flaash大气校正资料

合集下载

flaash大气校正

flaash大气校正

基于像素级的校正,校正由于漫反射引起的连带效应。


1、原理
基于太阳波谱范围内(不包括热辐射)和平面朗伯体(或近似平 面朗伯体),在传感器处接收的像元光谱辐射亮度公式为:
其中,பைடு நூலகம்

在大气校正参数获取后, 根据该方程逐个波段像元计算地表平均反射率。
2、优点

支持传感器的种类多; 算法精度高;

通过图像像素光谱上的特征来估计大气的属性,
多光谱设置(Multispectral Settings)
校正前
校正后

采用典型地物的光谱曲线特征来检验,如植被、水体。

气溶胶反演(Aerosol Retrieval)

None:选择此项时,初始能见度(Initial Visibility)值将用于气溶胶 反演模型;

2-Band(K-T):当没有找到合适的黑暗像元时,初始能见度值将用
于气溶胶反演模型;

2-Band Over Water:用于海面上的图像。

尺度转换因子:为了将输入的辐亮度数据变为浮点型,当各波段的辐亮
度单位不一样时,选择第一项;否则选择第二项。

Ground Elevation:影像区域平均海拔,从相应区域的DEM 获取平均值;

大气模型(Atmospheric Model)

气溶胶模型(Aerosol Model)

初始能见度(Initial Visibility Value) 根据天气条件估计。
组员:王玲 王芹 李文苹

模型介绍(原理、优点、条件) 校正过程(步骤、参数说明) 结果评价
1、原理

全称:Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes

flaash大气辐射校正

flaash大气辐射校正

flaash大气辐射校正-李修楠制作一,把DN值转化为亮度1打开landsat5号星图像,7 4 2 波段分别赋值RGB2 单击basic tools >preprocessing>calibration utilities>landsat calibration选择六个反射通道,单击ok3.选择radiance,选择文件保存,等待处理结果处理完得到六个反射通道的亮度值二。

把亮度转化为bip格式1 单击basic tools>convert data(BSQ BIL BIP )然后弹出一个界面选择亮度值,单击ok然后弹出一个界面选择一种格式我选bip,选择文件保存等待处理结果。

三。

FLAASH1 单击spectral>FLAASH2出现以下界面,单击input radiance image选择 bip 格式的那个数据然后ok3再然后出现一个窗口,尺度转换因子,选择单一的转换因子,为10 如图4 。

单击 output reflectance file 选择文件存放位置命名。

5.选择这一景影像的中心经纬度。

如图6,选择传感器类型单击nkown—M> multispectral>landsat TM 57(1)设置获得图像的时间,2006年的8月17日 2时30分(2)大气模型 atmospheric model 选择中纬度夏季mid latitude summer (3)气溶胶选择农村aerosol model 》rural(4)气溶胶反演两个波段k-T aersol retrieval》 2-band(k-T)如图8 单击 Multispetral Settings 出现一个界面单击 kaufman-Tanre aerosol retrieval 选择第一个如图然后okOk完之后单击apply 等待结果结果如图最后,加载校正后的图同样7 4 2 rgb。

进行地理链接,调出光谱曲线比较二者不同。

FLAASH大气校正和黑暗像元法

FLAASH大气校正和黑暗像元法

FLAASH大气校正和黑暗像元法操作指导FLAASH大气校正大气是介于卫星传感器与地球表层之间的一层由多种气体及气溶胶组成的介质层。

在太阳辐射到达地表再到达卫星传感器的过程中,两次经过大气,故大气对太阳辐射的作用影响比较大。

大气校正的目的是消除大气和光照等因素对地物反射的影响,广义上讲是获得地物反射率、辐射率或者地表温度等真实物理模型参数,狭义上是获取地物真实反射率数据。

大气校正可以用来消除大气中水蒸气、氧气、二氧化碳、甲烷和臭氧等物质对地物反射的影响,也可以消除大气分子和气溶胶散射的影响。

大多数情况下,大气校正也是反演地物真实反射率的过程。

目前应用广泛的大气辐射传输模型有30多种,常用的辐射传输模型主要有6S、MODTRAN和ATCOR等,各种模型的基本原理都是基本相同,其中MODTRAN模型的精度最高。

