递归数列通项公式的求法
有理递归数列通项公式的求法

,
/砂 ” “ 了 “ 。
(幻
、
_
’,
二卜 ~
:
们
R
沪 ` 、 、. 2
劣
劣
) ) 一刀
x
一 一
a
刀
, :
其中 刀
=
b
oa
`
a。
。 一 b 刀
以” +
a o u二 m+
=
a
bou
一
。
m
… + a 。 + … + b
`
(“ 为 已 知 )的 通 项 公式 为
: 1 1
(证 明 P} 各) 引
A (犷
”戈
+ 1
。
.
犷 =
a
”
一 +
:
(
。 t
)
” 一
故。
。
=
;
(
。 :
一
解 六 例
导数 法
.
)
用” 一 ,
(n》
n
2
)
.
求和
:
卜1
注
若规 定 A “
、 二
= a 0
“ `
.
’
= l
,
则 引理
3
和定 理 1 中
“ 一
(,
1一
+
“ 2+
… +
x
·
)
,
一
(
劣
一
劣”
的通项公式对
一 1 也 适用
,
1 一义
推论 1
。:
(
阴异
求通 项
求数列通项公式的11种方法

求数列通项公式的11种方法方法总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法(少用)不动点法(递推式是一个数列通项的分式表达式)、 特征根法二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
求数列通项公式的11种方法

求数列通项公式的11种办法办法总述:一.运用递推关系式求数列通项的11种办法:累加法.累乘法.待定系数法.阶差法(逐差法).迭代法.对数变换法.倒数变换法.换元法(目标是去递推关系式中消失的根号).数学归纳法(罕用)不动点法(递推式是一个数列通项的分式表达式).特点根法二.四种根本数列:等差数列.等比数列.等和数列.等积数列及其广义情势.等差数列.等比数列的求通项公式的办法是:累加和累乘,这二种办法是求数列通项公式的最根本办法.三.求数列通项的办法的根本思绪是:把所求数列经由过程变形,代换转化为等级差数列或等比数列.四.求数列通项的根本办法是:累加法和累乘法.五.数列的本质是一个函数,其界说域是天然数集的一个函数. 一.累加法1.实用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最根本的二个办法之一. 2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-演习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12+-n n演习2.已知数列}{n a 知足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:裂项乞降n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,个中f(n)可所以关于n 的一次函数.二次函数.指数函数.分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列乞降; ②若f(n)是关于n 的二次函数,累加后可分组乞降;③若f(n)是关于n 的指数函数,累加后可转化为等比数列乞降; ④若f(n)是关于n 的分式函数,累加后可裂项乞降.例3.已知数列}{n a 中,0>n a 且)(21nn n a n a S +=,求数列}{n a 的通项公式.解:由已知)(21nn n a na S +=得)(2111---+-=n n n n n S S nS S S ,化简有n S S n n =--212,由类型(1)有n S S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n ,又0>n a 2)1(2+=n n s n ,,则2)1(2)1(2--+=n n n n a n此题也可以用数学归纳法来求解. 二.累乘法1.实用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最根本的二个办法之二. 2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例4 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}na 的通项公式为(1)12325!.n n n na n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+nn na a , 即11+=+n na a nn ∴2≥n 时,n n a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1. 评注:本题是关于n a 和1+n a 的二次齐次式,可以经由过程因式分化(一般情形时用求根公式)得到n a 与1+n a 的更为显著的关系式,从而求出na .1,111->-+=+a n na a n n ,求数列{an}的通项公式.答案:=n a )1()!1(1+⋅-a n -1.评注:本题解题的症结是把本来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1情势,进而运用累乘法求出数列的通项公式. 三.待定系数法 实用于1()n n a qa f n +=+根本思绪是转化为等差数列或等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.1.形如0(,1≠+=+c d ca a n n ,个中a a =1)型(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可经由过程待定系数法结构帮助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c c dλ所以有:)1(11-+=-+-c d a c c d a n n 是以数列⎭⎬⎫⎩⎨⎧-+1c d a n 组成认为11-+c da 首项,以c 为公比的等比数列, 所以11)1(1-⋅-+=-+n n c c da c d a 即:1)1(11--⋅-+=-c d c c d a a n n .纪律:将递推关系d ca a n n +=+1化为)1(11-+=-++c da c c d a n n ,结构成公比为c 的等比数列}1{-+c da n 从而求得通项公式)1(1111-++-=-+c da c c d a n n逐项相减法(阶差法):有时我们从递推关系dca a n n +=+1中把n换成n-1有dca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a nn n -=-+,再运用类型(1)即可求得通项公式.我们看到此办法比较庞杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21nn a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……演习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a .答案:1)21(1+=-n n a2.形如:n n n q a p a +⋅=+1 (个中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项办法有以下三种偏向:i. 双方同除以1+n p .目标是把所求数列结构成等差数列即:nn nn n q p p q a p a )(111⋅+=++,令n n n p a b =,则n nn q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.