难点自选__函数与导数压轴大题的3大难点及破解策略含解析

合集下载

破解导数压轴题中的函数构造问题的七大策略

破解导数压轴题中的函数构造问题的七大策略

破解导数压轴题中的函数构造问题的七大策略问题提出通过对以函数与导数为核心命制的压轴题的分析与研究,发现大多数需构造辅助函数才能顺利解决,构造辅助函数对学生的创造性与创新性思维能力的要求较高,那么辅助函数的构造有规律可循吗?构造辅助函数解决压轴题的具体策略有哪些呢?策略一观察分析构造观察是科学研究的重要方法,也是数学解题的首要心理活动,更是构造辅助函数最为直接的策略.例1 已知函数f (x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f (x)的两个零点,证明:x1+x2<2.整体思路是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,把某些式子或图形看成一个整体,进行有目的、有意识的整体处理.整体构造辅助函数就是立足这一思想来解决函数综合题的一种策略.例2 (2017·全国Ⅱ)已知函数f (x)=ax2-ax-x ln x,且f (x)≥0.(1)求a;(2)证明:f (x)存在唯一的极大值点x0,且e-2<f (x0)<2-2.若问题的整体结构比较复杂,使得正面解决很困难时,可以考虑将复杂的整体看成几个部分,实施局部构造辅助函数,从局部突破,从而达到解决问题的目的.例3 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x +x +2>0; (2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -a x 2(x >0)有最小值.设g (x )的最小值为h (a ),求h (a )的值域.点评 此道压轴题g (x )的导函数结构比较复杂,于是从局部实施突破,构造辅助函数.这种构造方式比较常见,如2016年江苏卷19题,2013年陕西卷理科压轴题等.有时第一次构造辅助函数并不能解决问题,还需要第二次甚至更多次的构造才能解决问题.例4 (2017·全国Ⅲ)已知函数f (x)=ln x+ax2+(2a+1)x.(1)讨论f (x)的单调性;(2)当a<0时,证明f (x)≤-34a-2.和差法常用于比较大小、构造对偶式等,其实也可用来构造辅助函数.例5 设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x ; (3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x.点评 和差构造辅助函数的方法在每年高考压轴题中运用广泛,如2016年四川理科压轴、2013年辽宁理科压轴题等.策略六变参分离构造若条件中含有参数,要探究参数的取值范围,此时可以考虑将参数与其他变量分离,然后构造辅助函数求解参数的取值范围.例6 已知函数f (x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)略点评此题将主元与参数变参分离后构造辅助函数,再对辅助函数求导探究单调性或最值,参数的范围便自然得到.策略七综合运用例7 已知函数f (x)=1-x1+x2e x.(1)求f (x)的单调区间;(2)证明:当f (x1)=f (x2)(x1≠x2)时,x1+x2<0.点评此道压轴题的压轴问要证的不等式本质上是极值右偏问题,解答时需要灵活的将作差构造和局部构造两种方法综合运用才能顺利解决.掌握数学就意味着必须要善于解题,中学数学教学的首要任务之一就是要加强解题训练,而人的高明之处在于当他碰到一个不能直接克服的障碍时,他就会绕过去,当原来的问题看起来似乎不好解时,就会想出一个合适的辅助问题去解决原问题,这种方法正是解决高考函数综合问题的良策与通法,通过构造辅助函数统一的处理这些问题时,其实我们已经站在了更高的层面,不再仅仅追求千奇百怪“诡异”的解法,而是理解了这些问题的共性.在统一解决的同时,给人一种思维清晰、神清气爽的良好教学感觉.破解导数压轴题中的函数构造问题的七大策略问题提出通过对以函数与导数为核心命制的压轴题的分析与研究,发现大多数需构造辅助函数才能顺利解决,构造辅助函数对学生的创造性与创新性思维能力的要求较高,那么辅助函数的构造有规律可循吗?构造辅助函数解决压轴题的具体策略有哪些呢?策略一观察分析构造观察是科学研究的重要方法,也是数学解题的首要心理活动,更是构造辅助函数最为直接的策略.例1 已知函数f (x)=(x-2)e x+a(x-1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f (x)的两个零点,证明:x1+x2<2.(1)解a的取值范围为(0,+∞);(2)证明求导得f′(x)=(x-1)(e x+2a),由(1)知a>0.所以函数f (x)的极小值点为x=1.结合要证结论x1+x2<2,即证x2<2-x1.若2-x1和x2属于某一个单调区间,那么只需要比较f (2-x1)和f (x2)的大小,即探求f (2-x)-f (x)的正负性.于是通过上述观察分析即可构造辅助函数F (x)=f (2-x)-f (x),x<1,代入整理得F (x)=-x e-x+2-(x-2)·e x.求导得F′(x)=(1-x)(e x-e-x+2).即x<1时,F′(x)<0,则函数F (x)是(-∞,1)上的单调减函数.于是F (x)>F (1)=0,则f (2-x)-f (x)>0,即f (2-x)>f (x).由x1,x2是f (x)的两个零点,并且在x=1的两侧,所以不妨设x1<1<x2,则f (x2)=f (x1)<f (2-x1),即f (x2)<f (2-x1).由(1)知函数f (x )是(1,+∞)上的单调增函数,且x 2,2-x 1∈(1,+∞),所以x 2<2-x 1. 故x 1+x 2<2得证.点评 此题的压轴问以函数零点为依托,看似证明不等式,实则是极值右偏问题,解决的核心是通过观察分析构造辅助函数F (x )=f (2-x )-f (x ),建立抽象不等式“f (x 2)<f (2-x 1)”,再由函数的单调性去解决.策略二 整体构建整体思路是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,把某些式子或图形看成一个整体,进行有目的、有意识的整体处理.整体构造辅助函数就是立足这一思想来解决函数综合题的一种策略.例2 (2017·全国Ⅱ)已知函数f (x )=ax 2-ax -x ln x ,且f (x )≥0.(1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e -2<f (x 0)<2-2.(1)解 a =1;(2)证明 由(1)知f (x )=x 2-x -x ln x ,求导得f ′(x )=2x -2-ln x .整体构造辅助函数g (x )=2x -2-ln x ,求导得g ′(x )=2-1x. 当g ′(x )>0时,x ∈⎝ ⎛⎭⎪⎫12,+∞; 当g ′(x )<0时,x ∈⎝ ⎛⎭⎪⎫0,12.即函数g (x )在⎝ ⎛⎭⎪⎫12,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,12上单调递减. 又g (e -2)>0,g ⎝ ⎛⎭⎪⎫12<0,g (1)=0,所以g (x )在⎝ ⎛⎭⎪⎫0,12内有唯一零点x 0,在⎣⎢⎡⎭⎪⎫12,+∞内有唯一零点1,且当x ∈(0,x 0)时,g (x )>0;当x ∈(x 0,1)时,g (x )<0;当x ∈(1,+∞)时,g (x )>0.因为f ′(x )=g (x ),所以x =x 0是f (x )的唯一极大值点.由f ′(x )=0得ln x 0=2(x 0-1),故f (x 0)=x 0(1-x 0).又由x 0∈⎝ ⎛⎭⎪⎫0,12得f (x 0)<14. 又因为x =x 0是f (x )在(0,1)上的最大值点,结合e -1∈(0,1),f ′(e -1)≠0,得f (x 0)>f (e -1)=e -2.所以e -2<f (x 0)<2-2.策略三 局部构造若问题的整体结构比较复杂,使得正面解决很困难时,可以考虑将复杂的整体看成几个部分,实施局部构造辅助函数,从局部突破,从而达到解决问题的目的.例3 (1)讨论函数f (x )=x -2x +2e x 的单调性,并证明当x >0时,(x -2)e x +x +2>0; (2)证明:当a ∈[0,1)时,函数g (x )=e x -ax -a x 2(x >0)有最小值.设g (x )的最小值为h (a ),求h (a )的值域.解 (1)略;(2)对g (x )求导得g ′(x )=x +2x 3·⎝ ⎛⎭⎪⎫x -2x +2e x +a . 局部构造辅助函数h (x )=x -2x +2e x +a ,即h (0)=a -1<0,h (2)=a ≥0.由零点定理及第(1)问结论知h (x )在(0,2]上有唯一零点x =m .所以函数g (x )在(0,m )上单调递减,在(m ,+∞)上单调递增.于是x =m 为函数g (x )的极小值点,也为最小值点.即当a ∈[0,1)时,函数g (x )有最小值g (m ).由于m -2m +2e m +a =0,即a =-m -2m +2e m . 所以当a ∈[0,1)时,有m ∈(0,2],于是函数g (x )的最小值g (m )=e m -⎝ ⎛⎭⎪⎫-m -2m +2e m ·(m +1)m 2=e m m +2. 再次引入辅助函数r (m )=e mm +2(m ∈(0,2]),求导得 r ′(m )=m +1(m +2)2e m>0. 所以函数r (m )在(0,2]上单调递增,因此可求得函数h (a )的值域.故函数g (x )的最小值的取值范围为(r (0),r (2)],即⎝ ⎛⎦⎥⎤12,14e 2. 点评 此道压轴题g (x )的导函数结构比较复杂,于是从局部实施突破,构造辅助函数.这种构造方式比较常见,如2016年江苏卷19题,2013年陕西卷理科压轴题等. 策略四 多次构造有时第一次构造辅助函数并不能解决问题,还需要第二次甚至更多次的构造才能解决问题.例4 (2017·全国Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x .(1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a-2. (1)解 f ′(x )=2ax 2+(2a +1)x +1x =(2ax +1)(x +1)x. 当a ≥0时,f ′(x )≥0,则f (x )在(0,+∞)单调递增.若a <0,则f (x )在⎝⎛⎭⎪⎫0,-12a 单调递增, 在⎝ ⎛⎭⎪⎫-12a ,+∞单调递减. (2)证明 第一次构造辅助函数g (x )=f (x )+34a+2. 要证原不等式成立,需证g (x )max ≤0,即证f (x )max +34a+2≤0. 由(1)知,当a <0时,f (x )max =f ⎝ ⎛⎭⎪⎫-12a . 即证ln ⎝ ⎛⎭⎪⎫-12a +12a+1≤0 不妨设t =-12a>0,则证ln t -t +1≤0, 令h (t )=ln t -t +1,求导得h ′(t )=1t-1. h ′(t )>0时,t ∈(0,1);h ′(t )<0时,t ∈(1,+∞).所以h (t )在(0,1)单调递增,在(1,+∞)单调递减,则h (t )max =h (1)=0.故f (x )≤-34a-2. 策略五 和差构造和差法常用于比较大小、构造对偶式等,其实也可用来构造辅助函数.例5 设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x ; (3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x.解 (1),(2)略(3)作差构造辅助函数g (x )=c x -(c -1)x -1, x ∈(0,1),要证原不等式成立,即证g (x )<0.对g (x )求导得g ′(x )=c x·ln c -(c -1)=ln c ·⎝ ⎛⎭⎪⎫c x -c -1ln c . 由c >1,得ln c >0,再根据第(2)问知1<c -1ln c<c . 所以g ′(0)<0且g ′(1)>0,结合g ′(x )是单调递增函数和零点定理可知g ′(x )在区间(0,1)上有唯一零点.所以函数g (x )在区间(0,1)上先单调递减,再单调递增,又g (0)=g (1)=0,从而在区间(0,1)上g (x )<0,故原不等式得证.点评 和差构造辅助函数的方法在每年高考压轴题中运用广泛,如2016年四川理科压轴、2013年辽宁理科压轴题等.策略六 变参分离构造若条件中含有参数,要探究参数的取值范围,此时可以考虑将参数与其他变量分离,然后构造辅助函数求解参数的取值范围.例6 已知函数f (x )=(x -2)e x +a (x -1)2有两个零点.(1)求a 的取值范围;(2)略解 (1)显然x =1不是函数f (x )的零点.当x ≠1时,方程f (x )=0变参分离为a =2-x (x -1)2·e x . 引入辅助函数g (x )=2-x (x -1)2·e x , 求导得g ′(x )=-e x·x 2-4x +5(x -1)3. 所以函数g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减.因为函数g (x )在(-∞,1)上的取值范围是(0,+∞),而在(1,+∞)上的取值范围是(-∞,+∞).所以当a >0时,函数f (x )有两个零点,故a 的取值范围为(0,+∞).点评 此题将主元与参数变参分离后构造辅助函数,再对辅助函数求导探究单调性或最值,参数的范围便自然得到.策略七 综合运用例7 已知函数f (x )=1-x 1+x 2e x . (1)求f (x )的单调区间;(2)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.(1)解 函数f (x )的单调递增区间为(-∞,0),单调递减区间为(0,+∞).(2)证明 由f (x )=1-x 1+x 2e x ,易知x <1时,f (x )>0;x >1时,f (x )<0. 因为f (x 1)=f (x 2)(x 1≠x 2),不妨设x 1<x 2,结合(1)知x 1∈(-∞,0),x 2∈(0,1). 要证x 1+x 2<0,即证x 1<-x 2,于是作差构造辅助函数F (x )=f (x )-f (-x ),代入化简得F (x )=11+x 2⎣⎢⎡⎦⎥⎤(1-x )e x -1+x e x . 再次局部构造辅助函数G (x )=(1-x )e x -1+x e x ,求导得G ′(x )=-x e -x (e 2x -1).当x ∈(0,1)时,G ′(x )<0,即G (x )是(0,1)上的单调减函数.于是G (x )<G (0)=0,则F (x )<0. 即F (x )=f (x )-f (-x )<0.所以x ∈(0,1)时,f (x )<f (-x ).由x 2∈(0,1),则f (x 2)<f (-x 2).又f (x 1)=f (x 2),即得f (x 1)<f (-x 2). 根据(1)知f (x )是(-∞,0)上的单调增函数,而x 1∈(-∞,0),-x 2∈(-∞,0), 所以x 1<-x 2,故x 1+x 2<0得证.点评 此道压轴题的压轴问要证的不等式本质上是极值右偏问题,解答时需要灵活的将作差构造和局部构造两种方法综合运用才能顺利解决.掌握数学就意味着必须要善于解题,中学数学教学的首要任务之一就是要加强解题训练,而人的高明之处在于当他碰到一个不能直接克服的障碍时,他就会绕过去,当原来的问题看起来似乎不好解时,就会想出一个合适的辅助问题去解决原问题,这种方法正是解决高考函数综合问题的良策与通法,通过构造辅助函数统一的处理这些问题时,其实我们已经站在了更高的层面,不再仅仅追求千奇百怪“诡异”的解法,而是理解了这些问题的共性.在统一解决的同时,给人一种思维清晰、神清气爽的良好教学感觉.。