MODTRAN模型还可以计算热红外波段。

实验数据实习所用到的数据为TM影像和ETM+影像,其FLAASH大气校正的方法和操作步骤一致,这里以TM影像为例介绍。

对于各个影像所需要的具体参数,将在需要用到的时候说明。

本文采用的实验测试数据为,具体的数据内容列表见下图1:1991年1999年2010年图1该数据包含了7个波段,其中的B6为热红外波段,不在本次Flaash校正范围内,其他剩余波段为可见光波段,需要进行大气校正。

操作步骤1、打开tm原始影像数据ENVI > file > open image file > ‘LT51230321991168BJC00_MTLold.txt’ > 打开文件,如下:可见光波段为选择波段图3辐射定标参数设置对话框3、储存顺序调整Flassh大气校正对于波段存储的要求为:BIL,BIP格式,上述计算得到的存储方式为BSQ,在此进行波段存储顺序的转化,具体操作如下:ENVI > basic tools > convert data (BSQ ,BIL ,BIP)图 4 存放顺序转换4、Flaash校正参数设置大气校正的前期准备工作完毕,现在进行校正参数的设置:ENVI > basic tools > preprocessing > calibration utilities > FLAASH,弹出对话框:的BIL或BIP格式数据,然后会弹出下面对话框(图6),按照下图进行设置。

高光谱数据FLAASH大气校正

高光谱数据FLAASH大气校正

第13章高光谱数据FLAASH大气校正本节以AVIRIS高光谱数据为数据源,介绍高光谱数据的FLAASH大气校正过程。

13.1 浏览高光谱数据此AVIRIS高光谱数据为经过传感器定标的辐射亮度数据。

(1)在ENVI主菜单中,选择File→Open Image File,打开JasperRidge98av.img文件。

(2)在波段列表中,选择JasperRidge98av.img,单击右键选择Load True Color,在Display 窗口中显示真彩色合成图像。

(3)在主图像窗口中单击右键,快捷菜单中选择Pixel Locator。

设置Sample:366,Line:179。

此像元为硬质水泥地,吸收特征主要受大气的影响,单击Apply按钮。

(4)在主图像窗口中单击右键,快捷菜单中选择Z Profile,打开Spectral Profile窗口,绘制像素(366,179)的波谱剖面。

(5)在Spectral Profile窗口中,可以看到在760nm,940nm和1135nm处,水汽具有吸收特征,1400nm和1900nm附近基本没有反射能量,二氧化碳在2000nm附近有两个吸收特征。

13.2 AVIRIS数据大气校正(1)在ENVI主菜单中,选择Spectral→FLAASH,打开FLAASH Atmospheric Correction Model Input Parameters对话框。

(2)单击Input Radiance Image按钮,选择JasperRidge98av.img文件。

在Radiance Scale Factors对话框中,选择Read array of scale factors from ASCII file,单击OK按钮。

(3)选择AVIRIS_1998_scale.txt文件,按照默认设置,单击OK按钮。

(4)单击Output Reflectance File按钮,选择输出路径及文件名JasperRidge98av.img。

flash大气校正

flash大气校正

flash大气校正遥感数字图像处理(FLAASH 大气校正实践)实习报告学院:应用气象一,实验内容FLAASH 的特点是:1) 支持多种传感器,包括多光谱和高光谱。

可以通过自定义波谱响应函数支持更多的传感器。

2) FLAASH 采用MODTRAN+辐射传输模型,算法精度高。

3) 通过图像像素光谱上的特征来估计大气的属性,不依赖遥感成像时同步测量的大气参数数据。

4) 可以有效去除水蒸气、气溶胶散射效应,同时基于像素级的校正,校正目标像元和邻近像元交叉辐射的“邻近效应”。

5) 对由于人为抑制而导致波谱噪声进行光谱平滑处理。

可以得到真实地表反射率、整幅图像内的能见度、卷云与薄云的分类图像、水汽含量数据。

二,实验步骤及结果FLAASH 的处理步骤:1) 从图像中获取大气参数,包括能见度(气溶胶光学厚度)、气溶胶类型和大气水汽含量。

气溶胶反演算法沿用了暗目标法,水汽含量的反演是基于水汽吸收的光谱特征,采用了波段比值法,并逐像元进行。

2) 大气参数获取之后,通过求解大气辐射传输方程来获取反射率数据。

3) 利用图像中光谱平滑的像元对整幅图像进行光谱平滑运算。

FLAASH 操作:1)启动程序:ENVI―Basic Tools―Preprocessing―CalibrationUtilities―FLAASH。

图1 中FLAASH 程序界面分为三个部分。

上部分为设置文件输入与输出信息;中间部分为传感器与影像目标信息;下部分为大气参数(大气模式和气溶胶类型等)的设置。

图1 FLAASH 程序界面2)以一景要进行大气效应校正的LANDSAT ETM+为例进行FLAASH大气校正。

首先打开原始影像数据。

图2使用ENVI--File--Open External File--Landsat--GeoTIFF with Metadata命令打开的一景2021年Landsat ETM+影像。