双方同除以1+n q . 目标是把所求数列结构成等差数列.即: q q a q p q a n n n n 111+⋅=++,令n nn q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目标是把所求数列结构成等差数列 设)(11n n n n p a p q a ⋅+=⋅+++λλ.经由过程比较系数,求出λ,转化为等比数列求通项.留意:运用待定系数法时,请求p ≠q,不然待定系数法会掉效. 例7已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a的通项公式.解法一(待定系数法):设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n na--⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二(双方同除以1+n q ): 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略解法三(双方同除以1+n p ): 双方同时除以12+n 得:nn n n n a a )23(342211⋅+=++,下面解法略 演习.(2003天津理) 设a 为常数,且)(2311N n a a n n n ∈-=--.证实对随意率性n≥1,012)1(]2)1(3[51a a n n n n nn ⋅-+⋅-+=-;3.形如b kn pa a n n ++=+1 (个中k,b 是常数,且0≠k ) 办法1:逐项相减法(阶差法) 办法2:待定系数法 经由过程凑配可转化为 ))1(()(1y n x a p y xn a n n +-+=++-;解题根本步调: 1.肯定()f n =kn+b 2.设等比数列)(y xn a b n n ++=,公比为p3.列出关系式))1(()(1y n x a p y xn a n n +-+=++-,即1-=n n pb b4.比较系数求x,y5.解得数列)(y xn a n ++的通项公式6.解得数列{}n a 的通项公式例8 在数列}{n a 中,,23,111n a a a n n +==+求通项n a .(逐项相减法)解: ,,231n a a n n +=+①∴2≥n 时,)1(231-+=-n a a n n ,两式相减得2)(311+-=--+n n n n a a a a .令nn n a a b -=+1,则231+=-n n b b运用类型5的办法知2351+⋅=-n n b 即13511-⋅=--+n n n a a ② 再由累加法可得213251--⋅=-n a n n . 亦可联立 ①②解出213251--⋅=-n a n n .例9. 在数列{}n a 中,362,2311-=-=-n a a a n n ,求通项n a .(待定系数法)解:原递推式可化为yn x a y xn a n n ++-+=++-)1()(21比较系数可得:x=-6,y=9,上式即为12-=n n b b所所以{}n b 一个等比数列,首项299611=+-=n a b ,公比为21.1)21(29-=∴n n b即:nn n a )21(996⋅=+- 故96)21(9-+⋅=n a n n .4.形如cn b n a pa a n n +⋅+⋅+=+21 (个中a,b,c 是常数,且0≠a )根本思绪是转化为等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.例10 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n na x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列. 例11 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式. 解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,(取-3 成果情势可能不合,但本质雷同) 则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅{}n a 中,若2,821==a a ,且知足03412=+-++n n n a a a ,求n a .答案:nn a 311-=.四.迭代法 rn n pa a =+1(个中p,r 为常数)型 例12 已知数列{}n a 知足3(1)2115nn n na aa ++==,,求数列{}n a 的通项公式.解:因为3(1)21n n n na a++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式. 例13.(2005江西卷)已知数列:,}{且满足的各项都是正数n a N n a a a a n n n ∈-==+),4(21,110,(1)证实12,;n n a a n N +<<∈ (2)求数列}{n a 的通项公式an.解:(1)略(2)],4)2([21)4(2121+--=-=+n n n n a a a a 所以21)2()2(2--=-+n n a ann nn n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-= 则令又b n =-1,所以1212)21(22,)21(---=+=-=n n n n n b a b 即.办法2:本题用归纳-猜测-证实,也很简捷,请试一试.解法3:设c n n b -=,则c2121-=n n c ,转化为上面类型(1)来解五.对数变换法 实用于rn n pa a =+1(个中p,r 为常数)型 p>0,0>n a例14. 设正项数列{}n a 知足11=a ,212-=n na a (n ≥2).求数列{}n a 的通项公式.解:双方取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n na a ,设1log 2+=n a n b ,则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n,12log 12-=-n a n,∴1212--=n na演习 数列{}n a 中,11=a ,12-=n n a a (n ≥2),求数列{}n a 的通项公式.答案:nna --=2222例15 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 双方取经常运用对数得1lg 5lg lg3lg 2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg3lg3lg 2,4164x y ==+ 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg3lg3lg 2lg 04164n a n +++≠, 所以数列lg3lg3lg 2{lg }4164n a n +++是认为lg3lg3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n na -----=⨯⨯.六.倒数变换法 实用于分式关系的递推公式,分子只有一项 例16 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 七.换元法 实用于含根式的递推关系 例17 已知数列{}n a知足111(14116n n a a a +=++=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=++得 即2214(3)n n b b +=+因为0n b =≥,则123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -==首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++.