计量经济学回归分析案例
最新计量经济学案例分析一元回归模型实例分析

案例分析1— 一元回归模型实例分析依据1996-2005年《中国统计年鉴》提供的资料,经过整理,获得以下农村居民人均消费支出和人均纯收入的数据如表2-5:表2-5 农村居民1995-2004人均消费支出和人均纯收入数据资料 单位:元 年度 1995199619971998199920002001200220032004人均纯收入1577.7 1926.1 2090.1 2161.1 2210.3 2253.4 2366.4 2475.6 2622.2 2936.4人均消费支出1310.4 1572.1 1617.2 1590.3 1577.4 1670.1 1741.1 1834.3 1943.3 2184.7一、建立模型以农村居民人均纯收入为解释变量X ,农村居民人均消费支出为被解释变量Y ,分析Y 随X 的变化而变化的因果关系。
考察样本数据的分布并结合有关经济理论,建立一元线性回归模型如下:Y i =β0+β1X i +μi根据表2-5编制计算各参数的基础数据计算表。
求得:082.1704035.2262==Y X∑∑∑∑====3752432495.1986.788859011.516634423.1264471222ii i i iX y x y x 根据以上基础数据求得:623865.0423.126447986.788859ˆ21===∑∑iii xyx β8775.292035.2262623865.0082.1704ˆˆ10=⨯-=-=X Y ββ 样本回归函数为:ii X Y 623865.08775.292ˆ+= 上式表明,中国农村居民家庭人均可支配收入若是增加100元,居民们将会拿出其中的62.39元用于消费。
二、模型检验1.拟合优度检验952594.0011.516634423.1264471986.788859))(()(22222=⨯==∑∑∑iii i yx y x r2.t 检验525164.3061 210423.12644710.623865011.166345 2ˆˆ222122=-⨯-=--=∑∑n x y iiβσ049206.0423.1264471525164.3061ˆ)ˆ()ˆ(2211====∑ie xVar S σββ6717.112525164.3061423.126447110137.52432495ˆ)ˆ()ˆ(22200=⨯===∑∑σββii e xn X Var S 在显著性水平α=0.05,n-2=8时,查t 分布表,得到:306.2)2(2=-n t α提出假设,原假设H 0:β1=0,备择假设H 1:β1≠067864.12049206.0623865.0)ˆ(ˆ)ˆ(111==-=ββββe S t)2(67864.12)ˆ(21->=n t t αβ,差异显著,拒绝β1=0的假设。
计量经济学课程第4章(多元回归分析)

§4.1 多元线性回归模型的两个例子
一、例题1:CD生产函数
Qt AKt 1 Lt 2 et
这是一个非线性函数,但取对数可以转变为一个 对参数线性的模型
ln Qt 0 1 ln Kt 2 ln Lt t
t ~ iid(0, 2 )
注意:“线性”的含义是指方程对参数而言是线 性的
R 2 1 RSS /(N K 1) TSS /(N 1)
调整思想: 对 R2 进行自由度调整。
Page 20
基本统计量TSS、RSS、ESS的自由度:
1.
