法。

1. Apriori算法Apriori算法是一种常用的序列模式挖掘方法,它利用频繁序列的概念来发现具有重要顺序特征的模式。

该算法基于Apriori原理,通过逐层迭代的方式挖掘频繁序列。

首先,找出序列中的频繁1项序列,然后根据这些频繁1项序列生成频繁2项序列,依此类推,直到无法再生成更多的频繁序列为止。

Apriori算法的优点是易于实现和理解,但是在处理大规模数据集时会面临效率低下的问题。

2. GSP算法GSP(Generalized Sequential Pattern)算法是一种改进的序列模式挖掘方法,它通过压缩序列集合,减少不必要的候选序列生成,从而提高挖掘效率。

GSP算法首先构建出轻量级序列树,然后通过递归方式搜索频繁序列。

在搜索过程中,GSP算法利用递归树的性质进行剪枝,剪去不满足最小支持度要求的候选序列,从而减少搜索空间。

相比于Apriori算法,GSP算法具有更高的效率和更好的挖掘性能。

3. PrefixSpan算法PrefixSpan算法是一种基于前缀投影的序列模式挖掘方法,它通过利用序列的前缀关系来挖掘频繁序列。

PrefixSpan算法首先根据事务记录构建出投影数据库,然后通过递归方式挖掘频繁序列。

在挖掘过程中,PrefixSpan算法维护一个前缀序列和一个投影数据库,在每次递归中,通过追加序列来生成候选序列,并在投影数据库中搜索满足最小支持度要求的序列。

PrefixSpan算法具有较高的效率和较好的挖掘性能,并且能够处理较大规模的序列数据。

综上所述,本文介绍了数据挖掘中的序列模式挖掘方法,包括Apriori算法、GSP算法和PrefixSpan算法。

序列模式挖掘算法的研究与实现

序列模式挖掘算法的研究与实现

序列模式挖掘算法的研究与实现序列模式挖掘是计算机科学领域中一种重要的技术。

它可以从大量的序列数据中找出有价值的模式,帮助人们更好地理解和利用这些数据。

因此,现在有越来越多的学者投入到序列模式挖掘算法的研究与实现中。

一、序列模式挖掘的研究序列模式挖掘是一种复杂的统计技术,其主要任务是从不同的序列中发现有价值的模式关系。

研究人员对序列模式挖掘技术进行了系统的研究,以便最大限度地满足应用需求。

(1)首先,研究人员构建了基本的序列模式挖掘模型,并利用这个模型去查找有价值的模式关系。

研究人员还改进了现有的序列模式挖掘模型,以提高模式挖掘的准确性和效率。

(2)其次,研究人员还研究了序列模式挖掘算法的可扩展性。

在内存不够用时,可以使用分布式计算来加快模式挖掘的处理速度。

(3)最后,研究人员还考虑到序列模式挖掘过程中可能出现的噪声和冗余问题,改进了现有的模式挖掘算法,以减少这些问题的影响。

二、序列模式挖掘的实现序列模式挖掘的实现主要分为使用现有的模式挖掘软件和使用自己编写的软件两部分。

使用现有的模式挖掘软件可以节省开发时间,在某些情况下可以大大降低开发成本,因此越来越多的学者选择使用现有的模式挖掘软件来实现序列模式挖掘的功能。

另外,也有学者编写自己的序列模式挖掘算法。

根据应用场景,研究者可以根据需要改进现有的序列模式挖掘算法。

例如,在实现序列模式挖掘的任务时,研究者可以结合深度学习技术,借助深度神经网络来提高模式挖掘的准确率。

此外,研究者还可以利用机器学习技术来提高模式挖掘的准确度和效率。

三、总结序列模式挖掘是一项重要的技术,可以有效地从大量的序列数据中发现有价值的信息,有助于我们更好地利用数据。

随着时代的发展,越来越多的学者参与到序列模式挖掘的研究与实现中,不断改进模式挖掘的算法,提高模式挖掘的准确性和效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010-9-6 20
三、序列模式挖掘算法概述
Agrawal和Srikant在提出这个问题时提出了三个 AprioriAll 算法,AprioriAll , AprioriSome 和 DynamicSome, 它们都基于Apriori框架。构成 了序列模式挖掘问题的基石。随后,这个领域 的研究工作取得了大量的成果。
2010-9-6
38
相关定义
