蛋白质纯化方法总结

合集下载

蛋白的纯化工艺有哪些

蛋白的纯化工艺有哪些

蛋白的纯化工艺有哪些
蛋白的纯化工艺可以分为下列步骤:
1. 细胞破碎:将含有目标蛋白的细胞打碎,以释放目标蛋白。

2. 固体-液分离:通过离心等方法将细胞碎片和碎细胞液分离,从而获得目标蛋白的溶液。

3. 过滤:通过纤维过滤器或微孔过滤器去除悬浮颗粒和杂质,使蛋白溶液变得清澈。

4. 污染物去除:使用各种色谱技术,如亲和层析、凝胶层析、离子交换层析等去除杂质和其他相关蛋白。

5. 浓缩:通过逆渗透或超滤等方法,去除大量水分,提高目标蛋白的浓缩度。

6. 纯化:使用高效液相色谱等技术,进一步分离和纯化目标蛋白。

7. 质量评价:对纯化后的蛋白进行质量评价,如浓度、纯度、活性等的检测。

8. 保存和储存:将纯化后的蛋白进行冷冻或冷冻干燥保存,以便后续使用。

需要注意的是,不同的蛋白质可能需要采用不同的纯化工艺步骤,具体的纯化工艺要根据目标蛋白的特性和纯化目的进行选择和优化。

蛋白质纯化方法及原理

蛋白质纯化方法及原理

蛋白质纯化方法及原理蛋白质纯化是蛋白质分子的细胞内研究的重要组成部分,是研究蛋白质分子的生物学性质的必要手段。

这项技术可以从蛋白质混合物中分离和纯化活性蛋白质。

蛋白质纯化实质上是一种分离技术,其目的是从混合物中分离和纯化蛋白质,以便进行进一步的研究。

蛋白质纯化的原理是利用蛋白质分子之间存在的不同物理和化学性质差异,利用特定的技术手段,将其从混合物中分离出来,以达到纯化的目的。

一般是利用沉淀法、离子交换法、分子筛法、膜分离法、凝胶分离法、组合分离法等等。

沉淀法是蛋白质纯化中最常用的方法,它是根据蛋白质分子的不同物理性质,采取适当的条件,使某种蛋白质在液体中沉淀出来,从而达到分离的目的。

常用的沉淀试剂有硝酸盐、硫酸盐、醋酸盐、铵盐等,它们的作用是改变溶液的 pH 值,从而达到沉淀的目的。

离子交换法是指利用蛋白质分子的电荷差异,将蛋白质从混合物中分离出来的方法。

它是利用某种离子交换材料的交换性,将蛋白质从混合物中分离出来,以达到纯化的目的。

常用的离子交换材料有硅胶、聚乙烯醇、聚丙烯酰胺凝胶、羟基磷灰石等。

分子筛法就是利用不同大小的分子穿过分子筛的不同粒径孔道的能力不同,将不同大小的分子从混合物中分离出来的方法。

膜分离法就是利用膜的通透性,将不同类型的分子从混合物中分离出来的方法。

凝胶分离法则是利用凝胶的特性,将蛋白质从混合物中分离出来的方法。

组合分离法是将上述几种分离方法结合在一起,综合利用它们的优势,以达到纯化蛋白质的目的。

蛋白质纯化是指利用不同的分离技术手段,将蛋白质从混合物中分离出来,以达到纯化的目的。

它不仅可以提高蛋白质的纯度,而且还可以提高蛋白质的活性,为蛋白质分子的研究提供了可靠的依据。

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理(一)利用分子大小1、透析:原理:利用蛋白质分子不能透过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖、水等分开。

方法:将待提纯蛋白质放在透析袋中放在蒸馏水中进行涉及的问题:如何加快透析过程(1)加大浓度差,及时更换透析液(2)利用磁力搅拌器常用的半透膜:玻璃纸、火棉和其他材料合成2、超过滤:原理:利用压力和离心力,强行使其他小分子和水通过半透膜,而蛋白质留在膜上3、凝胶过滤层析:原理:当不同分子大小的蛋白质混合物流进凝胶层析柱时,比凝胶网孔大的分子不能进入珠内网状结构,排阻在凝胶珠以外,在凝胶珠缝隙间隙中向下移动。