TSS的自由度为N-1。基于样本容量N,TSS
N i1
(Yi
Y
)2
因为线性约束 Y 1 N
Y N
i1 i
而损失一个自由度。
分布的多个独立统计量平方加总,所得到的新统计量就服从
2 分布。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 23
双侧检验
概 率 密 度
概率1-
0
2 1 / 2
2 /2
图4.3.1
2
(N-K-1)的双侧临界值
双侧检验:统计值如果落入两尾中的任何一个则拒绝原假设
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 24
单侧检验
概 率 密 度
概率 概率
0
2 1
2
图4.3.2 (2 N-K-1)的单侧临界值
H0:
2
2,
0
HA :
2
2 0
回归分析实验案例数据

回归分析实验案例数据引言:回归分析是一种常用的统计方法,用于探索一个或多个自变量对一个因变量的影响程度。
在实际应用中,回归分析有很多种,例如简单线性回归、多元线性回归、逻辑回归等。
本文将介绍一个回归分析实验案例,并分析其中的数据。
案例背景:一家汽车制造公司对汽车的油耗进行研究。
他们收集了一些汽车的相关数据,并希望通过回归分析来探究这些数据之间的关系。
数据收集:为了进行回归分析,他们收集了以下数据:1. 汽车型号:不同汽车型号的标识符。
2. 汽车价格:每辆汽车的价格,单位为美元。
3. 汽车速度:以每小时英里的速度来衡量。
4. 引擎大小:汽车引擎的容量大小,以升为单位。
5. 油耗:每加仑汽油行驶的英里数。
数据分析:通过对收集的数据进行回归分析,可以得出以下结论:1. 汽车价格与汽车引擎大小之间存在正相关关系。
即引擎越大,汽车价格越高。
2. 汽车速度与油耗之间呈现负相关。
即速度越高,油耗越大。
3. 汽车引擎大小与油耗之间存在正相关关系。
即引擎越大,油耗越大。
结论:基于以上分析结果,可以得出以下结论:1. 汽车价格受到引擎大小的影响,即引擎越大,汽车价格越高。
这一结论可以帮助汽车制造公司在制定价格策略时做出合理的决策。
2. 汽车速度与油耗之间呈现负相关。
这一结论可以帮助消费者在购买汽车时考虑速度对油耗的影响,从而选择更经济的汽车。
3. 汽车引擎大小与油耗之间存在正相关关系。
这一结论可以帮助汽车制造公司在设计引擎时考虑油耗因素,从而提高汽车的燃油效率。
总结:回归分析是一种有效的统计方法,可以用于探索数据间的关系。
通过对汽车制造公司收集的数据进行回归分析,我们发现了汽车价格、速度和引擎大小与油耗之间的关系。
这些分析结果对汽车制造公司制定价格策略、消费者购车以及提高燃油效率都具有重要的指导意义。
计量经济学试题线性回归分析与

计量经济学试题线性回归分析与计量经济学试题线性回归分析与应用一、简介线性回归分析是计量经济学中常用的统计方法之一,用于探究因变量和一个或多个自变量之间的关系。
本文将通过解答计量经济学试题来讨论线性回归分析的理论和应用。
二、理论基础1. 线性回归模型线性回归模型可表示为Y = α + βX + ε,其中Y是因变量,X是自变量,α和β是待估参数,ε是误差项。
线性回归模型的核心在于确定待估参数的估计值。
2. 估计参数通常使用最小二乘法估计回归模型中的参数。
最小二乘法的原理是最小化残差平方和,即使得观测值与模型估计值之间的差异最小。
三、实例分析假设一个研究者对某城市的住房价格进行研究,选取了以下两个自变量:房屋面积(X1)和楼层高度(X2)。
通过收集一定数量的样本数据,可以进行线性回归分析来探究自变量对住房价格的影响。
1. 数据收集首先,该研究者需要收集一定数量的样本数据,包括房屋面积、楼层高度和住房价格。
这些数据将用于构建线性回归模型。
2. 模型建立在收集到足够的样本数据后,可以通过最小二乘法估计线性回归模型中的参数。
假设模型为Y = α + β1X1 + β2X2 + ε,其中Y表示住房价格,X1表示房屋面积,X2表示楼层高度。
3. 参数估计利用最小二乘法估计模型中的参数α、β1和β2。
通过计算残差平方和最小化的方法,可以得到参数的估计值,并进一步进行假设检验和推断。
4. 模型评估在得到参数的估计值后,需要对模型进行评估。
常用的评估指标包括决定系数(R^2)、调整后的决定系数(adjusted R^2)、F统计量、t统计量等。
5. 假设检验通过进行显著性检验,判断自变量对因变量的影响是否显著。
常见的假设检验包括零假设(自变量对因变量无显著影响)和备择假设(自变量对因变量有显著影响)。
6. 拟合优度拟合优度是评价模型拟合程度的指标,通常用R方来表示。
R方越接近1,说明模型对样本数据的拟合程度越好。
四、应用案例1. 经济增长与教育投入关系分析通过线性回归分析,可以探究教育投入对于经济增长的影响。
计量经济学_三元线性回归模型案例分析