八.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例18 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. (2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 九.阶差法(逐项相减法) 1.递推公式中既有n S ,又有n a剖析:把已知关系经由过程11,1,2n nn S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例19 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式.解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a = 当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去所以32n a n =-演习.已知数列}{n a 中,0>n a 且2)1(21+=n n a S ,求数列}{n a 的通项公式.答案:n n na S S =--1212)1()1(+=--n n a a 12-=n a n2.对无限递推数列例20 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =十.不动点法 目标是将递推数列转化为等比(差)数列的办法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例21 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n n n n a p a pk a q a q++--=⋅--,个中a pc k a qc -=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=---(2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p +=+--,个中2ck a d=+.例22. 设数列{}n a 知足7245,211++==+n n n a a a a ,求数列{}n a 的通项公式.剖析:此类问题经常运用参数法化等比数列求解. 解:对等式两头同时加参数t,得:,725247)52(727)52(72451+++++=+++=+++=++n n n n n n n a t t a t a t a t t a a t a令5247++=t t t , 解之得t=1,-2 代入72)52(1+++=++n n n a t a t t a 得721311+-=-+n n n a a a ,722921++=++n n n a a a ,相除得21312111+-⋅=+-++n n n n a a a a ,即{21+-n n a a }是首项为412111=+-a a , 公比为31的等比数列,21+-n n a a =n -⋅1341, 解得13423411-⋅+⋅=--n n n a . 办法2:,721311+-=-+n n n a a a ,双方取倒数得1332)1(39)1(2)1(372111-+=-+-=-+=-+n n n n n n a a a a a a , 令b 11-=n n a ,则b =n n b 332+,, 转化为累加法来求.例23 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19nn a -=+-. 演习1:已知{}n a 知足11122,(2)21n n n a a a n a --+==≥+,求{}n a 的通项n a答案:3(1)3(1)n nn nna --∴=+-演习2.已知数列{}n a 知足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a答案:135106n na n -∴=-演习3.(2009陕西卷文)已知数列{}n a 知足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证实:{}n b 是等比数列;(Ⅱ)求{}n a 的通项公式.答案:(1){}n b 是以1为首项,12-为公比的等比数列.(2)1*521()()332n n a n N -=--∈.十一:特点方程法 形如21(,n n n a pa qa p q ++=+是常数)的数列 (已知 a1;a2)形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特点根法求得通项n a ,其特点方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n nn a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,nn a c nc c c α=+是待定常数)再运用1122,,a m a m ==可求得12,c c ,进而求得n a例24 已知数列{}n a 知足*12212,3,32()n n na a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为232x x =-,解得121,2x x ==,令1212n nn a c c =⋅+⋅, 由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+例25已知数列{}n a 知足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩, 1322n n n a --∴=演习1.已知数列{}n a 知足*12211,2,441()n n n a a a a a n N ++===--∈,求数列{}n a 的通项演习2.已知数列{}n a 知足*12211,2,444()n n n a a a a a n n N ++===---∈,求数列{}n a 的通项解释:(1)若方程2x px q =+有两不合的解s , t,则)(11-+-=-n n n n ta a s ta a , )(11-+-=-n n n n sa a t sa a ,由等比数列性质可得1121)(-+-=-n n n s ta a ta a , 1121)(-+-=-n n n t sa a sa a ,,s t ≠ 由上两式消去1+n a 可得()()()nn n t t s t sa a s t s s ta a a ..1212-----=.(2)若方程2x px q =+有两相等的解t s =,则()()12121211)(ta a s ta a s ta a s ta a n n n n n n n -==-=-=-----+ ,21211s ta a s a s a n n n n -=-∴++,等于⎭⎬⎫⎩⎨⎧n n s a 等差数列, 由等差数列性质可知()2121.1ssa a n s a s a n n --+=, 所以nn s n s sa a s sa a s a a ⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛--=.2122121. 例26.数列{}n a 知足1512a =-,且212542924n n n a a a +-=+求数列{}n a 的通项.