而比孔小的分子不同程度地进入凝胶珠内,这样由于不同大小分子所经历的路径不同而到分离。

结果:大分子先被洗脱下来,小分子后被洗脱下来(二)利用溶解度差别4、等电点沉淀:原理:不同蛋白质具有不同的等电点,当蛋白质混合物调到其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来.。

5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.当离子强度增加,足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析(三)根据电荷不同6、SDS-PAGE 全称十二烷基硫酸钠—聚丙烯酰胺凝胶电泳原理:通过加热和SDS可以使蛋白质变性,多亚基的蛋白质也解离为单亚基,处理后的样品中肽链是处于无二硫键连接的,分离的状态。

电泳时SDS-蛋白质复合物在凝胶中的迁移率不再受蛋白质原有电荷和形状的影响,而主要取决于蛋白质分子量。

所以SDS-PAGE常用来分析蛋白质的纯度和大致测定蛋白质的分子量。

7、离子交换层析:原理:氨基酸分离常用阳离子交换树脂,树脂被处理成钠型,将混合氨基酸上柱,氨基酸主要以阳离子形式存在,在树脂上与钠离子发生交换,而被挂在树脂上。

氨基酸在树脂上结合的牢固程度取决于氨基酸与树脂之间的亲和力,决定亲和力的因素有:(1)主要是静电吸引力(2)氨基酸侧链同树脂之间的疏水作用氨基酸与阳离子交换树脂间的静电引力大小次序依次是:碱性氨基酸R2+>中性氨基酸R+>酸性氨基酸R0。

蛋白质的分离纯化方法

蛋白质的分离纯化方法
(一)根据分子大小不同的纯化方法
1、透析和超过滤 w利用蛋白质分子不能透过半透膜将其 与小分子物质分开 w半透膜为玻璃纸或纤维素材料


血液透析
血液
透析液
小分子溶出 小分子被带出
透析机
利用蛋白质分子不能穿越半透膜的性质,将蛋白提取液置 于透析袋中,透析袋置于纯水,蒸馏水,或缓冲液中,蛋白质 溶液中的小分子物质穿越半透膜,从而实现纯化蛋白质的 目的.
• 从离心管底部钻空,分段收集 样品,实现蛋白质分离
3、凝胶过滤
凝胶一般由葡聚糖制 成,含有很多微孔
小分子蛋白质进入微 孔内,因而滞流时间长
大分子蛋白质不能进 入微孔而径直流出
3、凝胶过滤
(二)利用溶解度差别的纯化方法
1.等电点沉淀 调整溶液pH 不同蛋白在各自 pI处依次沉淀
2.盐溶和盐析 3.有机溶剂分级分离法
w降低介电常数 w争夺水化膜
等电聚焦电泳
双向电泳
(三)利用电荷差异
离子交换层析 蛋白质按照在相应pH条
件下所带电荷的不同而 以不同的速率向下移动 带有更多负电荷的蛋白 质以更快的速率被洗脱 分段收集渗出液,实现蛋 白质的分离
(四)利用对配体的特异生物学 亲和力的纯化方法
具有பைடு நூலகம்强的专一性
亲和色谱颗粒
利用压力或离心力,强 行使水或其他小分子 溶质透过半透膜,而使 蛋白质留在膜上,以达 到纯化的目的(脱盐和 浓缩)
2、密度梯度离心
• 将蔗糖溶液加入离心管中进行 离心建立蔗糖梯度
• 仔细将蛋白质样品(混合物)加 入蔗糖梯度的顶端,再次离心 沉降
• 当蛋白质达到和自己相同的密 度梯度时停止移动
• 于是在不同的蔗糖梯度中存在 的蛋白质不同