选择“国内生产总值(GDP)”作为经济整体增长水平的代表;选择中央和地方“财政支出”作为公共财政需求的代表;选择“商品零售物价指数”作为物价水平的代表。
由于税制改革难以量化,而且1985年以后财税体制改革对税收增长影响不是很大,可暂不考虑。
所以解释变量设定为可观测“国内生产总值(GDP)”、“财政支出”、“商品零售物价指数”一,数理经济学方程Y = C(1) + C(2)*XY i=β0+β2X2+β3X3+β4X4二,计量经济学方程设定线性回归模型为:Y i=β0+β2X2+β3X3+β4X4+μ三,数据收集从《国家统计局》获取以下数据:年份财政收入(亿元)Y 国内生产总值(亿元)X2财政支出(亿元)X3商品零售价格指数(%)X41978 519.28 3624.1 1122.09 100.7 1979 537.82 4038.2 1281.79 102 1980 571.7 4517.8 1228.83 106 1981 629.89 4862.4 1138.41 102.4 1982 700.02 5294.7 1229.98 101.9 1983 775.59 5934.5 1409.52 101.5 1984 947.35 7171 1701.02 102.8 1985 2040.79 8964.4 2004.25 108.8 1986 2090.73 10202.2 2204.91 106 1987 2140.36 11962.5 2262.18 107.3 1988 2390.47 14928.3 2491.21 118.5 1989 2727.4 16909.2 2823.78 117.81990 2821.86 18547.9 3083.59 102.1 1991 2990.17 21617.8 3386.62 102.9 1992 3296.91 26638.1 3742.2 105.4 1993 4255.3 34636.4 4642.3 113.2 1994 5126.88 46759.4 5792.62 121.7 1995 6038.04 58478.1 6823.72 114.8 1996 6909.82 67884.6 7937.55 106.1 1997 8234.04 74462.6 9233.56 100.8 1998 9262.8 78345.2 10798.18 97.4 1999 10682.58 82067.5 13187.67 97 2000 12581.51 89468.1 15886.5 98.5 2001 15301.38 97314.8 18902.58 99.2 2002 17636.45 104790.6 22053.15 98.7四,参数估计利用eviews软件可以得到Y关于X2的散点图:可以看出Y和X2成线性相关关系Y关于X3的散点图:可以看出Y和X3成线性相关关系Y关于X1的散点图:Dependent Variable: YMethod: Least SquaresDate: 01/09/10 Time: 13:16Sample: 1978 2002Included observations: 25Variable Coefficient Std. Error t-Statistic Prob.C -2582.755 940.6119 -2.745825 0.0121X2 0.022067 0.005577 3.956633 0.0007X3 0.702104 0.033236 21.12474 0.0000X4 23.98506 8.738296 2.744821 0.0121R-squared 0.997430 Mean dependent var 4848.366Adjusted R-squared 0.997063 S.D. dependent var 4870.971S.E. of regression 263.9591 Akaike info criterion 14.13511Sum squared resid 1463163. Schwarz criterion 14.33013Log likelihood -172.6889 F-statistic 2717.254Durbin-Watson stat 0.948521 Prob(F-statistic) 0.000000模型估计的结果为:Y i=-2582.755+0.022067X2+0.702104X3+23.98506X4(940.6119) (0.0056) (0.0332) (8.7383)t={-2.7458} {3.9567} {21.1247} {2.7449}R2=0.997 R2=0.997 F=2717.254 df=21五,相关检验1.经济意义检验模型估计结果说明,在假定其他变量不变的情况下,当年GDP 每增长1亿元,税收收入就会增长0.02207亿元;在假定其他变量不变的情况下,当年财政支出每增长1亿元,税收收入就会增长0.7021亿元;在假定其他变量不变的情况下,当零售商品物价指数上涨一个百分点,税收收入就会增长23.985亿元。