解:2211252925244429292244n n n n n n n a a a a a a a λλλλ++-++-+==+=++……① 令229254λλ-=,解得12251,4λλ==,将它们代回①得,()21112924n n n a a a +++=+……②,212525429424nn n a a a +⎛⎫+ ⎪⎝⎭+=+……③,③÷②,得21125254411n nn n a a a a ++⎛⎫++ ⎪= ⎪++ ⎪⎝⎭,则11252544lg 2lg 11n n n n a a a a ++++=++,∴数列254lg 1n n a a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭成等比数列,首项为1,公比q =2所以1254lg 21n n n a a -+=+,则12254101n n n a a -+=+,112225104101n n n a ---∴=-十二.四种根本数列1.形如)(1n f a a n n =-+型 等差数列的广义情势,见累加法.)(1n f a a nn =+型 等比数列的广义情势,见累乘法. )(1n f a a n n =++型(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程结构转化为)(1n f a a n n =-+型,经由过程累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.例27. 数列{n a }知足01=a ,n a a n n 21=++,求数列{a n }的通项公式. 剖析 1:结构 转化为)(1n f a a n n =-+型解法1:令n nn a b )1(-=则n a a a a b b n n n n n n n n n n 2)1()()1()1()1(111111⋅-=+-=---=-++++++.2≥n 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=⨯⋅-=--⋅-=--⋅-=-----012)1()2(2)1()1(2)1(112121211a b b b n b b n b b n n n n n n各式相加:[]1)1(2)1()2()1()1()1(2231⋅-+⋅-++--+--=- n n b n n n当n 为偶数时,n n n b n =⎥⎦⎤⎢⎣⎡-⋅-+-=22)1()1(2. 此时n b a n n == 当n 为奇数时,1)21(2+-=--=n n b n 此时n n a b -=,所以1-=n a n .故 ⎩⎨⎧-=.,,,1为偶数为奇数n n n n a n解法2: na a n n 21=++∴2≥n 时,)1(21-=+-n a a n n ,两式相减得:211=--+n n a a . ∴,,,,531 a a a 组成以1a ,为首项,以2为公役的等差数列; ,,,,642 a a a 组成以2a ,为首项,以2为公役的等差数列∴22)1(112-=-+=-k d k a a k k d k a a k 2)1(22=-+=.∴⎩⎨⎧-=.,,,1为偶数为奇数n n n n a n 评注:成果要还原成n 的表达式.例28.(2005江西卷)已知数列{a n }的前n 项和S n 知足 S n -S n -2=3,23,1),3()21(211-==≥--S S n n 且求数列{a n }的通项公式. 解:办法一:因为),3()21(31112≥-⋅=++=-----n a a a a S S n n n n n n n 所以 以下同上例,略答案 ⎪⎪⎩⎪⎪⎨⎧⋅+-⋅-=--.,)21(34,,)21(3411为偶数为奇数n n a n n n)(1n f a a n n =⋅+型(1)若p a a n n =⋅+1(p 为常数),则数列{n a }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项.例29. 已知数列满足}{n a )(,)21(,3*11N n a a a nn n ∈=⋅=+,求此数列的通项公式.注:同上例相似,略.。
递归求解卡特兰数

递归求解卡特兰数卡特兰数,又称卡塔兰数,是组合数学中一类重要的数列,其通项公式为C(n)=C(n-1)*2*(2n-1)/(n+1),其中n为正整数。
卡特兰数在组合数学、离散数学等领域被广泛应用,如二叉树的数量、括号匹配的方案数、山峰序列等问题。
本文将介绍一种递归求解卡特兰数的方法,以求解C(5)为例进行说明。
递归求解卡特兰数的基本思路是将问题拆分成若干个子问题,然后通过递归的方式进行求解。
具体来说,对于求解C(n),我们可以考虑先将其拆分成C(n-1)和C(n-2)两个子问题,然后通过递归求解这两个子问题,最终将它们的结果结合在一起得到C(n)的值。
下面是求解C(5)的具体步骤:Step1:求解C(4)根据卡特兰数的通项公式,C(4)=C(3)*2*7/5=14。
因此,我们需要先求解C(3)。
Step2:求解C(3)同理,C(3)=C(2)*2*5/4=5。
因此,我们需要先求解C(2)。
Step3:求解C(2)根据卡特兰数的通项公式,C(2)=C(1)*2*3/2=2。
因此,我们需要先求解C(1)。
Step4:求解C(1)C(1)=1,是卡特兰数的起始值。
Step5:结合子问题的结果求解C(2)根据递归的思路,我们已经求得C(1)的值,因此可以使用C(2)=C(1)*2*3/2=2的计算公式求解C(2)的值。
Step6:结合子问题的结果求解C(3)同理,我们已经求得C(2)的值,因此可以使用C(3)=C(2)*2*5/4=5的计算公式求解C(3)的值。
Step7:结合子问题的结果求解C(4)同理,我们已经求得C(3)的值,因此可以使用C(4)=C(3)*2*7/5=14的计算公式求解C(4)的值。
Step8:结合子问题的结果求解C(5)同理,我们已经求得C(4)的值,因此可以使用C(5)=C(4)*2*9/6=42的计算公式求解C(5)的值。
通过上述步骤,我们成功地使用递归的方法求解了C(5)的值,即C(5)=42。
求数列通项公式的十种方法,例题答案详解

求数列通项公式的十一种办法(办法全,例子全,归纳细)总述:一.运用递推关系式求数列通项的11种办法:累加法.累乘法.待定系数法.阶差法(逐差法).迭代法.对数变换法.倒数变换法.换元法(目标是去递推关系式中消失的根号).数学归纳法.不动点法(递推式是一个数列通项的分式表达式).特点根法二.四种根本数列:等差数列.等比数列.等和数列.等积数列及其广义情势.等差数列.等比数列的求通项公式的办法是:累加和累乘,这二种办法是求数列通项公式的最根本办法.三.求数列通项的办法的根本思绪是:把所求数列经由过程变形,代换转化为等差数列或等比数列.四.求数列通项的根本办法是:累加法和累乘法.五.数列的本质是一个函数,其界说域是天然数集的一个函数. 一.累加法1.实用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最根本的二个办法之一. 2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯, 则21133.322n n n a n =⨯⨯+⨯-评注:已知a a =1,)(1n f a a n n =-+,个中f(n)可所以关于n 的一次函数.二次函数.指数函数.分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列乞降; ②若f(n)是关于n 的二次函数,累加后可分组乞降;③若f(n)是关于n 的指数函数,累加后可转化为等比数列乞降; ④若f(n)是关于n 的分式函数,累加后可裂项乞降.例3.已知数列}{n a 中,0>n a 且)(21n n n a na S +=,求数列}{n a 的通项公式.