简述蛋白质分离纯化的基本方法

简述蛋白质分离纯化的基本方法

简述蛋白质分离纯化的基本方法蛋白质是有机体重要的组成部分,由氨基酸编码,执行了多种生物功能,例如促进新陈代谢,生物合成,免疫等。

为了获得高纯度的蛋白质,必须将其从其他成分中分离和纯化。

这就是蛋白质纯化。

蛋白质纯化的基本方法包括:一、分子大小法蛋白质主要通过分子过滤器来分离和纯化。

该过程基于分子间的亲和性原理,通过过滤器膜的通透性以及不同蛋白质的大小差异将蛋白质从溶液中分离出来。

二、萃取技术萃取技术是基于蛋白质的共沉淀特性,通过不同的有机溶剂来区分和分离蛋白质,将沉淀的蛋白组分收集后,再进行精细回收。

三、离子交换技术离子交换技术也是基于蛋白质的离子属性,采用各类加压装置,以及特殊离子交换模块以及合成模块,来实现将收集物分离筛选后回收。

四、双模立体技术双模立体技术是采用两种不同的液体体系,如水基和有机溶剂基,在不同的状态或浓度下对蛋白质进行再离析技术,从而实现蛋白质的有效分离纯化。

五、凝胶精分技术凝胶精分技术是改良和发展起来的一种新型蛋白质分离纯化技术,主要基于交叉链结构,可以基本上实现同一类分子配体分子完整地分离纯化。

六、共晶引擎技术共晶引擎技术可基于共晶相邻能量差异,通过电荷,配体结合等不同形式来改变分子的邻近能量,从而有效的将蛋白质分离出来。

以上就是蛋白质分离纯化的基本方法,可以从不同的角度神明蛋白质的性质,以达到有效的提纯的目的。

蛋白质的分离纯化对解析有机体内蛋白质的结构和功能,也极为重要。

目前,已经有很多高级的技术和模块来实现蛋白质分离纯化,例如蛋白质分子调控,杂交等。

通过有效利用上述方法,可以有效精细和完整得提纯高纯度的蛋白质。

分离纯化蛋白质的方法

分离纯化蛋白质的方法

分离纯化蛋白质的方法蛋白质是生命体内最基本的分子,它们参与了生命体内的许多重要生物学过程,如代谢、信号转导、免疫防御等。

因此,对蛋白质的研究具有重要的科学意义。

但是,蛋白质在生物体内的含量很少,且与其他成分相混合,因此需要通过分离纯化的方法来获取纯净的蛋白质样品。

本文将介绍几种常用的分离纯化蛋白质的方法。

1. 溶液层析法溶液层析法是一种常用的蛋白质分离纯化方法。

它基于蛋白质在不同的化学性质和结构特征下在固定相中的不同亲和力,通过不同的溶液组成、pH值、离子强度等条件来分离纯化蛋白质。

溶液层析法的操作简单、效果好,可以分离出高纯度的蛋白质。

但是,它需要对分离材料的性质和蛋白质的性质有深入的了解,以便选择合适的分离条件。

此外,溶液层析法需要大量的分离材料和实验室设备,成本较高。

2. 凝胶层析法凝胶层析法是一种基于蛋白质分子大小、形状和电荷等性质的分离纯化方法。

它利用凝胶作为分离材料,通过分子筛效应、凝胶孔道大小和分子电荷等因素来分离不同大小和电荷的蛋白质。

凝胶层析法具有操作简单、分离效果好、成本低等优点。

但是,它需要长时间的分离过程,而且凝胶的孔径大小和材料的性质会影响分离效果。

此外,凝胶层析法只能分离相对较小的蛋白质,对大分子蛋白质的分离效果较差。

3. 电泳法电泳法是一种通过电场作用将不同电荷的蛋白质分离的方法。

它利用电泳移动速度与蛋白质质量和电荷密度之间的关系,将蛋白质分离纯化。

电泳法具有操作简单、分离效果好、成本低等优点。

但是,它需要专业的电泳设备和实验技能,而且对蛋白质的性质和电泳条件有较高的要求。

此外,电泳法只能分离相对较小的蛋白质,对大分子蛋白质的分离效果较差。