《导数大题压轴题难点突破》(PDF)

《导数大题压轴题难点突破》(PDF)
16.设函数 f (x) 1 ex.
(Ⅰ)证明:当 x 1时, f (x) x ; x 1
(Ⅱ)当 x 0时, f (x) x 恒成立,求 a 的取值范围. ax 1
17.已知函数 f (x) (x 1)2 ex x(x 1).
(Ⅰ)试判断方程 f (x) 0 根的个数.
10.设函数 f (x) a ln x bx 2, a,b R
(Ⅰ)若函数 f (x) 在 x 1 处与直线 y 1 相切,①求实数 a, b 的值;②求函数 f (x) 在 2

1 e
,
e
的最大值;
(Ⅱ
)当 b 0 时,若不等式
f
(
x)

m

x
对所有的
a
f (x)min 0 .
9.设 f (x) 与 g(x) 的定义域的交集为 D,若 x D f (x) g(x) 恒成立,则有
f (x) g(x) min 0 .
10.若对 x1 I1 、 x2 I2 , f (x1) g(x2 ) 恒成立,则 f (x)min g(x)max . 若对 x1 I1 , x2 I2 ,使得 f (x1) g(x2 ) ,则 f (x)min g(x)min . 若对 x1 I1 , x2 I2 ,使得 f (x1) g(x2 ) ,则 f (x)max g(x)max .
4
高考数学 2018 届◆难点突破系列
题型二:导数与函数的切线问题
19.已知函数 f (x) x ln x, g(x) ax 3 1 x 2 . 2 3e
(Ⅰ)求 f (x) 的单调增区间和最小值;

2025高中数学八大核心知识函数指数型函数取对数问题--2024高考数学压轴大题秒杀(解析版)

2025高中数学八大核心知识函数指数型函数取对数问题--2024高考数学压轴大题秒杀(解析版)