解:由已知)(21n n n a n a S +=得)(2111---+-=n n n n n S S n S S S ,化简有n S S n n =--212,由类型(1)有n S S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n,又0>n a ,2)1(2+=n n s n ,则2)1(2)1(2--+=n n n n a n此题也可以用数学归纳法来求解. 二.累乘法1.实用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最根本的二个办法之二. 2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例4 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+n n na a , 即11+=+n n a a n n∴2≥n 时,n n a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1.评注:本题是关于n a 和1+n a 的二次齐次式,可以经由过程因式分化(一般情形时用求根公式)得到n a 与1+n a 的更为显著的关系式,从而求出n a .1,111->-+=+a n na a n n ,求数列{an}的通项公式.答案:=n a )1()!1(1+⋅-a n -1.评注:本题解题的症结是把本来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1情势,进而运用累乘法求出数列的通项公式. 三.待定系数法 实用于1()n n a qa f n +=+根本思绪是转化为等差数列或等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.1.形如0(,1≠+=+c d ca a n n ,个中a a =1)型 (1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可经由过程待定系数法结构帮助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n是以数列⎭⎬⎫⎩⎨⎧-+1c d a n 组成认为11-+c d a 首项,以c 为公比的等比数列,所以11)1(1-⋅-+=-+n n c c d a c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 纪律:将递推关系d ca a n n +=+1化为)1(11-+=-++c da c c d a n n ,结构成公比为c 的等比数列}1{-+c da n 从而求得通项公式)1(1111-++-=-+c d a c c d a n n 逐项相减法(阶差法):有时我们从递推关系d ca a n n +=+1中把n 换成n-1有d ca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a nn n -=-+,再运用类型(1)即可求得通项公式.我们看到此办法比较庞杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21n n a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……演习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a .答案:1)21(1+=-n n a2.形如:nn n q a p a +⋅=+1 (个中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项办法有以下三种偏向:i. 双方同除以1+n p .目标是把所求数列结构成等差数列即:nnn n n q p p q a p a )(111⋅+=++,令n n n pa b =,则nn n q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.双方同除以1+n q . 目标是把所求数列结构成等差数列.即:q q a q p q a n n n n 111+⋅=++,令nn n q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目标是把所求数列结构成等差数列设)(11nn n n p a p q a ⋅+=⋅+++λλ.经由过程比较系数,求出λ,转化为等比数列求通项.留意:运用待定系数法时,请求p ≠q,不然待定系数法会掉效. 例7已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a 的通项公式. 解法一(待定系数法):设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n na--⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二(双方同除以1+n q ): 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略解法三(双方同除以1+n p ): 双方同时除以12+n 得:nn n n n a a )23(342211⋅+=++,下面解法略3.形如b kn pa a n n ++=+1 (个中k,b 是常数,且0≠k ) 办法1:逐项相减法(阶差法) 办法2:待定系数法经由过程凑配可转化为 ))1(()(1y n x a p y xn a n n +-+=++-; 解题根本步调: 1.肯定()f n =kn+b2.设等比数列)(y xn a b n n ++=,公比为p3.列出关系式))1(()(1y n x a p y xn a n n +-+=++-,即1-=n n pb b4.比较系数求x,y5.解得数列)(y xn a n ++的通项公式6.解得数列{}n a 的通项公式例8 在数列}{n a 中,,23,111n a a a n n +==+求通项n a .(逐项相减法) 解: ,,231n a a n n +=+①∴2≥n 时,)1(231-+=-n a a n n ,两式相减得 2)(311+-=--+n n n n a a a a .令n n n a a b -=+1,则231+=-n n b b运用类型5的办法知2351+⋅=-n n b 即 13511-⋅=--+n nn a a ②再由累加法可得213251--⋅=-n a n n . 亦可联立 ①②解出213251--⋅=-n a n n .例9. 在数列{}na 中,362,2311-=-=-n a a a n n ,求通项n a .(待定系数法)解:原递推式可化为y n x a y xn a n n ++-+=++-)1()(21 比较系数可得:x=-6,y=9,上式即为12-=n n b b 所所以{}n b 一个等比数列,首项299611=+-=n a b ,公比为21.1)21(29-=∴n n b 即:n n n a )21(996⋅=+- 故96)21(9-+⋅=n a n n .4.形如c n b n a pa a n n +⋅+⋅+=+21 (个中a,b,c 是常数,且0≠a ) 根本思绪是转化为等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.例10 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---. 21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列.例11 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式.