前缀:设每个元素中的所有项目按照字典序排列。 给定序列α = <e1e2…en>,β = <e1’ e2’… em’> (m ≤ n) , 如果ei’ = ei (i ≤ m - 1), em’ em,并且(em - em’)中的 项目均在em’中项目的后面, 则称β是α的前缀 例:序列<(ab)> 是序列<(abd)(acd)> 的一个前缀; 序列<(ad)>则不是 。
2010-9-6
16
应用案例3 应用案例3:疾病诊断
医疗领域的专家系统可以作为疾病诊断的辅助决 策手段。对应特定的疾病,众多该类病人的症状 按时间顺序被记录。自动分析该纪录可以发现对 应此类疾病普适的症状模式。每种疾病和对应的 一系列症状模式被加入到知识库后,专家系统就 可以依此来辅助人类专家进行疾病诊断。
2010-9-6
35
例:下图演示了如何从长度为3的序列模式产生长度为 4的候选序列模式
Sequential patterns With length 3 <(1,2) 3> <(1,2) 4> <1 (3,4)> <(1,3) 5> <2 (3,4)> <2 3 5> Candidate 4-Sequences After Join <(1,2) (3,4)> <(1,2) 3 5> After Pruning <(1,2) (3,4)>
2010-9-6
25
四、GSP算法
算法思想: 类似于Apriori算法,采用冗余候选模式的剪除 策略和特殊的数据结构-----哈希树来实现候选 模式的快速访存。
2010-9-6
26
GSP算法描述
扫描序列数据库,得到长度为1的序列模式L1,作为初 始的种子集 根据长度为i 的种子集Li ,通过连接操作和修剪操作生 成长度为i+1的候选序列模式Ci+1;然后扫描序列数据 库,计算每个候选序列模式的支持度,产生长度为i+1 的序列模式Li+1,并将Li+1作为新的种子集 重复第二步,直到没有新的序列模式或新的候选序列 模式产生为止
图书交易网站将用户购 物纪录整合成用户购物 序列集合
得到用户 购物行为 序列模式
2010-9-6
<(“UML语 言”)(“Visio2003实用 技巧”)>
相关商品推荐:如果用 户购买了书籍“UML语 言”, 则推荐 “Visio2003实用技巧”
15
应用案例2 Web访问模式分析 应用案例2:Web访问模式分析
序列<a(bc)df>是序列<a(abc)(ac)d(cf)>的子序列 序列<(ab)cS 关联规则
问题 数据集 关注点 序列模式挖掘 关联规则挖掘 序列数据库 事务数据库
单项间在同一 单项间在同一 事务内以及事 事务内的关系 务间的关系
2010-9-6
2010-9-6
32
计算候选序列模式的支持度
给定一个序列s是序列数据库的一个记录: 1)对于根节点,用哈希函数对序列s的每一个 单项做映射来并从相应的表项向下迭代的进行 操作 2)。
2010-9-6
33
计算候选序列模式的支持度
2)对于内部节点,如果s是通过对单项x做哈 s 希映射来到此节点的,则对s中每一个和x在一 个元素中的单项以及在x所在元素之后第一个 元素的第一个单项做哈希映射,然后从相应的 表项向下迭代做操作 2)或 3)。
2010-9-6
23
基于划分的模式生长算法
该类算法基于分治的思想,迭代的将原始数据 集进行划分,减少数据规模,同时在划分的过 程中动态的挖掘序列模式,并将新发现的序列 模式作为新的划分元。典型的代表有FreeSpan 算法和prefixSpan算法。
2010-9-6
24
基于序列比较的算法
该类算法首先定义序列的大小度量,接着从小 到大的枚举原始序列数据库中包含的所有k-序 列,理论上所有的k-序列模式都能被找到。算 法制定特定的规则加快这种枚举过程。典型的 代表为Disc-all算法。
2010-9-6
36
GSP算法存在的主要问题
如果序列数据库的规模比较大,则有可能会产 生大量的候选序列模式 需要对序列数据库进行循环扫描 对于序列模式的长度比较长的情况,由于其对 应的短的序列模式规模太大,本算法很难处理
2010-9-6 37
五、PrefixSpan算法
算法思想: 采用分治的思想,不断产生序列数据库的多个 更小的投影数据库,然后在各个投影数据库上 进行序列模式挖掘
2)用这些序列模式构造查询词关系图 3)找到每个极大全连通图作为一个”概念” 4) 对于一个查询,和它同处于一个”概念”的查询可以作为查 询扩展的选项