计量经济学案例

计量经济学案例计量经济学是经济学的一个重要分支,它运用数理统计和数学工具来分析经济现象,验证经济理论和检验经济政策的有效性。
在实际应用中,计量经济学常常通过案例研究来展示其理论和方法在解决实际问题中的应用。
下面,我们将通过一个实际的案例来说明计量经济学的应用。
某国家的一家汽车制造商希望了解汽车价格与销量之间的关系,以便制定合理的定价策略。
为了研究这一问题,他们收集了过去几年的汽车价格和销量数据,并进行了分析。
首先,他们利用计量经济学中的回归分析方法,建立了汽车价格和销量之间的数学模型。
在这个模型中,销量是因变量,而价格是自变量。
通过回归分析,他们得到了汽车价格对销量的影响程度,以及其他可能影响销量的因素。
接着,他们进行了统计检验,验证了他们建立的数学模型的有效性。
通过检验结果,他们确认了汽车价格对销量的影响,并排除了其他因素对销量的影响。
这为他们制定合理的定价策略提供了重要的依据。
最后,他们利用建立的数学模型,进行了一系列的预测和模拟。
他们可以通过调整汽车价格,来预测不同定价策略对销量的影响,以及对企业利润的影响。
这些预测和模拟结果为企业提供了重要的决策参考。
通过这个案例,我们可以看到计量经济学在实际应用中的重要性和价值。
它不仅可以帮助企业了解市场和消费者行为,还可以为企业决策提供科学的依据。
当然,计量经济学的方法和工具不仅局限于汽车制造业,它在其他行业和领域也有着广泛的应用。
总之,计量经济学案例的研究对于理论的验证和实证分析都具有重要的意义。
通过实际案例的研究,我们可以更好地理解计量经济学的方法和工具,以及它们在解决实际问题中的应用。
希望这个案例能够给大家带来一些启发,也希望大家能够更加重视计量经济学的学习和研究。
计量经济学多元回归分析案例.pdf

计量经济学多元回归分析案例引言计量经济学是运用数理统计和经济学方法研究经济现象的一门学科。
在实际研究中,多元回归分析是一种常用的方法。
本文将通过一个实际案例来介绍计量经济学中的多元回归分析方法和应用。
研究背景单因素回归分析在计量经济学中,单因素回归分析是最基本的方法之一。
它通过确定一个因变量和一个自变量之间的关系,来解释因变量的变化。
然而,在现实世界中,经济现象往往受到多个因素的影响,因此需要使用多元回归分析来更全面地解释经济现象的变化。
问题陈述本研究的问题是探究某个城市的房价与多个因素之间的关系。
具体来说,我们感兴趣的因变量是房价,自变量包括房屋面积、地理位置、周边设施等。
我们希望通过建立一个多元回归模型来解释房价的变化,并分析不同因素对房价的影响程度。
数据收集为了进行多元回归分析,我们需要收集相关的数据。
在本案例中,我们采集了以下数据:1.房价:通过不同的房地产网站获取该城市的房屋销售数据,包括每个房屋的售价信息。
2.房屋面积:通过购房广告或房产中介提供的信息收集每个房屋的面积数据。
3.地理位置:通过经纬度或邮政编码信息获取每个房屋的地理位置信息。
4.周边设施:通过地图应用或开放的公共数据接口获取每个房屋周边设施(如学校、医院、商场等)的数量和距离信息。
数据预处理在进行多元回归分析前,我们需要对收集到的数据进行预处理。
缺失值处理在数据收集过程中,可能会出现数据缺失的情况。
对于缺失的数据,我们可以选择删除相应的样本,或者通过插补方法进行填充。
在本案例中,我们选择使用均值填充的方法。
数据转换由于多元回归模型要求变量之间具有线性关系,因此我们需要对非数值型数据进行转换。
在本案例中,地理位置可以通过编码转换为数值型变量。
模型建立在进行多元回归分析时,我们需要选择适当的模型来描述因变量和自变量之间的关系。
在本案例中,我们选择使用普通最小二乘法(OLS)来估计回归模型的参数。
模型表达式我们将房价作为因变量(Y),房屋面积、地理位置和周边设施作为自变量(X)。
计量经济学多元回归分析案例

计量经济学案例分析多元回归分析案例财政收入规模的影响因素被解释变量:财政收入(亿元)解释变量:税收(亿元),经济活动人口(亿元),国内生产总值(亿元)样本:2000年—2011年的财政收入,税收(亿元),经济活动人口(亿元),国内生产总值(亿元)数据来源:中华人民共和国国家统计局(单位:亿元)财政收入Y 各项税收X1经济活动人口X2国民生产总值X31990 2,937.10 2,821.86 65,323.00 18,668.00 1991 3,149.48 2,990.17 66,091.00 21,618.00 1992 3,483.37 3,296.91 66,782.00 26,924.00 1993 4,348.95 4,255.30 67,468.00 