解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,(取-3 成果情势可能不合,但本质雷同)则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅{}n a 中,若2,821==a a ,且知足03412=+-++n n n a a a ,求n a .答案: nn a 311-=.四.迭代法 rn n pa a =+1(个中p,r 为常数)型例12 已知数列{}n a 知足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式. 解:因为3(1)21nn n n a a ++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式.五.对数变换法 实用于rn n pa a =+1(个中p,r 为常数)型 p>0,0>n a 例14. 设正项数列{}n a 知足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.解:双方取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n a nb ,则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n ,12log 12-=-n a n ,∴1212--=n n a演习 数列{}n a 中,11=a ,12-=n n a a (n ≥2),求数列{}n a 的通项公式.答案:nn a --=2222例15 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,.双方取经常运用对数得1lg 5lg lg3lg2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg 3lg 3lg 2,4164x y ==+ 由1lg 3lg 3lg 2lg 3lg 3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg 3lg 3lg 2lg 04164n a n +++≠,所以数列lg 3lg 3lg 2{lg }4164n a n +++是认为lg 3lg 3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n n a -----=⨯⨯.六.倒数变换法 实用于分式关系的递推公式,分子只有一项 例16 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 七.换元法 实用于含根式的递推关系 例17 已知数列{}n a知足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=++得 即2214(3)n n b b +=+因为0n b =,则123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -===首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++. 八.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例18 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立.(2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 九.阶差法(逐项相减法) 1.递推公式中既有n S ,又有n a 剖析:把已知关系经由过程11,1,2n n n S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例19 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式.解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a = 当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去所以32n a n =-演习.已知数列}{n a 中,0>n a 且2)1(21+=n n a S ,求数列}{n a 的通项公式.答案:n n na S S =--1212)1()1(+=--n n a a 12-=n a n2.对无限递推数列例20 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥① 所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-=则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =十.不动点法 目标是将递推数列转化为等比(差)数列的办法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例21 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n nn n a p a pk a q a q++--=⋅--,个中a pck a qc-=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=---(2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p+=+--,个中2c k a d =+. 例22. 设数列{}n a 知足7245,211++==+n n n a a a a ,求数列{}n a 的通项公式.剖析:此类问题经常运用参数法化等比数列求解. 解:对等式两头同时加参数t,得:725247)52(727)52(72451+++++=+++=+++=++n n n n n n n a t t a t a t a t t a a t a , 令5247++=t t t , 解之得t=1,-2 代入72)52(1+++=++n n n a t a t t a 得 721311+-=-+n n n a a a ,722921++=++n n n a a a ,相除得21312111+-⋅=+-++n n n n a a a a ,即{21+-n n a a }是首项为412111=+-a a ,公比为31的等比数列,21+-n n a a =n -⋅1341, 解得13423411-⋅+⋅=--n n n a . 办法2:,721311+-=-+n n n a a a ,双方取倒数得1332)1(39)1(2)1(372111-+=-+-=-+=-+n n n n n n a a a a a a , 令b 11-=n n a ,则b =n n b 332+,, 转化为累加法来求. 例23 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n nn n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19n n a -=+-.十一.特点方程法 形如21(,n n n a pa qa p q ++=+是常数)的数列形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特点根法求得通项n a ,其特点方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再运用1122,,a m a m ==可求得12,c c ,进而求得n a例24 已知数列{}n a 知足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为232x x =-,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+例25.