指数型函数取对数问题考情分析函数与导数一直是高考中的热点与难点, 在导数解答题中有些指数型函数,直接求导运算非常复杂或不可解,这时常通过取对数把指数型函数转化对数型函数求解,特别是涉及到形如a f x 的函数取对数可以起到化繁为简的作用,此外有时取对数还可以改变式子结构,便于发现解题思路,故取对数的方法在解高考导数题中有时能大显身手.解题秘籍(一)等式两边同时取对数把乘法运算转化为对数运算,再构造函数通过两边取对数可把乘方运算转化为乘法运算,这种运算法则的改变或能简化运算,或能改变运算式子的结构,从而有利于我们寻找解题思路,因此两边取对数成为处理乘方运算时常用的一种方法.有时对数运算比指数运算来得方便,对一个等式两边取对数是解决含有指数式问题的常用的有效方法.1(2024届辽宁省大连市高三上学期期初考试)已知函数f x =ln x+1 ax.(1)讨论f x 的单调性;(2)若ex1x2=ex2x1(e是自然对数的底数),且x1>0,x2>0,x1≠x2,证明:x21+x22>2.2025高中数学八大核心知识函数指数型函数取对数问题--2024高考数学压轴大题秒杀(解析版)(二)等式或不等式两边同时取对数把乘积运算运算转化为加法运算,形如f a g b =h c f a >0,g b >0,f c >0 或f a g b >h c 的等式或不等式通过两边取对数,可以把乘积运算,转化为加法运算,使运算降级.2(2024届辽宁省名校联盟高三上学期联考)已知a >0,b ∈R ,函数f x =ax ln x 和g x =b ln x +1 的图像共有三个不同的交点,且f x 有极大值1.(1)求a 的值以及b 的取值范围;(2)若曲线y =f x 与y =g x 的交点的横坐标分别记为x 1,x 2,x 3,且x 1<x 2<x 3.证明:x 23x 1x 2<e 2b -2.(三)把比较a,b a>0,b>0转化为比较ln a,ln b的大小比较两个指数式的大小,有时可以通过取对数,利用对数函数的单调性比较大小,如比较n n+1,n+1nn∈N∗,n>2的大小,可通过取对数转化为比较n+1ln n,n ln n+1的大小,再转化为比较ln n n,ln n+1n+1的大小,然后可以构造函数f x =ln xx,利用f x 的单调性比较大小.3一天,小锤同学为了比较ln1.1与110的大小,他首先画出了y=ln x的函数图像,然后取了离1.1很近的数字1,计算出了y=ln x在x=1处的切线方程,利用函数y=ln x与切线的图像关系进行比较. (1)请利用小锤的思路比較ln1.1与110大小(2)现提供以下两种类型的曲线y=ax2+b,y=kx+t,试利用小锤同学的思路选择合适的曲线,比较πe, e3的大小.三、典例展示1(2021全国甲卷高考试题)已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f x 的单调区间;(2)若曲线y=f x 与直线y=1有且仅有两个交点,求a的取值范围.2(2023届新疆高三第三次适应性检测)已知函数f(x)=ax2+(a+1)x ln x-1,g(x)=f(x) x.(1)讨论g x 的单调性;(2)若方程f(x)=x2e x+x ln x-1有两个不相等的实根x1,x2,求实数a的取值范围,并证明e x1+x2>e2x1x2.(1)求f x 的极值;(2)若f x 有两个零点a,b,且a<b,求证:e b+1b<2e m.4设函数f x =-ln x.(1)设λ1、λ2≥0且λ1+λ2=1,求证:对任意的x1、x2>0,总有xλ11xλ22≤λ1x1+λ2x2成立;(2)设x i>0,λi>0i=1,2,⋅⋅⋅,n,且ni=1λi=1,求证:xλ11xλ22⋅⋅⋅xλn n≤λ1x1+λ2x2+⋅⋅⋅+λn x n.(1)讨论g(x)的单调性;(2)若f x +2x≥g x +x a,对任意x∈(1,+∞)恒成立,求a的最大值;6已知函数f(x)=x ln x.(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且a b=b a,证明:2e <1a+1b<1.跟踪检测1已知函数f (x )=x ln x +a ,(a ∈R ).(1)求函数f x 的单调区间;(2)当0<a <1e时,证明:函数f x 有两个零点;(3)若函数g (x )=f (x )-ax 2-x 有两个不同的极值点x 1,x 2(其中x 1<x 2),证明:x 1⋅x 22>e 3.2形如y =f (x )g (x )的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得ln y =ln f (x )g (x )=g (x )ln f (x ),两边对x 求导数,得y y =g (x )ln f (x )+g (x )f x f x,于是y =f (x )g (x )g (x )ln f (x )+g (x )f x f x.已知f (x )=2e x ln x ,g (x )=x 2+1.(1)求曲线y =f (x )在x =1处的切线方程;(2)若h (x )=f (x ),求h (x )的单调区间;(3)求证:∀x ∈(0,+∞),f (x )≥g (x )恒成立.3已知函数f(x)=e x2ln x(x>0).(1)求f(x)的极值点.(2)若有且仅有两个不相等的实数x1,x20<x1<x2满足f x1=f x2=e k.(i)求k的取值范围(ⅱ)证明x e2-2e2≤e-e21x1.4已知f(x)=ln x-x,g(x)=mx+m.(1)记F(x)=f(x)+g(x),讨论F(x)的单调区间;(2)记G(x)=f(x)+m,若G(x)有两个零点a,b,且a<b.请在①②中选择一个完成.①求证:2e m-1>1b+b;②求证:2e m-1<1a+a5已知a∈R,f(x)=x⋅e-ax,(其中e为自然对数的底数).(1)求函数y=f(x)的单调区间;(2)若a>0,函数y=f(x)-a有两个零点x,x2,求证:x21+x22>2e.6已知函数f x =axe-x a≠0存在极大值1 e.(1)求实数a的值;(2)若函数F x =f x -m有两个零点x1,x2x1≠x2,求实数m的取值范围,并证明:x1+x2>2.7已知函数f(x)=x(e2x-a),g(x)=bx+ln x.(1)若y=2x是曲线y=f(x)的切线,求a的值;(2)若g(x)有两不同的零点,求b的取值范围;(3)若b=1,且f(x)-g(x)≥1恒成立,求a的取值范围.8已知函数f(x)=ax ln x,a∈R.(1)当a=1时,①求f(x)的极值;②若对任意的x≥e都有f(x)≥mxe m x,m>0,求m的最大值;(2)若函数g(x)=f(x)+x2有且只有两个不同的零点x1,x2,求证:x1x2>e2.9已知函数f(x)=x ln x-ax2-x,g(x)=f(x)x,a∈R.(1)讨论g(x)的单调性;(2)设f(x)有两个极值点x1,x2x1<x2,证明:x41x2>e3.(e=2.71828⋯为自然对数的底数)10已知函数f x =e x-a ln xx-a(e为自然对数的底数)有两个零点.(1)若a=1,求f x 在x=1处的切线方程;(2)若f x 的两个零点分别为x1,x2,证明:e2-x1-x2-x1x2<0.11已知函数h x =x-a ln x a∈R.(1)若h x 有两个零点,a的取值范围;(2)若方程xe x-a ln x+x=0有两个实根x1、x2,且x1≠x2,证明:e x1+x2>e2 x1x2.12已知函数f x =e x-2t-ln x+2(1)若x=1是f x 的极值点,求t的值,并讨论f x 的单调性;(2)当t≤1时,证明:f x >2.指数型函数取对数问题考情分析函数与导数一直是高考中的热点与难点, 在导数解答题中有些指数型函数,直接求导运算非常复杂或不可解,这时常通过取对数把指数型函数转化对数型函数求解,特别是涉及到形如a f x 的函数取对数可以起到化繁为简的作用,此外有时取对数还可以改变式子结构,便于发现解题思路,故取对数的方法在解高考导数题中有时能大显身手.解题秘籍(一)等式两边同时取对数把乘法运算转化为对数运算,再构造函数通过两边取对数可把乘方运算转化为乘法运算,这种运算法则的改变或能简化运算,或能改变运算式子的结构,从而有利于我们寻找解题思路,因此两边取对数成为处理乘方运算时常用的一种方法.有时对数运算比指数运算来得方便,对一个等式两边取对数是解决含有指数式问题的常用的有效方法.1(2024届辽宁省大连市高三上学期期初考试)已知函数f x =ln x+1 ax.(1)讨论f x 的单调性;(2)若ex1x2=ex2x1(e是自然对数的底数),且x1>0,x2>0,x1≠x2,证明:x21+x22>2.【解析】(1)函数f(x)=ln x+1ax的定义域为(0,+∞),求导得则f(x)=-ln xax2,由f (x)=0得x=1,若a<0,当0<x<1时,f (x)<0,则f(x)单调递减,当x>1时,f (x)>0,则f(x)单调递增,若a>0,当0<x<1时,f (x)>0,则f(x)单调递增,当x>1时,f (x)<0,则f(x)单调递减;所以当a<0时,函数f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;当a>0时,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由ex1x2=ex2x1,两边取对数得x2ln x1+1=x1ln x2+1,即ln x1+1x1=ln x2+1x2,由(1)知,当a=1时,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,f(x)max=f(1)=1,而f1e=0,x>1时,f(x)>0恒成立,因此当a=1时,存在x1,x2且0<x1<1<x2,满足f x1=f x2,若x2∈[2,+∞),则x21+x22>x22≥4>2成立;若x2∈(1,2),则2-x2∈(0,1),记g(x)=f(x)-f(2-x),x∈(1,2),则g (x)=f (x)+f (2-x)=-ln xx2-ln(2-x)(2-x)2>-ln xx2-ln(2-x)x2=-ln[-(x-1)2+1]x2>0,即有函数g(x)在(1,2)上单调递增,g(x)>g(1)=0,即f(x)>f(2-x),于是f x1=f x2>f2-x2,而x2∈(1,2),2-x2∈(0,1),x1∈(0,1),函数f(x)在(0,1)上单调递增,因此x1>2-x2,即x1+x2>2,又x 21+1>2x 21=2x 1,x 22+1>2x 22=2x 2,则有x 21+1+x 22+1>2x 1+x 2 >4,则x 21+x 22>2,所以x 21+x 22>2.(二)等式或不等式两边同时取对数把乘积运算运算转化为加法运算,形如f a g b =h c f a >0,g b >0,f c >0 或f a g b >h c 的等式或不等式通过两边取对数,可以把乘积运算,转化为加法运算,使运算降级.2(2024届辽宁省名校联盟高三上学期联考)已知a >0,b ∈R ,函数f x =ax ln x 和g x =b ln x +1 的图像共有三个不同的交点,且f x 有极大值1.(1)求a 的值以及b 的取值范围;(2)若曲线y =f x 与y =g x 的交点的横坐标分别记为x 1,x 2,x 3,且x 1<x 2<x 3.证明:x 23x 1x 2<e 2b -2.【解析】(1)因为a >0,x ∈0,+∞ ,所以当x ≥1时,f x =ax ln x ,f x =a ln x +a >0,所以f x 在1,+∞ 上单调递增,无极大值;当x ∈0,1 时,f x =-ax ln x ,f x =-a ln x +1 ,所以当x ∈0,1e时,f x >0,f x 单调递增,当x ∈1e ,1时,f 'x <0,f x 单调递减,所以x =1e为极大值点,所以f 1e=-a ⋅1e ⋅ln 1e=1,解得a =e .因为f x ,g x 图像共有三个不同的交点,所以方程ex ln x =b ln x +1 有三个不等正实根.设t =ln x +1,则x =e t -1,且当x >0时,t 与x 一一对应,所以问题转化为关于t 的方程e t t -1 =b t 有三个不等实根.又0不满足方程e t t -1 =b t ,所以方程b =t -1te t有三个实根.设h t =t -1te t ,则函数h t =t -1t e t与函数y =b 的图像有三个交点,当t ≥1或t <0时,h t =t -1te t,∴h t =t 2-t +1t2e t>0,所以h t 在-∞,0 ,1,+∞ 上单调递增;当0<t <1时,h t =-t -1 ett,ht =-t 2-t +1t 2e t<0,所以h t 在0,1 上单调递减.当t ≠0,t ≠1时,h t >0,而h 1 =0;当t →-∞时,h t =1-1te t→0,无论t >0还是t <0,当t →0时,都有h t =1-1te t→+∞,当t →+∞时,h t =1-1te t→+∞.根据以上信息,画出函数h t 的大致图像如下图所示,所以当b >0时,函数h t =t -1te t与函数y =b 的图像有三个交点,故b 的取值范围为0,+∞ .(2)证明:要证x 23x 1x 2<e 2b -2,只需证2ln x 3-ln x 2+ln x 1<2b -2,只需证2ln x 3+1 -ln x 2+1 +ln x 1+1 <2b .设(1)中方程的b =t -1te t三个根分别为t 1,t 2,t 3,且t 1<t 2<t 3,t i =ln x i +1,i =1,2,3,从而只需证明2t 3-t 2+t 1<2b .又由(1)的讨论知t 1<0,0<t 2<1,t 3>1.下面先证明e x ≥x +1,设φx =e x -x -1,则φ x =e x -1.当x >0时,φ x >0,φx 在0,+∞ 上单调递增,当x <0时,φ x <0,φx 在-∞,0 上单调递增,所以φx ≥φ0 =0,所以当x ≠0时,e x >x +1,从而当t ≠0,t ≠1时,h t =t -1te t >t -1tt +1 .又由(1)知h t 在-∞,0 ,1,+∞ 上单调递增,h t 在0,1 上单调递减.所以当t>1时,h t >t2-1t=t-1t,令b=t-1t,解得t=b+b2+42,由h t3=b<hb+b2+42得t3<b+b2+42;当0<t<1时,h t >1t-t,令b=1t-t,解得t=-b+b2+42,由h t2=b<h-b+b2+42得t2>-b+b2+42;当t<0时,h t >t-1t,令b=t-1t,解得t=b-b2+42,由h t1=b<hb-b2+42得t1<b-b2+42.综上,2t3-t2+t1<b+b2+4--b+b2+42+b-b2+42=2b,得证.(三)把比较a,b a>0,b>0转化为比较ln a,ln b的大小比较两个指数式的大小,有时可以通过取对数,利用对数函数的单调性比较大小,如比较n n+1,n+1nn∈N∗,n>2的大小,可通过取对数转化为比较n+1ln n,n ln n+1的大小,再转化为比较ln n n,ln n+1n+1的大小,然后可以构造函数f x =ln xx,利用f x 的单调性比较大小.3一天,小锤同学为了比较ln1.1与110的大小,他首先画出了y=ln x的函数图像,然后取了离1.1很近的数字1,计算出了y=ln x在x=1处的切线方程,利用函数y=ln x与切线的图像关系进行比较. (1)请利用小锤的思路比較ln1.1与110大小(2)现提供以下两种类型的曲线y=ax2+b,y=kx+t,试利用小锤同学的思路选择合适的曲线,比较πe, e3的大小.【解析】(1)构造函数f(x)=ln x-x+1,由f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,得f(x)≤f(1)=0,即ln x≤x-1,取x=1,得ln1.1<0.1(2)通过取对数,把比较πe,e3的大小转化为比较e lnπ与3的大小,即比较lnπ与3e大小选y=ax2+b,令y=ln x与y=ax2+b公切于e则有ln e=ae2+b1e=-2ae3⇒a=-e22,b=32,∴y=-e22x2+3 2记g (x )=ln x +e 22x 2-32,g (x )=1x -e 2x 3=x 2-e 2x 3,∴g (x )在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )≥g (e )=0,∴ln x ≥-e 22x 2+32∴lnπ>-e 22π2+32,下证:32-e 22π2>3e 只需证3e +e 22π2<32∵3e +e 22π2<32.7+(2.72)22×(3.1)2=109+(2.72)22×(3.1)2只需证 2.723.1 2<79∵2.723.1<0.88,(0.88)2=0.7744而79=0.777>0.7744,∴lnπ>3e,即πe >e 3选y =kx +t ,通过取对数,把比较πe ,e 3的大小转化为比较e lnπ与3的大小,即比较lnπ与3e大小,即较ln1π与-3e大小令y =ln x 与y =kx +t 切于1e,则有ln 1e =k 1e +t e =k⇒k =e ,t =-2,∴y =ex -2令g (x )=ln x -ex +2,g (x )=1x -e =1-ex x∴g (x )在0,1e上单调递增,在1e ,+∞ 上单调递减,∴g (x )≤g 1e =0,∴ln x ≤ex -2,当x =1e取等∴ln 1π≤e π-2下证e π-2<-3e ,只需证e π+3e<2∵e π+3e <2.723.1+32.7<0.88+109,∵2-109=89=0.8 >0.88,∴ln 1π<-3e ,∴lnπ>3e,∴πe >e 3.