2010-9-6 19
应用案例4 应用案例4:查询扩展
雷诺 丰田
宝马 概念1:汽车品 牌
汽车 概念2:汽车
给定一组查询模式:<(丰田)(雷诺)>, <(宝马)(丰 田)>,<(丰田)(宝马)>,<(宝马)(雷诺)>,<(汽车)(丰 田)> 查询关系图如上图:
L1 C2 L2 C3 L3 C4 L4 ……
2010-9-6 28
候选序列模式的支持度计算:对于给定的候选 序列模式集合C,扫描序列数据库,对于其中 的每一条序列s,找出集合C中被s所包含的所有 候选序列模式,并增加其支持度计数
L1 C2 L2 C3 L3 ……
2010-9-6
2010-9-6
17
应用案例3 应用案例3:疾病诊断
例: 通过分析大量曾患A类疾病的病人发病纪录, 发现以下症状发生的序列模式:<(眩晕) (两天后 低烧37-38度) > 如果病人具有以上症状,则有可能患A类疾病
2010-9-6
18
应用案例4 应用案例4:查询扩展
查询扩展是搜索领域一个重要的问题。用户提交的 查询往往不能完全反映其信息需求。一些研究工作 尝试用用户的查询序列模式来辅助原始查询,其主 要思想是: 1)挖掘用户的查询序列模式
2010-9-6
7
问题定义
序列(Sequence)是不同元素(Element)的有序排 列,序列s可以表示为s = <s1s2…sl>,sj(1 <= j <= l)为序列s的元素 一个序列包含的所有单项的个数称为序列的长 度。长度为l的序列记为l-序列
2010-9-6
8
例:一条序列<(10,20)30(40,60,70)>有3个元 素,分别是(10 20),30,(40 60 70 ); 3个事务的发生时间是由前到后。这条 序列是一个6-序列。
13
二、序列模式挖掘的应用背景
应用领域: 客户购买行为模式预测 Web访问模式预测 疾病诊断 自然灾害预测 DNA序列分析
2010-9-6
14
应用案例1 应用案例1:客户购买行为模式 分析
B2C电子商务网站可以根据客户购买纪录来分析客 户购买行为模式,从而进行有针对性的营销策略。
ID 1 2 3 4 User transaction sequence ………………………………………… ……………….. ………………………………………… …… ………………………………………… ………….. ………………………………….
L1 C2 L2 C3 L3 C4 L4 ……
2010-9-6 27
产生候选序列模式主要分两步: 连接阶段:如果去掉序列模式s1的第一个项目与去掉序 列模式s2的最后一个项目所得到的序列相同,则可以将 s1与s2进行连接,即将s2的最后一个项目添加到s1中 修切阶段:若某候选序列模式的某个子序列不是序列 模式,则此候选序列模式不可能是序列模式,将它从 候选序列模式中删除
第4章 序列模式挖掘算法
2010-9-6
1
主要内容
序列模式挖掘简介 序列模式挖掘的应用背景 序列模式挖掘算法概述 GSP算法 PrefixSpan算法 Disc-all算法 支持约束的序列模式挖掘
2010-9-6
2
一、序列模式挖掘简介
序列模式的概念最早是由Agrawal和Srikant 提出 的。 动机:大型连锁超市的交易数据有一系列的用户事 务数据库,每一条记录包括用户的ID,事务发生的 时间和事务涉及的项目。如果能在其中挖掘涉及事 务间关联关系的模式,即用户几次购买行为间的联 系,可以采取更有针对性的营销措施。
Index 网站入口
web1 web2
大型网站的网站地图(site map) 往往具有复杂的拓扑结构。用 户访问序列模式的挖掘有助于 改进网站地图的拓扑结构。比 如用户经常访问网页web1然后 访问web2,而在网站地图中二者 距离较远,就有必要调整网站 地图,缩短它们的距离,甚至 直接增加一条链接。
2010-9-6
34
计算候选序列模式的支持度
(3)对一个叶子节点,检查每个候选序列模式c是不 是s的子序列.如果是相应的候选序列模式支持度加一。 这种计算候选序列的支持度的方法避免了大量无用的 扫描,对于一条序列,仅检验那些最有可能成为它子 序列的候选序列模式。扫描的时间复杂度由O(n*m)降 为O(n*t),其中n表示序列数量,m表示候选序列模式的 数量,t代表哈希树叶子节点的最大容量
相关文档
最新文档