数列{}n a 知足1512a =-,且212542924n n n a a a +-=+求数列{}na 的通项. 解:2211252925244429292244n n n n n n n a a a a a a a λλλλ++-++-+==+=++……① 令229254λλ-=,解得12251,4λλ==,将它们代回①得,()21112924n n n a a a +++=+……②,212525429424nn n a a a +⎛⎫+ ⎪⎝⎭+=+……③,③÷②,得21125254411n n n n a a a a ++⎛⎫++ ⎪= ⎪++ ⎪⎝⎭,则11252544lg2lg 11n n n n a a a a ++++=++,∴数列254lg 1n n a a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭成等比数列,首项为1,公比q =2所以1254lg 21n n n a a -+=+,则12254101n n n a a -+=+,112225104101n n n a ---∴=-十二.根本数列1.形如)(1n f a a n n =-+型 等差数列的广义情势,见累加法.)(1n f a a nn =+型 等比数列的广义情势,见累乘法. )(1n f a a n n =++型(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程结构转化为)(1n f a a n n =-+型,经由过程累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.。
(完整版)递归关系法求数列通项

(完整版)递归关系法求数列通项引言数列是数学中常见的概念,它是由一列按照一定顺序排列的数字组成的序列。
而求数列通项则是指通过已知的数列项之间的递归关系,来计算出数列中的任意项的方法。
本文将介绍递归关系法求数列通项的基本原理及应用。
基本原理递归关系法求数列通项的基本思想是通过已知数列中某一项与前几项的关系,找到递推公式,从而可以根据已知数列项的值计算出数列中任意项的值。
在具体操作时,可以通过观察数列的特点,寻找规律,并通过数学归纳法进行证明。
求数列通项的步骤1. 观察数列的前几项,寻找规律;2. 建立递归关系,即找到数列项与前几项之间的关系;3. 利用递归关系,得到递推公式;4. 利用递推公式,计算数列中任意项的值。
举例说明假设我们已知数列的前两项为1和2,且每一项与前一项的差等于与前两项的和的平方。
现在我们需要求这个数列的通项。
首先,我们观察数列的前几项,已知数列的第一项为1,第二项为2。
其次,建立递归关系。
根据题目中的要求,我们可以得到递归关系式为: a(n) = (a(n-1) + a(n-2))^2,其中a(n)表示数列的第n项。
然后,利用递归关系,得到递推公式。
根据递归关系式,我们可以得到a(3) = (a(2) + a(1))^2,a(4) = (a(3) + a(2))^2,依次类推。
最后,利用递推公式,计算数列中任意项的值。
通过计算,我们可以得到数列的通项公式为 a(n) = (a(n-1) + a(n-2))^2。
总结递归关系法是一种常用的求数列通项的方法,通过已知数列项之间的关系,可以找到递推公式,并计算出数列中任意项的值。
在实际问题中,掌握递归关系法可以帮助我们解决更多数学计算中的问题。
以上为递归关系法求数列通项的完整版文档,通过观察数列特点找到递推关系,并应用递推公式计算任意项的值。
希望对您有所帮助!。
数列的递归公式和通项公式

数列的递归公式和通项公式在数学的奇妙世界里,数列就像是一串有规律排列的数字精灵,而数列的递归公式和通项公式则是我们理解和掌控这些精灵的魔法钥匙。
让我们先来聊聊什么是数列。
简单说,数列就是按照一定次序排列的一列数。
比如:1,3,5,7,9……这就是一个数列。
递归公式呢,是通过前面的项来表示后面的项的一种方式。
举个例子,斐波那契数列的递归公式是:$F_{n}=F_{n-1}+F_{n-2}$($n\geq 2$),其中$F_{1}=1$,$F_{2}=1$。
也就是说,从第三项开始,每一项都是前两项的和。
那通项公式又是什么呢?通项公式可以直接算出数列中任意一项的值。
比如等差数列的通项公式是$a_{n}=a_{1}+(n-1)d$,其中$a_{1}$是首项,$d$是公差;等比数列的通项公式是$a_{n}=a_{1}q^{n-1}$,$a_{1}$是首项,$q$是公比。
递归公式和通项公式之间有着紧密的联系。
递归公式就像是一步一步的脚印,告诉我们怎么从前面的项走到后面的项;而通项公式则像是一张地图,能让我们直接找到想去的地方,也就是直接算出任意一项的值。
比如说,对于一个简单的数列:1,2,4,8,16……我们可以发现这是一个等比数列,它的递归公式是$a_{n}=2a_{n-1}$($n\geq2$),$a_{1}=1$。
而它的通项公式则是$a_{n}=2^{n-1}$。
再来看一个例子,数列:1,3,6,10,15……这个数列的递归公式可以写成$a_{n}=a_{n-1}+n$($n\geq 2$),$a_{1}=1$。
通过一些巧妙的方法,我们可以推导出它的通项公式是$a_{n}=\frac{n(n+ 1)}{2}$。
那么,如何从递归公式推导出通项公式呢?这可不是一件容易的事情,需要一些巧妙的方法和技巧。
有时候,我们可以通过累加法、累乘法等方法来实现。
比如说对于递归公式$a_{n}=a_{n-1}+2$($n\geq 2$),$a_{1}=1$,我们可以依次写出:$a_{2}=a_{1}+2$$a_{3}=a_{2}+2=(a_{1}+2)+2=a_{1}+2×2$$a_{4}=a_{3}+2=(a_{1}+2×2)+2=a_{1}+3×2$……以此类推,$a_{n}=a_{1}+(n 1)×2$,因为$a_{1}=1$,所以$a_{n}=1 + 2(n 1)=2n 1$。
线性递归数列的通项公式与求和公式

线性递归数列的通项公式与求和公式
通常我们得到的递推数列是这样的形式:
目标是求的通项公式。
首先,上面的递推数列通常可以写成下面这种形式:
---------------------(式1)
也叫二阶差分式(或者叫递推式)。
为了求出一阶差分式,我们可以将原式写成如下形式:
其中,因此上式就是以为元素的等比数列,公比为。
通过移项同时可得:
与上面的式子完全等价。
两式子相减则有:
因此通项公式就求出来了:
现在需要解出x1,x2:
利用二次方程根与系数的关系,可知恰为方程的两
根,注意这里的系数abc就是上面二阶差分式(式1)的系数,不用计算,可以直接拿来用。
该二次方程就是原差分方程的特征方程。
求方程的根解除x1,x2后带入通项公式即可得到f(n)的表达式。
实际做题的计算步骤(更简单):
1.移项写出二阶差分式,得到系数abc,也就获得了二次方程的系数abc。
2.解出二次方程的两个根x1,x2。
3.带入f(n)的通项公式即可。
例子:
斐波那契数列,它满足,
首先写出移项到左边的二阶差分式的标准形式:
,获得系数abc分别为1,-1,-1,那么差分式的特征方程就为,解得
带入通用的通项公式即可得到f(n)的通项公式:
完。
另外需要注意:该通项公式仅适用于线性的递推数列!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
递归数列通项公式的求法确定数列的通项公式,对于研究数列的性质起着至关重要的作用。