三、典例展示1(2021全国甲卷高考试题)已知a >0且a ≠1,函数f (x )=x aa x (x >0).(1)当a =2时,求f x 的单调区间;(2)若曲线y =f x 与直线y =1有且仅有两个交点,求a 的取值范围.【解析】(1)当a =2时,f x =x 22x ,f x =2x ⋅2x -x 2⋅2x ln22x 2=x ⋅2x 2-x ln2 4x ,令f 'x =0得x =2ln2,当0<x <2ln2时,f x >0,当x >2ln2时,f x <0,∴函数f x 在0,2ln2上单调递增;2ln2,+∞ 上单调递减;(2)f x =x a a x=1⇔a x =x a⇔x ln a =a ln x ⇔ln x x =ln a a ,设函数g x=ln x x ,则g x =1-ln xx2,令g x =0,得x =e ,在0,e 内g x >0,g x 单调递增;在e ,+∞ 上g x <0,g x 单调递减;∴g x max =g e =1e,又g 1 =0,当x 趋近于+∞时,g x 趋近于0,所以曲线y =f x 与直线y =1有且仅有两个交点,即曲线y =g x 与直线y =aln a有两个交点的充分必要条件是0<ln a a <1e,这即是0<g a <g e ,所以a 的取值范围是1,e ∪e ,+∞ .2(2023届新疆高三第三次适应性检测)已知函数f (x )=ax 2+(a +1)x ln x -1,g (x )=f (x )x.(1)讨论g x 的单调性;(2)若方程f (x )=x 2e x +x ln x -1有两个不相等的实根x 1,x 2,求实数a 的取值范围,并证明e x 1+x 2>e 2x 1x 2.【解析】(1)因为g (x )=ax +(a +1)ln x -1x,所以g x =a +a +1x +1x 2=(x +1)(ax +1)x 2(x >0),当a ≥0时,g x >0,所以g (x )在区间(0,+∞)上单调递增,当a <0时,令g x >0,得0<x <-1a ;令g x <0,得x >-1a,所以g (x )在区间0,-1a上单调递增,在区间-1a ,+∞ 上单调递减,综上当a ≥0时,g (x )在区间(0,+∞)上单调递增,当a <0时,g (x )在区间0,-1a上单调递增,在区间-1a ,+∞ 上单调递减.(2)方程f (x )=x 2e x +x ln x -1,即ax +a ln x =xe x ,等价于a ln xe x =xe x ,令t =xe x >0,其中x >0,则a ln t =t ,显然t ≠1,令h t =tln t,则ht =ln t-1ln2t,所以h t 在区间0,1上单调递减,且由x→0时h t <0可得在区间0,1上h(t)<0,h t 在区间(1,e)上单调递减,在区间(e,+∞)上单调递增,所以h(t)极小值=h(e)=e,因为方程f(x)=x2e x+x ln x-1有两个实根x1,x2,所以关于t的方程a=tln t有两个实根t1,t2,且t1=x1e x1,t2=x2e x2,所以a∈(e,+∞),要证e x1+x2>e2x1x2,即证x1e x1⋅x2e x2>e2,即证t1t2>e2,只需证ln t1+ln t2>2,因为t1=a ln t1t2=a ln t2,所以t1-t2=a ln t1-ln t2t1+t2=a ln t1+ln t2,整理可得t1+t2t1-t2=ln t1+ln t2ln t1-ln t2,不妨设t1>t2>0,则只需证ln t1+ln t2=t1+t2t1-t2lnt1t2>2,即ln t1t2>2t1-t2t1+t2=2t1t2-1t1t2+1,令s=t1t2>1,p(s)=ln s-2(s-1)s+1,其中s>1,因为p s =1s-4(s+1)2=(s-1)2s(s+1)2>0,所以p s 在区间(1,+∞)上单调递增,所以h(s)>h(1)=0,故e x1+x2>e2x1x2.3已知函数,f x =ln x-x+m,m∈R.(1)求f x 的极值;(2)若f x 有两个零点a,b,且a<b,求证:e b+1b<2e m.【解析】(1)函数f x 的定义域为0,+∞,f x =1x-1.当0<x<1时,f x >0,则f x 在0,1上单调递增;当x>1时,f x <0,则f x 在1,+∞上单调递减,所以函数f x 的极大值为f1 =m-1,无极小值.(2)令f x =0,则m=x-ln x.设h x =x-ln x x>0,则h'x =1-1x=x-1x,易知函数h x 在0,1上单调递减,在1,+∞上单调递增.又h1 =1,所以h x ≥1,又f x 有两个零点,所以m >1.因为a <b ,所以0<a <1<b .要证e b +1b <2e m ,即证2e m -1>b +1b,即证ln2+m -1>lnb 2+1b=ln b 2+1 -ln b .又f b =0,则m =b -ln b ,故即证ln2+b -ln b -1>ln b 2+1 -ln b ,即证ln2-1>ln b 2+1 -b .设t b =ln b 2+1 -b ,b >1,则t 'b =2b b 2+1-1=-b -1 2b 2+1<0,所以t b 在1,+∞ 上单调递减,所以t b <t 1 =ln2-1,故e b +1b<2e m 得证.4设函数f x =-ln x .(1)设λ1、λ2≥0且λ1+λ2=1,求证:对任意的x 1、x 2>0,总有x λ11x λ22≤λ1x 1+λ2x 2成立;(2)设x i >0,λi >0i =1,2,⋅⋅⋅,n ,且ni =1λi =1 ,求证:x λ11x λ22⋅⋅⋅x λn n ≤λ1x 1+λ2x 2+⋅⋅⋅+λn x n .【解析】(1)证明:x λ11x λ22≤λ1x 1+λ2x 2⇔ln x λ11x λ22 ≤ln λ1x 1+λ2x 2 ⇔λ1ln x 1+λ2ln x 2≤ln λ1x 1+λ2x 2 ⇔f λ1x 1+λ2x 2 ≤λ1f x 1 +λ2f x 2 .不妨设0<x 1≤x 2,令g x =λ1f x +λ2f x 2 -f λ1x +λ2x 2 =ln λ1x +λ2x 2 -λ1ln x -λ2ln x 2,其中0<x ≤x 2,则g x =λ1λ1x +λ2x 2-λ1x =λ1x -λ1λ1x +λ2x 2 λ1x +λ2x 2 x =λ1x -λ1x -λ2x 2 λ1x +λ2x 2 x =λ1λ2x -x 2 λ1x +λ2x 2 x≤0,所以,函数g x 在区间0,x 2 上单调递减,因为x 1∈0,x 2 ,则g x 1 ≥g x 2 =ln x 2-ln x 2=0,所以,g x 1 =ln λ1x 1+λ2x 2 -λ1ln x 1-λ2ln x 2≥0,即λ1ln x 1+λ2ln x 2≤ln λ1x 1+λ2x 2 ,所以,当λ1、λ2≥0且λ1+λ2=1,对任意的x 1、x 2>0,总有x λ11x λ22≤λ1x 1+λ2x 2成立.(2)证明:x i >0,λi >0i =1,2,⋅⋅⋅,n ,且ni =1λi =1 ,要证x λ11x λ22⋅⋅⋅x λnn ≤λ1x 1+λ2x 2+⋅⋅⋅+λn x n .即证λ1ln x 1+λ2ln x 2+⋯+λn ln x n ≤ln λx 1+λ2x 2+⋯+λn x n ,即f λ1x 1+λ2x 2+⋅⋅⋅+λn x n ≤λ1f x 1 +λ2f x 2 +⋅⋅⋅+λn f x n ,当n=2时,由(1)可知,不等式成立,假设当n=k k≥2,k∈N∗时不等式成立,即fλ1x1+λ2x2+⋅⋅⋅+λk x k≤λ1f x1+λ2f x2+⋅⋅⋅+λk f x k,则当n=k+1时,设x k=λkλk+λk+1x k+λk+1λk+λk+1x k+1,由(1)可得f x k≤λkλk+λk+1f x k+λk+1λk+λk+1f x k+1,则fλ1x1+λ2x2+⋅⋅⋅+λk x k+λk+1x k+1=fλ1x1+λ2x2+⋅⋅⋅+λk-1x k-1+λk+λk+1x k≤λ1f x1+⋅⋅⋅+λk-1f x k-1+λk+λk+1f x k≤λ1f x1+⋅⋅⋅+λk f x k+λk+1f x k+1,这说明当n=k+1时,结论也成立,故对任意的n∈N∗,fλ1x1+λ2x2+⋅⋅⋅+λk x n≤λ1f x1+λ2f x2+⋅⋅⋅+λn f x n,所以,-lnλ1x1+λ2x2+⋅⋅⋅+λn x n≤-λ1ln x1-λ2ln x2-⋯-λn ln x n,因此,λ1ln x1+λ2ln x2+⋯+λn ln x n≤lnλx1+λ2x2+⋯+λn x n,故当x i>0,λi>0i=1,2,⋅⋅⋅,n,且ni=1λi=1时,xλ11xλ22⋅⋅⋅xλn n≤λ1x1+λ2x2+⋅⋅⋅+λn x n.5已知函数f(x)=e x,g(x)=x+a ln x,a∈R(1)讨论g(x)的单调性;(2)若f x +2x≥g x +x a,对任意x∈(1,+∞)恒成立,求a的最大值;【解析】(1)g (x)=1+ax=x+ax(x>0),当a≥0时,g′(x)>0,g(x)在(0,+∞)上单调递增;当a<0时,令g′(x)>0,解得x>-a,令g′(x)<0,解得0<x<-a,∴g(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增;综上,当a≥0时,g(x)在(0,+∞)上单调递增;当a<0时,g(x)在(0,-a)上单调递减,在(-a,+∞)上单调递增;(2)f(x)+2x≥g(x)+x a即为e x+x≥a ln x+x a,即e x+ln e x≥ln x a+x a,设h(x)=ln x+x(x>0),则h (x)=1x+1=x+1x,易知函数h(x)在(0,+∞)上单调递增,而h(e x)≥h(x a),所以e x≥x a(两边取对数),即x≥a ln x,当x>1时,即为a≤xln x,设φ(x)=xln x(x>1),则φ (x)=ln x-1ln2x,易知函数φ(x)在(0,e)上单调递减,在(e,+∞)上单调递增,∴φ(x)≥φ(e)=e,∴a≤e,即a的最大值为e.6已知函数f (x )=x ln x .(1)讨论f (x )的单调性;(2)设a ,b 为两个不相等的正数,且a b =b a ,证明:2e <1a +1b <1.【解析】 (1)f (x )=ln x +1,定义域为(0,+∞),由f (x )=0,解得x =1e ,由f (x )>0,解得x >1e,由f (x )<0,解得0<x <1e,所以f (x )的单调递增区间为1e ,+∞,单调递减区间为0,1e.(2)∵a ,b 为两个不相等的正数,且a b =b a ,∴b ln a =a ln b ,即1a ln 1a =1b ln 1b,由(1)可知f (x )min =f 1e =-1e,且f (1)=0,x →0时,f (x )→0,则令x 1=1a ,x 2=1b,则x 1,x 2为f (x )=k 的两根,且k ∈-1e ,0 ,不妨设x 1∈0,1e ,x 2∈1e ,1 ,则2e -x 1>1e,先证2e <x 1+x 2,即证x 2>2e -x 1,即证f x 2 =f x 1 >f 2e-x 1 ,令h (x )=f (x )-f 2e -x,即证在x ∈0,1e上,h (x )>0,则h (x )=f (x )-f 2e -x =ln x +ln 2e -x +2=ln -x 2+2ex +2,h (x )在0,1e上单调递增,即h (x )<h 1e =0,∴h (x )<0在0,1e上恒成立,即h (x )在0,1e 上单调递减,h (x )>h 1e =0,∴f (x )>f 2e -x,即可得x 2>2e-x 1;再证x 1+x 2<1,即证1e<x 2<1-x 1,由(1)f (x )单调性可得证f x 2 =f x 1 <f 1-x 1 ,令φ(x )=f (x )-f (1-x ),x ∈0,1e,φ (x )=ln x +ln (1-x )+2=ln -x 2+x +2,φ (x )在0,1e上单调递增,∴φ (x)=φ 1e>0,且当x→0,φ (x)<0,所以存在x0使得φ x0=0,即当x∈0,x0时,φ (x)<0,φ(x)单调递减,当x∈x0,1 e时,φ (x)>0,φ(x)单调递增,又有x→0,φ(x)<0,且φ1e=f1e -f1-1e<0,所以φ(x)<0恒成立,∴x 1+x2<1,则2e<1a+1b<1,即可证得.四、跟踪检测1已知函数f(x)=x ln x+a,(a∈R).(1)求函数f x 的单调区间;(2)当0<a<1e时,证明:函数f x 有两个零点;(3)若函数g(x)=f(x)-ax2-x有两个不同的极值点x1,x2(其中x1<x2),证明:x1⋅x22>e3.【解析】(1)f x =ln x+1,x>0,当0<x<1e时,fx <0,当x>1e时,fx >0,所以函数f x 在0,1 e上递减,在1e,+∞上递增,所以函数f x 的单调区间为0,1 e和1e,+∞;(2)证明:由(1)知f x min=f1e=-1e+a,因为0<a<1e,所以f1e<0,又当x→0+时,f x >0,f e =e+a>0,所以函数在0,1 e上存在一个零点,在1e,e上存在一个零点,所以函数f x 有两个零点;(3)证明:g(x)=f(x)-ax2-x=x ln x--ax2-x+a,(x>0),则g x =ln x-2ax,因为函数g(x)有两个不同的极值点x1,x2(其中x1<x2),所以ln x1=2ax1,ln x2=2ax2,要证x 1⋅x 22>e 3等价于证ln x 1⋅x 22 >ln e 3,即证ln x 1+2ln x 2>3,所以3<ln x 1+2ln x 2=2ax 1+4ax 2=2a x 1+2x 2 ,因为0<x 1<x 2,所以2a >3x 1+2x 2,又ln x 1=2ax 1,ln x 2=2ax 2,作差得ln x 1x 2=a x 1-x 2 ,所以a =ln x1x 2x 1-x 2,所以原不等式等价于要证明2ln x1x 2x 1-x 2>3x 1+2x 2,即2ln x 1x 2<3x 1-x 2 x 1+2x 2,令t =x 1x 2,t ∈0,1 ,则上不等式等价于要证:2ln t <3t -1t +2,t ∈0,1 ,令h t =2ln t -3t -1t +2,t ∈0,1 ,则ht =2t -9t +2 2=2t 2-t +8t t +2 2>0,t ∈0,1 ,所以函数h t 在0,1 上递增,所以h t <h 1 =0,所以2ln t <3t -1t +2,t ∈0,1 ,所以x 1⋅x 22>e 3.2形如y =f (x )g (x )的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得ln y =ln f (x )g (x )=g (x )ln f (x ),两边对x 求导数,得y y =g(x )ln f (x )+g (x )f x f x,于是y =f (x )g (x )g(x )ln f (x )+g (x )f x f x.已知f (x )=2e x ln x ,g (x )=x 2+1.(1)求曲线y =f (x )在x =1处的切线方程;(2)若h (x )=f (x ),求h (x )的单调区间;(3)求证:∀x ∈(0,+∞),f (x )≥g (x )恒成立.【解析】(1)由幂指函数导数公式得f (x )=2e x ln x (ln x +1),所以f (1)=2,又f (1)=2,所以,曲线y =f (x )在x =1处的切线方程为y =2x .(2)h (x )=f (x )=2e x ln x (ln x +1),x ∈(0,+∞),则h (x )=2e x ln x (ln x +1)+2e x ln x (ln x +1) =2e x ln x (ln x +1) (ln x +1)+2e x ln x ⋅1x=2e x ln x (ln x +1)2+1x>0,所以h (x )的单调增区间为(0,+∞),无单调减区间.(3)构造F (x )=f (x )-g (x ),x ∈(0,+∞),则F (x )=f (x )-g (x )=2e x ln x (ln x +1)-2x ,令H (x )=F (x )=2e x ln x (ln x +1)-2x ,x ∈(0,+∞),所以H (x )=2e x ln x (ln x +1)2+e(x -1)ln x-1 ,因为x -1与ln x 同号,所以(x -1)ln x ≥0,所以e (x -1)ln x-1≥0,又e x ln x (ln x +1)2≥0,所以H (x )≥0,所以H (x )即F (x )为(0,+∞)上增函数,又因为F (1)=0,所以,当x ∈(0,1)时,F (x )<F (1)=0;当x ∈(1,+∞)时,F (x )>F (1)=0.所以,F (x )为(0,1)上减函数,为(1,+∞)上增函数,所以,F (x )min =F (1)=0,即F (x )=f (x )-g (x )≥0,因此,∀x ∈(0,+∞),f (x )≥g (x )恒成立,即证.3已知函数f (x )=e x 2ln x (x >0).(1)求f (x )的极值点.(2)若有且仅有两个不相等的实数x 1,x 20<x 1<x 2 满足f x 1 =f x 2 =e k .(i )求k 的取值范围(ⅱ)证明x e 2-2e2≤e-e 21x 1.【解析】(1)函数f (x )=e x 2ln x (x >0)的导函数为f (x )=xe x 2ln x (2ln x +1).