图2 Landsat ETM 数据导入3)对影像进行定标,单位转换和文件储存格式转换。

flaash大气校正操作流程

flaash大气校正操作流程

利用 spectral builder 导入该文件,如下:
FWHM 没有,不用写。 确定后,再次 impor txt 文件,如下:
然后,File 菜单保存为光谱库文件,如下:
此时,可查看光谱响应函数,如下:
2.点击 Mulitispectral Settings 导入刚才的光谱响应函数库,如下:
利用 Solar Angles 可以计算太阳天顶角和太阳方位角,如下:
利用 Meterorological Range 可以根据 550nm 的 AOD 换算出能见度, aerosol thickness 一般是 2km 左右,Modtran 计算如下:
9)最后的界面为:
二.Multispectral Settings 界面 1.利用 ENVI 的 SpectralSpectral libraries 制作各个通道的光谱响应函数光谱库文件。波长 及响应函数拷贝入 txt,部分截图如下:
j
* fi 1 in Nhomakorabeai
f
i 1
n
n
i
Fwhm 计算公式为:
Fwhm j
输入的界面为:
f
i 1
i
2

之后选择单一的 scale,scale 设为 10,如下:
1). 2). 3). 4). 5). 6). 7). 8).
Output reflectance file 是输入需要保存反反射率文件的路径。 Out directory for flash file 输入的是保存中间结果的文件夹。 Flight time 是影像成像时间。 Scence center location 可以影像头文件中找到。 Atmospheric Model 可以根据具体地区的温度以及空气湿度找到对应的类型。 Water retrieval 需要有适合水汽反演的波段才行。 Aerosol retrieval 需要??。 Initial visibility (km) 可以有所测的 AOD 通过软件 modo 进行换算。 大气校正的结果的好 坏可通过调整这个参数,我们所测的 AOD 可以乘以 0.85~0.95 的系数。软件在 E:\大气 校正\flaash 大气校正\modo_install\modo_v3\bin 里面。运行如下:

FLAASH大气校正流程

FLAASH大气校正流程

本文汇总了ENVI FLAASH大气校正模块中常见的错误,并给出解决方法,分为两部分:运行错误和结果错误。

前面是错误提示及说明,后面是错误解释及解决方法。

FLAASH对输入数据类型有以下几个要求:1、波段范围:卫星图像:400-2500nm,航空图像:860nm-1135nm。

如果要执行水汽反演,光谱分辨率<=15nm,且至少包含以下波段范围中的一个:∙∙●1050-1210 nm∙∙●770-870 nm∙∙●870-1020 nm2、像元值类型:经过定标后的辐射亮度(辐射率)数据,单位是:(μW)/(cm2*nm*sr)。

3、数据类型:浮点型(Floating Point)、32位无符号整型(Long Integer)、16位无符号和有符号整型(Integer、Unsigned Int),但是最终会在导入数据时通过Scale Factor转成浮点型的辐射亮度(μW)/(cm2*nm*sr)。

4、文件类型:ENVI标准栅格格式文件,BIP或者BIL储存结构。

5、中心波长:数据头文件中(或者单独的一个文本文件)包含中心波长(wavelenth)值,如果是高光谱还必须有波段宽度(FWHM),这两个参数都可以通过编辑头文件信息输入(Edit Header)。

一.高级设置里的选项:1.Aerosol Scale Height大气溶胶高度,用来计算邻近效应的范围,1-2km2.CO2 Mixing Ratio (ppm) 2001年前是370ppm。