求递归数列的通项公式是解决数学竞赛中有关数列问题的关键,本文着重对递归数列通项公式加以研究。
基础知识定义:对于任意的*N n ∈,由递推关系),,,(21k n n n n a a a f a ---= 确定的关系称为k 阶递归关系或称为k 阶递归方程,由k 阶递归关系及给定的前k 项k a a a ,,,21 的值(称为初始值)所确定的数列称为k 阶递归数列。
若f 是线性的,则称为线性递归数列,否则称为非线性递归数列,在数学竞赛中的数列问题常常是非线性递归数列问题。
求递归数列的常用方法: 一.公式法(1)设}{n a 是等差数列,首项为1a ,公差为d ,则其通项为d m n a a m n )(-+=; (2)设}{n a 是等比数列,首项为1a ,公比为q ,则其通项为mn m n q a a -=;(3)已知数列的前n 项和为n S ,则)2()1(11≥=⎩⎨⎧-=-n n S S S a n n n 。
二.迭代法迭代恒等式:112211)()()(a a a a a a a a n n n n n +-++-+-=--- ; 迭乘恒等式: 112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- ,(0≠n a ) 迭代法能够解决以下类型一和类型二所给出的递推数列的通项问题: 类型一:已知)(,11n f a a b a n n +==+,求通项n a ; 类型二:已知n n a n f a b a )(,11==+,求通项n a ; 三.待定系数法类型三:已知)1(,11≠+==+p q pa a b a n n ,求通项n a ; 四.特征根法类型四:设二阶常系数线性齐次递推式为n n n qx px x +=++12(0,,1≠≥,q q p n 为常数),其特征方程为q px x +=2,其根为特征根。
(1)若特征方程有两个不相等的实根βα,,则其通项公式为nnn B A x βα+=(1≥n ),其中A 、B 由初始值确定;(2)若特征方程有两个相等的实根α,则其通项公式为1)1([--+=n n n B A x αα(1≥n ),其中A 、B 由初始值确定。
证明:设特征根为βα,,则,p =+βαq -=αβ所以12++-n n x x α=11++-+n n n x qx px α=n n qx x p +-+1)(α=n n x x αββ-+1=)(1n n x x αβ-+ 即}{1n n x x α-+是以β为公比,首项为)12x x α-的等比数列。
所以1121)(-+-=-n n n x x x x βαα,所以2121)(---+=n n n x x x x βαα(1)当βα≠时,则其通项公式为n n n B A x βα+=,其中αβαβ)(12--=x x A ,ββαα)(12--=x x B ; (2)当βα=时,则其通项公式为1)]1([--+=n n n B A x αα,其中ααα121,x x B x A -==五.代换法代换法主要包括三角代换、分式代换与代换相消等,其中代换相消法可以解决以下类型五:已知c a b a ==21,,)0(11≠++=-+r r qa pa a n n n ,求通项n a 。
六.不动点法若αα=)(f ,则称α为)(x f 的不动点,利用不动点法可将非线性递归式化归为等差数列、等比数列或易于求解的递关系的递推关系,从而达到求解的目的。
类型六:(1)已知0(1≠+⋅+⋅=+c da c ba a a n n n ,且)0≠-bc ad ,求通项n a ;(2)已知ca ab a a a n n n +⋅+⋅=+221,求通项n a ; 七.数学归纳法 八.构造法典例分析例1.数列{a n }中,a 1=1,a n+1>a n ,且)(2111221n n n n n n a a a a a a ++=+++++成立,求n a 。
例2.已知正数数列}{n x 满足:kk nn n cx x x 11)1(+=+,其中0,,*≠∈∈c R c N k ,求n x 。
例3.已知数列{a n }满足:112212,2,1++++===n n n n n a a a a a a a ,求n a 。
例4.已知)3(2,122121≥+===--n a a a a a n n n ,证明:该数列中的一切数都是整数。
例5.已知)(1,1*213321N n a a a a a a a nn n n ∈+====+++,求n a 。
例6.数列}{},{n n b a 满足)2(1,211≥-==--n a b b b a a nn n n n n ,q b p a ==11,且1,0,=+>q p q p ,求}{},{n n b a 的通项公式。
例7.已知q p pa a b a n n +-+==+211)1(,,求n a 。
例8.数列}{n a 满足⎪⎩⎪⎨⎧=+++==+ ,2,1),24141(161111n a a a a n n n ,求n a 。
例9.已知nn n n n n n n b a b a b b a a a a +=+===++2,2,25,11121,求}{},{n n b a 的通项公式。
例10.已知数列}{},{n n b a 满足:⎩⎨⎧+=-=----θθθθcos s in s in cos 1111n n n n n n b a b b a a ,且θtan ,111==b a ,求}{},{n n b a 的通项公式。
例11.若数列}{n a 的前n 项和为)0(,1>=a a a S n ,且满足221n n n S aS a a ++=+,求}{n a 的通项公式。
拓展:若数列}{n a 的前n 项和为)0(,1>=a a a S n ,且满足)22(221<<-+-=+t S taS a a n n n ,求}{n a 的通项公式。
(参考答案:12sin sin --=n n a a θπθ,其中2cos t =θ) 例12.设数列}{},{n n b a 满足:0,100==b a ,且⎩⎨⎧-+=-+=+4783671n n nn n n b a b b a a , 2,1,0=n ,证明:n a (,2,1=n ……)是完全平方数。
练习题:1.已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 2.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a3.已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a4.已知数列{}n a 满足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a练习答案:1.解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+2.解:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩, 1322n n n a --∴=3.解:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++ 由12,a =得245a =,可得13c =-,∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n n n n na --∴=+- 4.解:其特征方程为2146x x x -=+,即24410x x ++=,解得1212x x ==-,令1111122n n c a a +=+++ 由12,a =得2314a =,求得1c =, ∴数列112n a ⎧⎫⎪⎪⎨⎬⎪⎪+⎩⎭是以112152a =+为首项,以1为公差的等差数列,123(1)11552n n n a ∴=+-⋅=-+,135106n n a n -∴=-。