当x ∈0,e -12时,f(x )<0,所以函数f (x )单调递减;当x ∈e -12,+∞ 时,f (x )>0,所以函数f (x )单调递增.所以x =e-12为f (x )的极值点.(2)因为有且仅有两个不相等的实数x 1,x 20<x 1<x 2 满足f x 1 =f x 2 =e k ,所以x 12ln x 1=x 22ln x 2=k .(i )问题转化为m (x )=x 2ln x -k 在(0,+∞)内有两个零点,则m x =x 1+2ln x .当x∈0,e-1 2时, m x <0,m(x)单调递减;当x∈e-12,+∞时, m x >0,m(x)单调递增.若m(x)有两个零点,则必有m e-1 2<0,解得:k>-12e.若k≥0,当0<x<e-12时,m x =x2ln x-k≤x2ln x<0,无法保证m(x)有两个零点;若-12e<k<0,又m e1k>0,m e-12<0,m1 =-k>0,故存在x1∈e 1 k,e-12使得m x1 =0,存在x2∈e-12,1使得m x2 =0.综上可知, k∈-12e ,0.(ⅱ)设t=x2x1则t∈(1,+∞).将t=x2x1代入x12ln x1=x22ln x2,可得ln x1=t2ln t1-t2,ln x2=ln t1-t2(*).欲证:x e2-2e2≤e-e21x1,需证ln xe2-2e2≤ln e-e2x1即证ln x1+(e2-2e)ln x2≤-e2,将(*)代入,则有(t2+e2-2e)ln t1-t2≤-e2,则只需要证明:(x+e2-2e)ln x1-x≤-e(x>1),即ln x≥e x-1x+e2-2e(x>1).构造φ(x)=x-1ln x-xe-e+2,则φ (x)=ln x-x-1xln2x-1e,φ(x)=(x+1)2(x-1)x+1-ln xx2ln3x(x>1).令ω(x)=2(x-1)x+1-ln x(x>1),则ω (x)=-(x-1)2x(x+1)2<0.所以ω(x)<ω(1)=0,则φ (x)<0,所以φ(x)在1,+∞内单减.又φ (e)=0,所以当x∈(1,e)时,有φ (x)>0,φ(x)单调递增;当x∈(e,+∞)时,有φ (x)<0,φ(x)单调递减;所以φ(x)≤φ(e)=0,因此x-1ln x-xe≤e-2,即ln x≤e x-1x+e2-2e(x>1).综上所述,命题得证.4已知f(x)=ln x-x,g(x)=mx+m.(1)记F(x)=f(x)+g(x),讨论F(x)的单调区间;(2)记G(x)=f(x)+m,若G(x)有两个零点a,b,且a<b.请在①②中选择一个完成.①求证:2e m-1>1b+b;②求证:2e m-1<1a+a【解析】(1)函数的定义域为(0,+∞),F (x)=1x+m-1,当m≥1时,F (x)>0,F(x)在(0,+∞)单调递增;当m<1时,令F (x)<0,解得x>11-m,令F(x)>0,解得0<x<11-m,∴F (x )在0,11-m单调递增,在11-m ,+∞ 单调递减; 综上,当m ≥1时,f (x )的单调递增区间为(0,+∞);当m <1时,f (x )的单调递增区间为0,11-m ,单调递减区间为11-m,+∞ (2)证明:因为G (x )=ln x -x +m ,令G (x )=0,则m =x -ln x ,设t (x )=x -ln x (x >0),则t (x )=1-1x =x -1x,函数t (x )在(0,1)单调递减,在(1,+∞)单调递增,且x →0时,t (x )→+∞,当x →+∞时,t (x )→+∞,t (x )min =t (1)=1,∴m >1,又a <b ,则0<a <1<b ,若证①所证不等式,即2e m -1>b +1b,即证ln2+m -1>lnb 2+1b=ln b 2+1 -ln b ,又G (b )=0,则m =b -ln b ,故即证ln2+b -ln b -1>ln b 2+1 -ln b ,即证ln2-1>ln b 2+1 -b ,设h (b )=ln b 2+1 -b ,b >1,则h(b )=2b b 2+1-1=-(b -1)2b 2+1<0,∴h (b )在(1,+∞)上单调递减,∴h (b )<h (1)=ln2-1,即2e m -1>1b+b 得证;若证②所证不等式,即2em -1<a +1a ,即证ln2+m -1<ln a 2+1a,即证ln2+m -1<ln a 2+1 -ln a ,又G (a )=0,即m =a -ln a ,故即证ln2+a -ln a -1<ln a 2+1 -ln a ,即证ln2-1<ln a 2+1 -a ,设φ(a )=ln a 2+1 -a ,0<a <1,则φ(a )=2aa 2+1-1=-(a -1)2a 2+1<0,∴φ(a )在(0,1)单调递减,故φa >φ1 =ln2-1,即2e m -1<1a+a 得证.5已知a ∈R ,f (x )=x ⋅e -ax ,(其中e 为自然对数的底数).(1)求函数y =f (x )的单调区间;(2)若a >0,函数y =f (x )-a 有两个零点x ,x 2,求证:x 21+x 22>2e .【解析】(1)解:f ′(x )=e -ax -ax ⋅e -ax =e -ax (1-ax )∵a ∈R ,∴a <0时,f ′(x )=e -ax (1-ax )>0⇒x >1a ,f ′(x )=e -ax (1-ax )<0⇒x <1a∴a <0时,增区间为:1a ,+∞,减区间为:-∞,1a;a =0时,f ′(x )=e -ax (1-ax )=1>0,∴a =0时,增区间为:(-∞,+∞);a >0时,f ′(x )=e -ax (1-ax )>0⇒x <1a ,f ′(x )=e -ax (1-ax )<0⇒x >1a,∴a >0时,增区间为:-∞,1a ,减区间为:1a,+∞ ;(2)因为a >0时,函数y =f (x )-a 有两个零点x 1,x 2,则两个零点必为正实数,f (x )-a =0⇔xe -ax =a 两边取对数ln x -ax =ln a故问题转化为ln x -ax =ln a 有两个正实数解;令g (x )=ln x -ax -ln a (x >0)则g ′(x )=1x -a (x >0),g (x )在0,1a 单调递增,在1a ,+∞ 单调递减,且0<x 1<1a<x 2令G (x )=g (x )-g 2a -x ,x ∈1a,+∞ ,则G ′(x )=1x -a +12a -x -a =2x (2-ax )-2a >21a-2a =0所以G (x )在1a ,+∞ 单调递增,G (x )>G 1a=0又x 2>1a ,故g x 2 >g 2a -x 2 ,x 2∈1a,+∞ 又g x 1 =g x 2 ,所以g x 1 >g 2a-x 2 ,又0<x 1<1a <x 2,所以x 1,2a -x 2∈0,1a ,又g (x )在0,1a 单调递增,所以x 1+x 2>2a所以x 21+x 22>x 1+x 222>2a 2>2e .6已知函数f x =axe -x a ≠0 存在极大值1e.(1)求实数a 的值;(2)若函数F x =f x -m 有两个零点x 1,x 2x 1≠x 2 ,求实数m 的取值范围,并证明:x 1+x 2>2.【解析】(1)f x =a ⋅xe xx ∈R ,f x =a 1-x ex,令f x =0⇒x =1,f 1 =a e =1e ⇒a =1,此时f x =1-xex ,f x 在-∞,1 上f x >0,f x 递增;在1,+∞ 上f x <0,f x 递减,所以当x =1时,f x 取得极大值为f 1 =1e符合题意,所以a =1.(2)由(1)知:f x 在-∞,1 上递增,在1,+∞ 上递减,极大值为f 1 =1e.f x =x e x,f 0 =0,当x <0时,f x <0;当x >0时,f x >0;当x →+∞时,f x →0.由于函数F x =f x -m 有两个零点x 1,x 2x 1≠x 2 ,所以0<m <1e.因为x 1,x 2x 1≠x 2 是F x 的两个零点,则x 1>0,x 2>0.所以F x 1 =F x 2 ,x 1e x 1=x 2ex 2,e x 2e x 1=x 2x 1,e x 2-x 1=x 2x 1,两边取对数得x 2-x 1=ln x 2x 1,要证x 1+x 2>2,只需证明x 2-x 1x 2+x 1<12ln x2x 1,即证x 2x 1-1x 2x 1+1<12ln x 2x 1,不妨设x 1<x 2,令x 2x 1=t ,则t ∈1,+∞ ,即证t -1t +1<12ln t 对t ∈1,+∞ 恒成立.令g t =12ln t -t -1t +1,g t =12t -2t +12=t -1 22t t +1 2>0,所以g t 在1,+∞ 上递增,所以g t >g 1 =0,即12ln t -t -1t +1>0,所以t -1t +1<12ln t .从而x 1+x 2>2成立.7已知函数f (x )=x (e 2x -a ),g (x )=bx +ln x .(1)若y =2x 是曲线y =f (x )的切线,求a 的值;(2)若g (x )有两不同的零点,求b 的取值范围;(3)若b =1,且f (x )-g (x )≥1恒成立,求a 的取值范围.【解析】(1)依题意,设切点为(x 0,2x 0),则2x 0=x 0(e 2x 0-a ),f (x )=e 2x -a +x ⋅2e 2x ,于是得e 2x 0(2x 0+1)-a =2,则有x 0=0且a =-1,x 0≠0时,e 2x 0=a +2,(a +2)(2x 0+1)=a +2无解,所以a =-1;(2)由g (x )=0得-b =ln x x ,令h (x )=ln xx,x >0,则有h (x )=1-ln xx2,0<x <e 时h (x )>0,x >e 时h (x )<0,h (x )在(0,e )上递增,在(e ,+∞)上递减,h (x )max =h (e )=1e,又x >e 时,h (x )>0恒成立,于是得g (x )有两个不同的零点,等价于直线y =-b 与函数h (x )=ln xx,x >0图象有两个不同的公共点,即0<-b <1e ,-1e <b <0,所以g (x )有两不同的零点,b 的取值范围是-1e<b <0;(3)b =1,g (x )=x +ln x ,x >0,∀x >0,f (x )-g (x )≥1⇔x (e 2x -a )≥1+x +ln x ⇔a +1≤e 2x -1+ln xx,令φ(x )=e 2x-1+ln x x (x >0),φ (x )=2e 2x+ln x x 2=2x 2e 2x +ln x x 2,令F (x )=2x 2e 2x +ln x ,F (x )=(4x 2+4x )e 2x +1x>0,即F (x )在(0,+∞)上递增,而F 14=e 8-ln4<0,F (1)=2e 2>0,即∃t ∈(0,1),使得F (t )=0,0<x <t 时F (x )<0,φ (x )<0,x >t 时,F (x )>0,φ (x )>0,φ(x )在(0,t )上递减,在(t ,+∞)上递增,从而有φ(x )min =e 2t -1+ln tt,而F (t )=0,即2t 2e 2t +ln t =0,令t 2e 2t =p ,两边取对数得2t +2ln t =ln p ,则2p +ln t =0=2t +2ln t -ln p ,即有2p +ln p =2t +ln t ,显然函数y =2x +ln x 在(0,+∞)上单调递增,从而得p =t ,于是得t 2e 2t =t ⇔e 2t =1t 两边取对数 2t =-ln t ⇔ln t t=-2,φ(x )min =e 2t -1+ln t t =1t -1t -ln t t=2,所以a +1≤2,a ≤1.8已知函数f (x )=ax ln x ,a ∈R .(1)当a =1时,①求f (x )的极值;②若对任意的x ≥e 都有f (x )≥m xe mx ,m >0,求m 的最大值;(2)若函数g (x )=f (x )+x 2有且只有两个不同的零点x 1,x 2,求证:x 1x 2>e 2.【解析】(1)①a =1时,f (x )=x ln x ,则f ′(x )=ln x +1(x >0),令f ′(x )>0,解得:x >1e ,令f ′(x )<0,解得:0<x <1e,∴f (x )在0,1e递减,在1e ,+∞ 递增,故f (x )的极小值是f 1e =-1e ,没有极大值;②对任意x ≥e 都有f (x )≥m x e m x =e m x ln e m x,即f (x )≥f e mx 恒成立,由m >0,有mx>0,故e mx >1,由①知,f (x )在1e ,+∞ 单调递增,故x ≥e mx ,可得ln x ≥mx,即x ln x ≥m ,当x ≥e 时,f (x )的最小值是f (e )=e ,故m 的最大值是e ;(2)证明:要证x 1x 2>e 2,只需证明ln (x 1x 2)>2即可,由题意,x 1、x 2是方程ax ln x +x 2=0的两个不相等的实数根,又x >1,∴a ln x1+x1=0a ln x2+x2=0,消去a,整理得:ln(x1x2)=x1x2+1x1x 2-1⋅lnx1x2,不妨设x1>x2,令t=x1x2,则t>1,故只需证明当t>1时,t+1t-1⋅ln t>2,即证明ln t>2(t-1)t+1,设h(t)=ln t-2(t-1)t+1,则h′(t)=1t-2⋅t+1-(t-1)(t+1)2=(t-1)2t(t+1)2>0,∴h(t)在(1,+∞)单调递增,从而h(t)>h(1)=0,故ln t>2(t-1)t+1,即x1x2>e2得证.9已知函数f(x)=x ln x-ax2-x,g(x)=f(x)x,a∈R.(1)讨论g(x)的单调性;(2)设f(x)有两个极值点x1,x2x1<x2,证明:x41x2>e3.(e=2.71828⋯为自然对数的底数)【解析】(1)g(x)=f(x)x=ln x-ax-1,g (x)=1x-a,①当a≤0时,g (x)>0,g(x)在(0,+∞)单调递增;②当a>0时,令g (x)=0解得x=1a,x∈0,1a时,g (x)>0,g(x)单调递增;x∈1a ,+∞时,g (x)<0,f(x)单调递减.综上,当a≤0时,g(x)在(0,+∞)单调递增;当a>0时,g(x)在0,1 a上单调递增,在1a,+∞上单调递减,(2)由题意知,f (x)=ln x-2ax,x1,x2是f (x)的两根,即ln x1-2ax1=0,ln x2-2ax2=0,解得2a=ln x1-ln x2x1-x2(*),要证x41x2>e3,即证4ln x1+ln x2>3,即4⋅2ax1+2ax2>3,把(*)式代入得ln x1-ln x2x1-x24x1+x2>3x1<x2,所以应证ln x1x2<3x1-x24x1+x2=3x1x2-14x1x2+1,令t=x1x2,0<t<1,即证h(t)=ln t-3(t-1)4t+1<0(0<t<1)成立,而h (t)=1t-15(4t+1)2=16t2-7t+1t(4t+1)2=16t-7322+1564t(4t+1)2>0,所以h(t)在(0,1)上单调递增,所以h(t)<h(1)=0,所以命题得证.10已知函数f x =e x -a ln xx-a (e 为自然对数的底数)有两个零点.(1)若a =1,求f x 在x =1处的切线方程;(2)若f x 的两个零点分别为x 1,x 2,证明:e 2-x 1-x 2-x 1x 2<0.【解析】(1)当a =1时,f x =e x -ln x x -1,f x =e x -1-ln xx 2,又f 1 =e -1,所以切点坐标为1,e -1 ,切线的斜率为k =f 1 =e -1.所以切线方程为y -e -1 =e -1 x -1 ,即y =e -1 x (2)由已知得f x =xe x -a ln x +xx=0有两个不等的正实跟.所以方程xe x -a ln x +x =0有两个不等的正实根,即xe x -a ln xe x =0有两个不等的正实根,a ln xe x =xe x ①要证x 1x 2>e 2ex 1+x 2,只需证x 1e x 1 ⋅x 2e x 2 >e 2,即证ln x 1e x 1 +ln x 2e x 2>2,令t 1=x 1e x 1,t 2=x 2e x 2,所以只需证ln t 1+ln t 2>2,由①得a ln t 1=t 1,a ln t 2=t 2,所以a ln t 2-ln t 1 =t 2-t 1,a ln t 2+ln t 1 =t 2+t 1,消去a 得ln t 2+ln t 1=t 2+t 1t 2-t 1ln t 2-ln t 1 =t 2t 1+1ln t2t 1t 2t 1-1,只需证t 2t 1+1ln t2t 1t 2t 1-1>2,设0<t 1<t 2,令t =t 2t 1,则t >1,则t +1 ln tt -1>2,即证ln t +4t +1-2>0构建h t =ln t +4t +1-2>0则h t =1t -4t +12=t -1 2t t +1 2>0,所以h t 在1,+∞ 上单调递增,则h t >h 1 =0,即当t >1时,ln t +4t +1-2>0成立,所以ln t 1+ln t 2>2,即x 1e x 1⋅x 2e x 2>e 2,即x 1x 2>e 2ex 1+x 2,所以e2-x 1-x 2-x 1x 2<0,证毕.11已知函数h x =x -a ln x a ∈R .(1)若h x 有两个零点,a 的取值范围;(2)若方程xe x-a ln x +x =0有两个实根x 1、x 2,且x 1≠x 2,证明:e x 1+x 2>e 2x 1x 2.【解析】(1)函数h x 的定义域为0,+∞ .。