35,334.00 1994 5,218.10 5,126.88 68,135.00 48,198.00 1995 6,242.20 6,038.04 68,855.00 60,794.00 1996 7,407.99 6,909.82 69,765.00 71,177.00 1997 8,651.14 8,234.04 70,800.00 78,973.00 1998 9,875.95 9,262.80 72,087.00 84,402.00 1999 11,444.08 10,682.58 72,791.00 89,677.00 2000 13,395.23 12,581.51 73,992.00 99,215.00 2001 16,386.04 15,301.38 73,884.00 109,655.00 2002 18,903.64 17,636.45 74,492.00 120,333.00 2003 21,715.25 20,017.31 74,911.00 135,823.00 2004 26,396.47 24,165.68 75,290.00 159,878.00 2005 31,649.29 28,778.54 76,120.00 183,085.00 2006 38,760.20 34,804.35 76,315.00 211,923.00 2007 51,321.78 45,621.97 76,531.00 257,306.00 2008 61,330.35 54,223.79 77,046.00 307,064.00 2009 68,518.30 59,521.59 77,510.00 335,353.00 2010 83,101.51 73,210.79 78,388.00 362,181.00 2011 103,874.43 89,738.39 78,579.00 471,564.00对数据进行回归,得出回归模型:变量间的关系:OLS估计结果:ML估计结果:MM估计结果:根据回归结果进行模型检验:Y:财政收入(亿元)X1:税收(亿元), X2:经济活动人口(人) X3:国民生产总值(亿元) 1、 系数的显著性水平检验Y = 1.0739********X1 - 0.271936276384*X2 + 0.0237723014946*X3 + 17296.8669142 t 值 (34.57) (-7.10) (3.39) (6.90) 从上面的t 值来看:“税收”系数的t 统计值大于4,p<0.01, 表示拒绝在此模型中“税收”与“财政收入”无关的原假设,而得出二者间有明显关系存在的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X和Y的描述统计结果
四、回归预测
2、区间预测 平均值置信度95%的预测区间为:
^
^
Y f mt 2
1 ( X f
n
X )2 xi2
相关数据带入得最终结果为:[658.56,741.80]
四、回归预测
2、区间预测 个 2.120,所以不拒绝 0
t( ˆ )=26.10378 > 2.120,所以拒绝 1
表明:x对y有显著影响
四、回归预测
将1990-2007改为1990-2008
四、回归预测
由X2008=8000 得 Y2008=700.18
四、回归预测
1、点预测 由题:2008年本市生产总值为8000亿元 可得:地方财政收入预测值为
(9.867366) (0.003255) t= (2.073853) (26.10378) R2=0.977058 F=681.4076 n=18
二、估计参数
剩余项、实际值与拟合值的图形如下图:
三、模型检验
1、经济意义检验
所估计的参数
ˆ 20.46347ˆ 0.084965
0
1
说明本市生产总值x每增加1亿元,地方预算内 财政收入平均增加0.084965亿元,与经济意义 相符。
^
^
Yf mt 2
1
1 n
(X
f
X )2 xi2
相关数据带入得最终结果为:[628.97,771.40]
预测值及标准误差:
2011级物流一班第六小组 小组成员:
一、模型设定 二、估计参数 三、模型检验 四、回归预测
一、模型设定
1990-2007深圳市地方预算内财政收入与本市生产总值
假定模型: Y 0 1X u
二、估计参数
Eviews的回归结果如下表所示:
二、估计参数
参数估计和检验结果:
Yˆi 20.46347 0.084965 X i
三、模型检验
2、拟合优度
R2 0.977058 , 趋近与1,说明所
建模型整体上对样本数据拟合较好,既解释变 量本市生产总值对被解释变量地方预算内财政 收入的绝大部分差异做出了解释。
三、模型检验
3、统计检验
对回归系数的t检验:
假设
H 0::
=0 和 0
H 0::
=0
1
查t分布表得:
自由度为n-2=18-2=16的临界值为2.120