2001年以后是390ppm。

3.Use Square Slit Function(是否使用平方函数进行邻近像元亮度的均匀)一般选择no 4.Use Adjacency Correction(进行邻近效应校正)5.Reuse MODTRAN Calculations使用以前的MODTRAN模型计算结果6.Modtran Resolution设置MODTRAN模型的光谱分辨率(推荐值5 cm-1) 分辨率高速度慢精度高,分辨率低,速度快,但是精度差。

flaash大气校正

flaash大气校正

flaash⼤⽓校正课程名称:定量遥感专业名称遥感科学与技术班级学号姓名实验名称 FLAASH ⼤⽓校正【实验名称】FLAASH⼤⽓校正【实验⽬的】了解⽤ENVI进⾏FLAASH⼤⽓校正的流程,明⽩各步骤的意义【实验内容】准备ASTER数据1.打开ENVI主菜单,选择File-Open External File – EOS-ASTER2.选择AST_L1A.hdf打开配准数据3.从ENVI主菜单中选择Map- Georeference ASTER- Georeference Data点击列表中第⼀个⽂件,这个⽂件有三个波段,波段范围从0.556µm 到0.807 µm ,点击OK4.在新弹出的投影列表中选择Geographic Lat/Lon,点击OK5.在参数对话框中,点击将输出结果存为⽂件,⽂件名为vnir_georef. 选择⼀个⽂件夹,点击OK6.重复以上3-5步,选择波段范围为1.656到2.4的AST_L1A的⽂件,在参数对话框中,输⼊输出⽂件名为swir_georef,这样vnir和swir波段就出现在波段列表中了合并VNIR 和SWIR数据7.在ENVI主菜单中选择Basic Tools Layer Stacking,弹出Layer Stacking Parameters对话框8.点击Import File,选择vnir_georef,点击OK,再次点击Import File,选择swir_georef,点击OK,确保vnir_georef是在上⾯的⽂件9.确定Inclusive按钮被选择10.确定Output Map Projection是Geographic Lat/Lon.11.其余选项不变,选择输出⽂件夹,⽂件名为aster_vnir_swir,点击OK转换格式12.在ENVI主菜单中选择Basic Tools Convert Data (BSQ, BIL, BIP) ,选择合成VNIR/SWIR数据aster_vnir_swir,点击OK13.选择BIL并且保证Convert In Place 为N0,选择输出⽂件夹,⽂件名为aster_BIL,ASTER 数据就被转换成FLAASH可以接受的格式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
None:选择此项时,初始能见度(Initial Visibility)值将用于气溶胶 反演模型;
2-Band(K-T):当没有找到合适的黑暗像元时,初始能见度值将用 于气溶胶反演模型;
2-Band Over Water:用于海面上的图像。
多光谱设置(Multispectral Settings)
校正前
校正后
采用典型地物的光谱曲线特征来检验,如植被、水体。
Ground Elevation:影像区域平均海拔,从相应区域的DEM
获取平均值; 大气模型(Atmospheric Model)
气溶胶模型(Aerosol Model)
初始能见度(Initial Visibility Value) 根据天气条件估计。
气溶胶反演(Aerosol Retrieval)
1、原理
基于太阳波谱范围内(不包括热辐射)和平面朗伯体(或近似平 面朗伯体),在传感器处接收的像元光谱辐射亮度公式为: 其中,
在大气校正参数获取后, 根据该方程逐个波段像元计算地表平均反射率。
2、优点
支持传感器的种类多; 算法精度高; 通过图像像素光谱上的特征来估计大气的属性,
不依赖遥感成像时同步测量的大气参数数据; 可以有效去除水蒸气、气溶胶散射与邻近效应; 因人为抑制而导致波谱噪声进行光谱平滑处理。
组员:王玲 王芹 李文苹
模型介绍(原理、优点、条件) 校正过程(步骤、参数说明) 结果评价
1、原理
全称:Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
采用目前精度最高的MODTRAN5辐射传输。
3、Flaash输入数据要求
经辐射定标后的辐射亮度(辐射率)数据,单位为: μW/(cm2*nm*sr);
数据存储类型:为BIL或BIP格式; 波段范围:卫星图像为400-2500nm,航空图像为860-
1135nm; 辅助信息:头文件中需包含中心波长值,若为高光谱必
须有波段宽度;
1.辐射定标
目的:将传感器记录的电压或数字量化值(DN值)转换为 绝对辐射亮度值(辐射率)。
公式: L=Gain*DN + Bias
Scale Factor:因定标后的单位与Flaash要求单位不一致;
辐射定标结果:
2、Flaash校正
尺度转换因子:为了将输入的辐亮度数据变为浮点型,当各波段的辐亮 度单位不一样时,选择第一项;否则选择第二项。
相关文档
最新文档