专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类(精讲精练)(原卷版)

专题17 函数与导数压轴解答题常考套路归类【命题规律】函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值; (2)函数的零点问题;(3)不等式恒成立与存在性问题; (4)函数不等式的证明. (5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.【核心考点目录】核心考点一:含参数函数单调性讨论 核心考点二:导数与数列不等式的综合问题 核心考点三:双变量问题 核心考点四:证明不等式 核心考点五:极最值问题 核心考点六:零点问题核心考点七:不等式恒成立问题核心考点八:极值点偏移问题与拐点偏移问题 核心考点九:利用导数解决一类整数问题 核心考点十:导数中的同构问题 核心考点十一:洛必达法则核心考点十二:导数与三角函数结合问题【真题回归】1.(2022·天津·统考高考真题)已知a b ∈R ,,函数()()sin ,x f x e a x g x =-=(1)求函数()y f x =在()()0,0f 处的切线方程; (2)若()y f x =和()y g x =有公共点, (i )当0a =时,求b 的取值范围; (ii )求证:22e a b +>.2.(2022·北京·统考高考真题)已知函数()e ln(1)x f x x =+. (1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.3.(2022·浙江·统考高考真题)设函数e()ln (0)2f x x x x=+>. (1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭; (ⅰ)若1230e,a x x x <<<<,则22132e 112e e6e 6e a ax x a --+<+<-. (注:e 2.71828=是自然对数的底数)4.(2022·全国·统考高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.5.(2022·全国·统考高考真题)已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.6.(2022·全国·统考高考真题)已知函数()ln xf x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <.7.(2022·全国·统考高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【方法技巧与总结】1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点x 0.(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x > ,则令2()()()x F x f x f x=-. (3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x xx x -+<-证明极值点偏移:①由题中等式中产生对数; ②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、 比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.【核心考点】核心考点一:含参数函数单调性讨论 【规律方法】1、导函数为含参一次型的函数单调性导函数的形式为含参一次函数时,首先讨论一次项系数为0,导函数的符号易于判断,当一次项系数不为雩,讨论导函数的零点与区间端点的大小关系,结合导函数图像判定导函数的符号,写出函数的单调区间.2、导函数为含参二次型函数的单调性当主导函数(决定导函数符号的函数)为二次函数时,确定原函数单调区间的问题转化为探究该二次函数在给定区间上根的判定问题.对于此二次函数根的判定有两种情况:(1)若该二次函数不容易因式分解,就要通过判别式来判断根的情况,然后再划分定义域; (2)若该二次函数容易因式分解,令该二次函数等于零,求根并比较大小,然后再划分定义域,判定导函数的符号,从而判断原函数的单调性.3、导函数为含参二阶求导型的函数单调性当无法直接通过解不等式得到一阶导函数的符号时,可对“主导”函数再次求导,使解题思路清晰.“再构造、再求导”是破解函数综合问题的强大武器.在此我们首先要清楚()()()f x f x f x '''、、之间的联系是如何判断原函数单调性的.(1)二次求导目的:通过()f x ''的符号,来判断()f x '的单调性;(2)通过赋特殊值找到()f x '的零点,来判断()f x '正负区间,进而得出()f x 单调性. 【典型例题】例1.(2023春·山东济南·高三统考期中)已知三次函数()()32111212322f x ax a x x =+---.(1)当3a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)讨论()y f x =的单调性.例2.(2023·全国·高三专题练习)已知函数()()2122ex f x x a x a -⎡⎤=+-+-⎣⎦,R a ∈,讨论函数()f x 单调性;例3.(2023·全国·高三专题练习)已知函数()()212ln 212f x a x x a x =+-+,a ∈R ,求()f x 的单调区间.例4.(2023·全国·高三专题练习)已知函数()()()22ln 211f x x ax a x a =---+∈R .求函数()f x 的单调区间;核心考点二:导数与数列不等式的综合问题 【规律方法】在解决等差、等比数列综合问题时,要充分利用基本公式、性质以及它们之间的转化关系,在求解过程中要树立“目标意识”,“需要什么,就求什么”,并适时地采用“巧用性质,整体考虑”的方法.可以达到减少运算量的目的.【典型例题】例5.(2023·江苏苏州·苏州中学校考模拟预测)已知函数()1ln f x x a x x=--.(1)若不等式()0f x ≥在()1,+∞上恒成立,求实数a 的取值范围; (2)证明:()()()22211ln 21ni n n i i n n =+-⎛⎫>⎪+⎝⎭∑.例6.(2023春·重庆·高三统考阶段练习)已知函数()e (2)2,x f x x a ax a =-++∈R . (1)当1a =时,求曲线()f x 在点(1,(1))f 处的切线方程; (2)若不等式()0f x ≥对0x ∀≥恒成立,求实数a 的范围; (3)证明:当111,1ln(21)23n n n*∈++++<+N .例7.(2023春·福建宁德·高三校考阶段练习)已知函数()e ax f x x =-(12a ≥). (1)(0,1)x ∈,求证:1sin ln 1x x x<<-;(2)证明:111sin sin sin()23f n n+++<.(ln20.693,ln3 1.099≈≈)核心考点三:双变量问题 【规律方法】破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果. 【典型例题】例8.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()()ln 1R f x x ax a =-+∈. (1)若过原点的一条直线l 与曲线()y f x =相切,求切点的横坐标;(2)若()f x 有两个零点12x x ,,且212x x >,证明:①1228>e x x ; ②2212220+>e x x .例9.(2023春·湖南长沙·高三长郡中学校考阶段练习)已知函数2()e ,2xmx f x m =-∈R . (1)讨论()f x 极值点的个数;(2)若()f x 有两个极值点12,x x ,且12x x <,证明:()()122e f x f x m +<-.例10.(2023·全国·高三专题练习)巳知函数()ln(3)f x x x =+-. (1)求函数f (x )的最大值; (2)若关于x 的方程e ln3,(0)3x a a a x +=>+有两个不等实数根x x ₁,₂,证明: 122e e x xa+>.核心考点四:证明不等式 【规律方法】利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数. (4)对数单身狗,指数找基友 (5)凹凸反转,转化为最值问题 (6)同构变形 【典型例题】例11.(2023·全国·高三校联考阶段练习)已知函数()()22ln ,f x x ax bx a b =-+∈R .(1)当0b =时,讨论()f x 的单调性;(2)设12,x x 为()f x 的两个不同零点,证明:当()0,x ∈+∞时,()()12212124sin 2e x x f x x x x +-+<++.例12.(2023·全国·高三校联考阶段练习)已知2()(ln 1)f x x x =+. (1)求()f x 的单调递增区间; (2)若124()()ef x f x +=,且12x x <,证明12ln()ln 21x x +>-.例13.(2023·江苏·高三专题练习)已知函数()ln m x nf x x+=在()()1,1f 处的切线方程为1y =. (1)求实数m 和n 的值;(2)已知()(),A a f a ,()(),B b f b 是函数()f x 的图象上两点,且()()f a f b =,求证:()()ln ln 1a b ab +<+.核心考点五:极最值问题 【规律方法】利用导数求函数的极最值问题.解题方法是利用导函数与单调性关系确定单调区间,从而求得极最值.只是对含有参数的极最值问题,需要对导函数进行二次讨论,对导函数或其中部分函数再一次求导,确定单调性,零点的存在性及唯一性等,由于零点的存在性与参数有关,因此对函数的极最值又需引入新函数,对新函数再用导数进行求值、证明等操作.【典型例题】例14.(2023春·江西鹰潭·高三贵溪市实验中学校考阶段练习)已知函数()31,R 3f x x ax a a =-+∈.(1)当1a =-时,求()f x 在[]22-,上的最值; (2)讨论()f x 的极值点的个数.例15.(2023·江西景德镇·高三统考阶段练习)已知函数21()(2)e e,()2x f x x g x a x x ⎛⎫=-+=- ⎪⎝⎭,其中a 为大于0的常数,若()()()F x f x g x =-. (1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,求()g t 的最小值.例16.(2023·浙江温州·统考模拟预测)已知0a >,函数()()()F x f x g x =-的最小值为2,其中1()e x f x -=,()ln()g x ax =.(1)求实数a 的值;(2)(0,)∀∈+∞x ,有(1)1(e )f x m kx k g x +-≥+-≥,求2mk k -的最大值.核心考点六:零点问题 【规律方法】函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像; 第三步:结合图像判断零点或根据零点分析参数. 【典型例题】例17.(2023·全国·高三专题练习)已知函数()()2e 2x m f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x x f x =+-有三个不同的零点,求m 的取值范围.例18.(2023·全国·高三专题练习)设0a >,已知函数()e 2xf x a x =--,和()()ln 22g x x a x =-++⎡⎤⎣⎦.(1)若()f x 与()g x 有相同的最小值,求a 的值;(2)设()()()2ln 2F x f x g x a =++-有两个零点,求a 的取值范围.例19.(2023春·广西·高三期末)已知函数()()ln e axxf xg x x ax ==-,. (1)当1a =时,求函数()f x 的最大值;(2)若关于x 的方()()f x g x +=1有两个不同的实根,求实数a 的取值范围.核心考点七:不等式恒成立问题 【规律方法】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈. (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f xg x <成立,则()()maxmin f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()maxmax f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f xg x <成立,则()()minmax f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f xg x =成立,则()f x 的值域是()g x 的值域的子集.【典型例题】例20.(2023·广西南宁·南宁二中校考一模)已知函数()ln 1f x x =+.(1)若函数()()1g x mf x x =+-的图象在1x =处的切线与直线2y x =平行,求函数()g x 在1x =处的切线方程;(2)求证:当12a ≤时,不等式()1af x a +≤在[1,e]上恒成立.例21.(2023·上海·高三专题练习)已知函数()(1)e (R x f x x ax a =--∈且a 为常数). (1)当0a =,求函数()f x 的最小值;(2)若函数()f x 有2个极值点,求a 的取值范围;(3)若()ln e 1x f x x ≥-+对任意的,()0x ∈+∞恒成立,求实数a 的取值范围.例22.(2023·全国·高三专题练习)已知函数()()()e 1ln ln 0x f x a x a x a =+--⋅>.(1)若e a =,求函数()f x 的单调区间; (2)若不等式()1f x <在区间()1,+∞上有解,求实数a 的取值范围.核心考点八:极值点偏移问题与拐点偏移问题 【规律方法】1、极值点偏移的相关概念所谓极值点偏移,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性.若函数)(x f 在0x x =处取得极值,且函数)(x f y =与直线b y =交于),(),,(21b x B b x A 两点,则AB 的中点为),2(21b x x M +,而往往2210x x x +≠.如下图所示.图1 极值点不偏移 图2 极值点偏移极值点偏移的定义:对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程)(x f 的解分别为21x x 、,且b x x a <<<21,(1)若0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2)若0212x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏;(3)若0212x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏.【典型例题】例23.(2022•浙江期中)已知函数()f x x lnx a =--有两个不同的零点1x ,2x . (1)求实数a 的取值范围; (2)证明:121x x a +>+.例24.(2021春•汕头校级月考)已知,函数()f x lnx ax =-,其中a R ∈. (1)讨论函数()f x 的单调性; (2)若函数()f x 有两个零点, ()i 求a 的取值范围;()ii 设()f x 的两个零点分别为1x ,2x ,证明:212x x e >.例25.(2022•浙江开学)已知a R ∈,()ax f x x e -=⋅(其中e 为自然对数的底数). (ⅰ)求函数()y f x =的单调区间;(ⅰ)若0a >,函数()y f x a =-有两个零点x ,2x ,求证:22122x x e +>.核心考点九:利用导数解决一类整数问题 【规律方法】分离参数、分离函数、半分离 【典型例题】例26.已知函数()ln 2f x x x =--. (1)求函数在()()1,1f 处的切线方程(2)证明:()f x 在区间()3,4内存在唯一的零点;(3)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.例27.已知函数211()ln 2f x x x x a a ⎛⎫=+-+ ⎪⎝⎭,(0)a ≠. (1)当12a =时,求函数()fx 在点()()1,1f 处的切线方程;(2)令2()()F x af x x =-,若()12F x ax <-在()1,x ∈+∞恒成立,求整数a 的最大值.(参考数据:4ln 33<,5ln 44<).例28.已知函数()ln 2f x x x =--.(1)证明:()f x 在区间()3,4内存在唯一的零点;(2)若对于任意的()1,x ∈+∞,都有()ln 1x x x k x +>-,求整数k 的最大值.核心考点十:导数中的同构问题【规律方法】1、同构式:是指除了变量不同,其余地方均相同的表达式2、同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系.可比较大小或解不等式.<同构小套路>①指对各一边,参数是关键;②常用“母函数”:()xf x x e =⋅,()xf x e x =±;寻找“亲戚函数”是关键;③信手拈来凑同构,凑常数、x 、参数;④复合函数(亲戚函数)比大小,利用单调性求参数范围. (3)在解析几何中的应用:如果()()1122,,,Ax y B x y 满足的方程为同构式,则,A B 为方程所表示曲线上的两点.特别的,若满足的方程是直线方程,则该方程即为直线AB 的方程(4)在数列中的应用:可将递推公式变形为“依序同构”的特征,即关于(),n a n 与()1,1n a n --的同构式,从而将同构式设为辅助数列便于求解【典型例题】例29.(2022·河北·高三阶段练习)已知函数()ln f x x x =. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且b a a b =,证明:2111e a b<+<.例30.(2022·河南郑州·二模(文))已知函数()e 21e xf x x =⋅-+,()ln 2xg x x=+. (1)求函数()g x 的极值;(2)当x >0时,证明:()()f x g x ≥例31.(2022·河南省浚县第一中学模拟预测(理))已知函数()()e x f x ax a =-∈R .(1)讨论f (x )的单调性.(2)若a =0,证明:对任意的x >1,都有()4333ln f x x x x x ≥-+.核心考点十一:洛必达法则 【规律方法】法则1、若函数()f x 和()g x 满足下列条件: (1)()lim 0x af x →=及()lim 0x ag x →=;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2、若函数()f x 和()g x 满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=; (2)0A ∃>,()f x 和()g x 在(),A -∞与(),A +∞上可导,且()0g x '≠; (3)()()limx f x l g x →∞'=',那么()()limx f x g x →∞=()()limx f x l g x →∞'='.法则3、若函数()f x 和()g x 满足下列条件: (1)()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域()(),,a a a a εε-⋃+内,()f x 与()g x 可导且()0g x '≠; (3)()()limx af x lg x →'=', 那么()()limx af xg x →=()()limx af x lg x →'='. 注意:利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: (1)将上面公式中的x a →,,x x →+∞→-∞,x a +→,x a -→洛必达法则也成立. (2)洛必达法则可处理00,∞∞,0⋅∞,1∞,∞,,∞-∞型.(3)在着手求极限以前,首先要检查是否满足00,∞∞,0⋅∞,1∞,∞,,∞-∞型定式,否则滥用洛必达法则会出错.当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限.(4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止.()()()()()()limlimlimx ax ax a f x f x f x g x g x g x →→→'''==''',如满足条件,可继续使用洛必达法则. 【典型例题】例32.已知函数()=ln (,)f x a x bx a b R +∈在12x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线与直线10x y -+=垂直.(1)求实数,a b 的值;(2)若[1,)x ∀∈+∞,不等式()(2)mf x m x x≤--恒成立,求实数m 的取值范围.例33.设函数()1x f x e -=-.(1)证明:当1x >-时,()1xf x x ≥+; (2)设当0x ≥时,()1xf x ax ≤+,求a 的取值范围.例34.设函数sin ()2cos xf x x=+.如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.22sin 2sin 2sin (sin )x x x x x x =-=-核心考点十二:导数与三角函数结合问题 【规律方法】 分段分析法【典型例题】例35.(2023·河南郑州·高三阶段练习)已知函数()1sin e xx f x x -=+,ππ,2x ⎡⎤∈-⎢⎥⎣⎦. (1)求证:()f x 在ππ,2⎡⎤-⎢⎥⎣⎦上单调递增;(2)当[]π,0x ∈-时,()sin e cos sin xf x x x k x --⎡⎤⎣⎦恒成立,求k 的取值范围.例36.(2023春·江苏苏州·高三苏州中学校考阶段练习)已知函数()sin ()cos f x x x a x =-+(a 为常数),函数3211()32g x x ax =+.(1)证明:(i )当0x >时,sin x x >; (ii )当0x <时,sin x x <;(2)证明:当0a ≥时,曲线()y f x =与曲线()y g x =有且只有一个公共点.例37.(2023·全国·高三专题练习)已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.【新题速递】1.(2023·北京·高三专题练习)已知1x =是函数()()ln ln ln 21xf x x ax x=-+++的一个极值点. (1)求a 值;(2)判断()f x 的单调性;(3)是否存在实数m ,使得关于x 的不等式()f x m ≥的解集为()0,∞+?直接写出m 的取值范围.2.(2023春·广东广州·高三统考阶段练习)已知()214ln 2f x x x a x =-+. (1)若函数()f x 在区间(0,)+∞上单调递增,求实数a 的取值范围; (2)若函数()f x 有两个极值点12,x x ,证明:()()1210ln f x f x a +>-+.3.(2023春·广东广州·高三统考阶段练习)已知函数()()2e 21xf x x ax =+-,其中R a ∈,若()f x 的图象在点()()0,0f 处的切线方程为210x by ++=. (1)求函数()f x 的解析式;(2)求函数()f x 在区间[]3,1-上的最值.4.(2023·全国·高三专题练习)已知函数2()1f x x =-,()ln(1)g x m x =-,R m ∈. (1)若直线:20l x y -=与()y g x =在(0,(0))g 处的切线垂直,求m 的值;(2)若函数()()()h x g x f x =-存在两个极值点1x ,2x ,且12x x <,求证:()()1122x h x x h x >.5.(2023·北京·高三专题练习)已知函数()2e x f x =,直线:2l y x b =+与曲线()y f x =相切.(1)求实数b 的值;(2)若曲线()y af x =与直线l 有两个公共点,其横坐标分别为(,)m n m n <. ①求实数a 的取值范围; ②证明:()()1f m f n ⋅>.6.(2023春·陕西西安·高三统考期末)已知函数()()33ln af x x a x x=--+. (1)当0a =时,求函数()f x 的单调区间;(2)若[]1,e x ∀∈,()0f x <,求实数a 的取值范围.7.(2023·四川资阳·统考模拟预测)已知函数()31f x x ax =-+.(1)当1a =时,过点()1,0作曲线()y f x =的切线l ,求l 的方程; (2)当0a ≤时,对于任意0x >,证明:()cos f x x >.8.(2023·四川资阳·统考模拟预测)已知函数()22e xx f x ax +=++. (1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点12,x x ,其中12x x <,求证:2133x x a ->-.9.(2023·全国·高三专题练习)已知函数()()43,R,04a f x x ax bx ab a =--∈≠ (1)若0b =,求函数()f x 的单调区间;(2)若存在0R x ∈,使得()()00f x x f x x =+-,设函数()y f x =的图像与x 轴的交点从左到右分别为A ,B ,C ,D ,证明:点B ,C 分别是线段AC 和线段BD 的黄金分割点.(注:若线段上的点将线段分割成两部分,且其中较长部分与全长之比等于较短部分与较长部分之比,则称此点为该线段的黄金分割点)10.(2023·江西景德镇·统考模拟预测)已知函数()()2e e xf x x =-+,()()2112g x a x x ⎛⎫=-- ⎪⎝⎭,()()ln 1ln h x x x a =-+,其中a 为常数,若()()()()F x f x g x h x =-+.(1)讨论()F x 的单调区间;(2)若()F x 在()1x t t =≠取得极小值,且()()f t mh t ≥恒成立,求实数m 的取值范围.11.(2023·全国·高三专题练习)已知抛物线C :24y x =的焦点为F ,过点P (2,0)作直线l 交抛物线于A ,B 两点.(1)若l 的倾斜角为π4,求△F AB 的面积;(2)过点A ,B 分别作抛物线C 的两条切线1l ,2l 且直线1l 与直线2l 相交于点M ,问:点M 是否在某定直线上?若在,求该定直线的方程,若不在,请说明理由.12.(2023春·江西赣州·高三赣州市赣县第三中学校考期中)已知函数()21ln 2f x x ax =-,()()21e 112x g x x ax a x =--+-,(1)求函数()y f x =的单调区间;(2)若对于定义域内任意x ,()()f x g x ≤恒成立,求实数a 的取值范围.。

函数与导数压轴题解法浅析

函数与导数压轴题解法浅析

函数与导数压轴题解法浅析(2017年课标卷文21题)f(x)=(1-x2)ex。

1.略。

2.x≥0时,f(x)≤ax+1求a的范围。

题目不难,可以选择洛必达法则,解法如下:①当x=0时,f(0)=(1-02)e0=a·0+1,此时a∈R。

②当x>0时,f(x)=(1-x2)ex<ax+1a>,构造函数h(x)=,则h`(x)=,记p(x)=(-x3-x2+x-1)ex+1则p`(x)=-x(x2+4x+1)ex,故p(x)在(0,+∞)上单调递减,且p(0)=0∴p(x)<0即h`(x)=<0,limh(x)=lim=lim=1,故a的取值范围是[1,+∞)。

若不会使用洛必达法则,可选用常见的待定常数法,也是本文重点介绍的方法,解法如下:当x>0时,对f(x)=(1-x2)ex<ax+1构造含有待定常数的函数式。

比如:设g(x)=(1-x2)ex-1<x-1(x>0)其中k是待定的常数。

则g`(x)=(-x2-2x+1)ex-k[待定的常数是这样确定的,使构造的函数的导数值在定义域内不小于(不大于)0]。

如k=1则g`(x)=(-x2-2x+1)ex-k<g`(0)= 0,在(0,+∞)上g`(x)<0,∴g(x)单调递减。

g(x)<g(0)=0,(1-x2)ex-x-1<0,得到<1(x>0)。

①要f(x)=(1-x2)ex<ax+1(x>0)只需<a(x>0)②结合①与②得a≥1。

综上所述,a的取值范围是[1,+∞)。

该方法备选练习:2016年四川高考理科第21题;2015年山东理科第21题;2014年新课标理科第21题。

二、参变量分离法(完全分离或部分分离)(2016年新课标全国卷)已知函数f(x)=(x-2)ex+(x-1)2有两个零点。

(1)求a的取值范围。

(2)设x1,x2是f(x)的两个零点,证明x1+x2<2。

第(1)问,若选择参变量完全分离:令f(x)=(x-2)ex+a(x-1)2=0显然x≠1。

6.高考函数导数压轴题分析及应对策略_李立美

6.高考函数导数压轴题分析及应对策略_李立美

有三个不同的解.设g (x ) =4x3-6x2+t+3, 则 “过点P (1, t ) 存 在3条直线与曲线y=f (x ) 相切” 等价于 “函数g (x ) 有3个不 同零点” . 因为g( ′ x ) =12x2-12x=12x (x-1 ) , 当x变化时, g (x ) 与g( ′ x ) 的变化情况如下:
策略一 、转化与化归的运用
例1 已知函数( f x ) =2x -3x. 若过点 P (1, t ) 存在 3 条
3
直线与曲线y=f (x ) 相切, 求t的取值范围. 解: 设过点P (1, t ) 的直线与曲线y=f (x ) 相切于点 (x0, y0 ) , 则y0=2x3 即切线的斜率为k=6x2 所以切线方 0 -3x0, 0 -3, 程为y-y0= (6x -3 ) (x-x0 ) . 将点 P (1, t ) 代入, 得 t-y0= (6x 2 0 2 0 2 3 ) (1-x0 ) , 整理得4x3 0-6x 0+t+3=0. 于是问题转化为此方程
所以, g (0 ) =t+3是g (x ) 的极大值, g (1 ) =t+1是g (x ) 的 极小值. 当g (0 ) >0 且 g (1 ) <0, 即-3<t<-1时, 因为g (-1 ) =t-7< 0, g (2) =t+ 11 > 0 , 由于 g (x) 在区间 (- ∞ , 0) , (0 , 1) , (1 , +∞ ) 上单调, 故g (x ) 分别在区间 (-1, 0 ) , (0, 1 ) 和 (1, 2 ) 上各有1个零点, 即g (x ) 分别在区间 (-∞, 0 ) , (0, 1 ) , [1, +∞ ) 上各有1个零点. 综上可知, 当过点P (1, t ) 存在3条直线与曲线y=f (x ) 相切时, t的取值范围是 (-3, -1 ) . 在研究、 解决数学问题时, 采用某种手段或方法, 使 问题从一种情形转化为另一种情形, 也就是转化到另一 种情景使问题得到解决, 这种转化是解决问题的有效策 略, 同时也是一种成功的思维方式.转化具有多样性、 层 次性和重复性的特点, 遵循熟悉化、 简单化、 直观化的原 则.本题的转化, 使切线的条数转化为函数的零点个数, 为解题铺平了道路

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

巧妙导数压轴题

巧妙导数压轴题摘要:一、导数压轴题的背景与意义1.导数压轴题在数学考试中的重要性2.导数压轴题的难点与挑战二、巧妙解决导数压轴题的方法1.分析题目,理清思路2.熟练运用导数公式和性质3.掌握求导数的方法和技巧4.理解导数与函数图像的关系5.解题时的注意事项三、导数压轴题的实战演练1.题目一2.题目二3.题目三四、总结与反思1.导数压轴题的解题技巧总结2.提高导数压轴题解题能力的建议3.反思导数压轴题的解决过程正文:一、导数压轴题的背景与意义导数压轴题通常出现在数学考试的最后一题,其难度较高,分值也相对较大。

这类题目考查了学生对导数概念的理解,对导数公式的熟练运用,以及对导数性质的掌握程度。

因此,导数压轴题是衡量学生数学水平的重要依据。

二、巧妙解决导数压轴题的方法1.分析题目,理清思路在解答导数压轴题时,首先要认真阅读题目,理解题意,找出已知条件和所求结论。

通过对题目的分析,理清解题思路,明确解题方向。

2.熟练运用导数公式和性质熟练掌握导数的基本公式和性质是解决导数压轴题的基础。

如:导数的四则运算、导数的复合、导数的分部积分、导数与函数的极值、最值等关系。

3.掌握求导数的方法和技巧求导数的方法有多种,如:直接求导法、对数求导法、反函数求导法、隐函数求导法、参数方程求导法和复合函数求导法等。

了解各种求导方法的特点,灵活选用求导方法,有助于解决导数压轴题。

4.理解导数与函数图像的关系导数反映了函数在某一点的切线斜率,与函数的增减性和极值有关。

因此,通过导数压轴题,可以加深对函数图像的理解,提高分析函数图像的能力。

5.解题时的注意事项在解答导数压轴题时,要注意审题,避免因粗心导致错误;解题过程要step-by-step,条理清晰;对于复杂题目,可以先求出部分结论,再逐步推导出最终结果;在计算过程中,注意运算顺序和运算法则。

三、导数压轴题的实战演练以下为三道典型的导数压轴题:题目一:已知函数f(x)=x^3-3x^2+2x-1,求f"(x)。

函数导数重难点突破解析

函数与导数重难点突破
南京航空航天大学附属高级中学
黄智华
函数与导数是高中代数部分重要的内容之 一.函数是描述客观世界变化规律的重要数学模 型.高中阶段不仅把函数看成变量之间的依赖关 系,同时还用集合与对应的语言刻画函数,函数 的思想方法贯穿数学课程的始终. 微积分的创立是数学发展中的里程碑,它为研 究变量与函数提供了重要的方法和手段.
导数的概念是微积分的核心概念之一,它有着 极其丰富的实际背景和广泛的应用.是学生进一 步学习高等数学的基础.因此,有关函数与导数 的内容历年来都是高考的重点、热点和难点,在 高考中占有重要的地位.
一、课标解读及考试要求
• (1)函数 • ①体会函数是描述变量之间的依赖关系的重要数 学模型,在此基础上学习用集合与对应的语言来刻 画函数,体会对应关系在刻画函数概念中的作用; 了解构成函数的要素,会求一些简单函数的定义域 和值域;了解映射的概念. • ② 在实际情境中,会根据不同的需要选择恰当 的方法表示函数. • ③ 通过具体实例,了解简单的分段函数,并能 简单应用. • ④ 通过已学过的函数特别是二次函数,理解函 数的单调性、最大(小)值及其几何意义;结合具体 函数,了解奇偶性的含义. • ⑤ 学会运用函数图像理解和研究函数的性质.
2.对函数知识的考查主要通过正、反比例 函数、一次函数、二次函数、指数函数、对数函 cx+d 数、幂函数、简单的分式函数(y= )、 ax+b b 基本不等式型函数(y=ax+ x (a>0,b>0))、 无理函数、分段函数或由以上这些基本函数组 合、复合而成的函数等为载体出现.
3.突出导数的工具性,主要体现在利用导数研究 函数的单调性,再借助函数的图象,进一步研究函数 的性质.因此,在研究与函数相关的问题时,应重视 数形结合的数学思想.

破解“函数与导数”试题的四种技巧





x=
1 e

,不



等号。
而∀x>0,ex-1≥x(当 且 仅 当 x=1 时,
不等



号 ),又
1 e

elnx+x 1 >0,即
21 elnx+x >x
,所以elnx+
1 x
1 >x
1 ≥ex-1
,所

exlnx+2exx-1
>1



归纳:有些 问 题 可 以 按 照 常 规 思 路 和 方
1 e,+∞ 时,g'(x)>0。
所 以 g(x)min=g
1 e
=
-
1。 e


,求

h(x)max=h(1)=
-
1 e



g(x)>h(x),即 f(x)>1。 思路2:利 用 不 等 式 的 基 本 性 质 先 进 一
步适当放缩后再构造函数不等式。



exln x
2ex-1 +x
>1(x
>0),等

当0<x≤1 e时,1+lnx≤0,所 以 g'(x)
≤0;当 x> 1 e 时 ,1+lnx>0,所 以 g'(x)>0。
所 以函数g(x)=exlnx+1(x>0)的减
区间为 0,1 e
,增 区 间 为
1 e
,+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(十九) 难点自选——函数与导数压轴大题的 3大难点及破解策略1.定义在R 上的奇函数f (x ),当x >0时,f (x )=ln x -ax +1,若f (x )有5个零点,求实数a 的取值范围.解:因为f (x )是定义在R 上的奇函数,所以f (0)=0;所以要使f (x )在R 上有5个零点,只需f (x )在(0,+∞)上有2个零点.所以等价于方程a =ln x +1x在(0,+∞)上有2个根.所以等价于y =a 与g (x )=ln x +1x (x >0)的图象有2个交点.g ′(x )=-ln x x2, x (0,1) (1,+∞)g (x )+-所以g (x )的最大值为g (1)=1.因为x →0时,g (x )→-∞;x →+∞时,由洛必达法则可知: li m x →+∞g (x )=li m x →+∞ ln x +1′x ′=li m x →+∞ 1x=0,所以0<a <g (1),所以0<a <1. 2.已知函数f (x )=e x-ln(x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)当m ≤2时,求证:f (x )>0. 解:(1)f ′(x )=e x-1x +m,由f ′(0)=0,得m =1, 所以f ′(x )=e x-1x +1,f ″(x )=e x+1x +12>0,又由f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0, 当x ∈(0,+∞)时,f ′(x )>0.所以函数f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增. (2)证明:依题意,f ′(x )=e x-1x +m. 令f ′(x 0)=0,则e x 0=1x 0+m >0,且f ″(x )=e x+1x +m2>0,所以函数f ′(x )在区间(-m ,+∞)上单调递增.则当x ∈(-m ,x 0)时,f ′(x 0)<0;当x ∈(x 0,+∞)时,f ′(x )>0,故函数f (x )在(-m ,x 0)上单调递减,在(x 0,+∞)上单调递增.所以f (x )min =f (x 0)=e x 0-ln(x 0+m ).又x 0满足方程e x 0=1x 0+m, 则f (x 0)=e x 0-ln(x 0+m )=1x 0+m -ln e -x 0=x 0+1x 0+m =x 0+m +1x 0+m-m ≥①2x 0+m ·1x 0+m -m =2-m ≥②0( 不等号①取等号的条件是⎩⎪⎨⎪⎧x 0=0,m =1,不等号②取等号的条件是m =2 ).由于不等号①、②不能同时取等号,故f (x 0)>0,即f (x )min >0,因此f (x )>0. 3.已知函数f (x )=ax +b x+c (a >0)的图象在点(1,f (1))处的切线方程为y =x -1. (1)试用a 表示出b ,c ;(2)若f (x )≥ln x 在[1,+∞)恒成立,求a 的取值范围. 解:(1)b =a -1,c =1-2a .(2)题设即“a ≥ln x +1x -1x +1x-2(x >1),或a ≥x ln x -x +1x -12(x >1) 恒成立”.用导数可证函数g (x )=12(x -1)2+(x -1)-x ln x (x ≥1)是增函数(只需证g ′(x )=x -ln x -1≥0(x ≥1)恒成立,再用导数可证),所以g (x )≥g (1)=0(x ≥1), 当且仅当x =1时g (x )=0,得x ln x -x +1x -12<12(x >1),li m x →1+ x ln x -x +1x -12=12.所以若a ≥x ln x -x +1x -12(x >1)恒成立,则a ≥12, 即a 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞.4.(2019·安徽二校联考)已知函数f (x )=ln x -ax-m (a ,m ∈R)在x =e(e 为自然对数的底数)时取得极值,且有两个零点记为x 1,x 2.(1)求实数a 的值,以及实数m 的取值范围; (2)证明:ln x 1+ln x 2>2.解:(1)f ′(x )=1x ·x -ln x -a x 2=a +1-ln xx2, 由f ′(x )=0,得x =e a +1,且当0<x <ea +1时,f ′(x )>0,当x >ea +1时,f ′(x )<0,所以f (x )在x =e a +1时取得极值,所以ea +1=e ,解得a =0.所以f (x )=ln x x -m (x >0),f ′(x )=1-ln xx2, 函数f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,f (e)=1e-m .又x →0(x >0)时,f (x )→-∞;x →+∞时,f (x )→-m ,f (x )有两个零点x 1,x 2, 故⎩⎪⎨⎪⎧1e -m >0,-m <0,解得0<m <1e.所以实数m 的取值范围为⎝ ⎛⎭⎪⎫0,1e . (2)证明:不妨设x 1<x 2,由题意知⎩⎪⎨⎪⎧ln x 1=mx 1,ln x 2=mx 2.则ln x 1x 2=m (x 1+x 2),ln x 2x 1=m (x 2-x 1)⇒m =lnx 2x 1x 2-x 1.欲证ln x 1+ln x 2>2,只需证lnx 1x 2>2,只需证m (x 1+x 2)>2,即证x 1+x 2x 2-x 1ln x 2x 1>2. 即证1+x 2x 1x 2x 1-1ln x 2x 1>2,设t =x 2x 1>1,则只需证ln t >2t -1t +1.即证ln t -2t -1t +1>0.记u (t )=ln t -2t -1t +1(t >1),则u ′(t )=1t-4t +12=t -12t t +12>0.所以u (t )在(1,+∞)上单调递增, 所以u (t )>u (1)=0,所以原不等式成立, 故ln x 1+ln x 2>2.5.(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x+2a ). ①设a =0,则f (x )=(x -2)e x,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0; 当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)内单调递增. 又当x ≤1时,f (x )<0, 所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).(2)证明:不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),2-x 2∈(-∞,1),又f (x )在(-∞,1)内单调递减,所以x 1+x 2<2等价于f (x 1)>f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e2-x 2+a (x 2-1)2, 而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e2-x 2-(x 2-2)e x 2. 设g (x )=-x e2-x-(x -2)e x,则g ′(x )=(x -1)(e 2-x-e x).所以当x >1时,g ′(x )<0,而g (1)=0, 故当x >1时,g (x )<0.从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.。

相关文档
最新文档