4. 亲和层析法亲和层析法是一种基于蛋白质与其配体之间的亲和作用来分离纯化蛋白质的方法。

它利用配体与蛋白质的特异性结合来分离纯化目标蛋白质。

亲和层析法具有分离效果好、选择性高、可重复使用等优点。

但是,它需要高纯度的配体和专业的实验技能,而且对蛋白质的性质和配体的选择有较高的要求。

蛋白纯化年度工作总结汇报

蛋白纯化年度工作总结汇报蛋白纯化是一项关键的科学研究工作,常用于生物医药领域的蛋白质结构与功能研究、新药研发和疾病诊断治疗等领域。

在过去的一年里,本实验室团队针对蛋白纯化的各个环节,进行了深入的研究和实践。

本文将对我们的年度蛋白纯化工作进行综述和总结。

1. 研究目标和背景首先,让我们回顾一下我们的研究目标和背景。

我们团队的主要目标是通过蛋白纯化技术,获得高纯度的蛋白样本,以进行相关的研究。

我们的研究重点是一种与肿瘤发生和发展密切相关的蛋白质,该蛋白质在肿瘤细胞中扮演着重要角色。

2. 选择合适的纯化方法在蛋白纯化的过程中,选择合适的纯化方法是至关重要的。

我们首先进行了蛋白质的整体性质分析,包括分子量、等电点和亲水性等特性。

根据这些特性,我们选择了亲和层析和离子交换层析作为蛋白纯化的关键方法。

我们使用了Ni-NTA亲和树脂用于结合靶蛋白,而离子交换树脂则用于分离目标蛋白与其他杂质的混合物。

3. 优化纯化条件为了提高蛋白纯化的纯度和产率,我们进行了大量的优化实验。

我们改变了各种条件,如洗脱缓冲液的PH值、盐浓度和洗脱浓度,以找到最适宜的条件。

此外,我们还测试了不同洗涤剂的效果,包括甲基-β-硫代半乳糖苷(β-甲基硫代葡萄糖苷酸)和十二烷基葡萄糖苷(十二烷基葡萄糖苷),以及多肽酶抑制剂的添加。

4. 结果和讨论经过多次实验和优化,我们成功地获得了高纯度的目标蛋白样本。

通过SDS-PAGE检测和Western Blot验证,我们确定了目标蛋白的存在,并排除了其他杂质的干扰。

此外,我们还使用质谱法对纯化蛋白进行了验证,并与已知质谱数据进行了比对。

5. 蛋白样本的应用最后,我们对获得的高纯度蛋白样本进行了一系列的功能性研究。

我们在细胞实验中检测了蛋白的生物活性,并评估了其对细胞功能的影响。

此外,我们还进行了一系列的结构研究,利用X射线晶体学和核磁共振技术,探索了蛋白的三维结构和相互作用。

综上所述,我们的年度蛋白纯化工作取得了可喜的成果。

蛋白质分离和纯化的方法和技术

蛋白质分离和纯化的方法和技术蛋白质是生命体中极其重要的一种物质,它是细胞的基本组成单位,参与了多种生物学过程。

研究蛋白质在细胞中的功能与结构,需要对蛋白质进行高效、可靠的分离和纯化。

本文将介绍常用的蛋白质分离和纯化的方法和技术。

一、离子交换层析离子交换层析是分离蛋白质最常用、最成熟的方法之一。

其原理是利用蛋白质的电荷性质与离子交换树脂的对应性质,进行蛋白质的分离。

离子交换树脂可分为正离子交换树脂和负离子交换树脂两种类型。

正离子交换树脂的功能基团有负电荷,故可吸附具有正电荷的物质,例如氨基酸、多肽或蛋白质N端等;负离子交换树脂的功能基团有正电荷,故可吸附具有负电荷的物质,例如天冬氨酸、谷氨酸、磷酸基或蛋白质C端等。

根据目标蛋白质的电荷性质,选择合适的离子交换树脂进行分离。

离子交换层析速度较快,可分离多种电荷性质的蛋白质,但对样品的盐浓度要求较高,易受pH和盐浓度的影响,操作时需谨慎。

二、凝胶过滤层析凝胶过滤层析是利用孔径大小对蛋白质进行分离的方法。

凝胶过滤层析常用的凝胶有玻璃纤维、纤维素等。

玻璃纤维凝胶一般有不同的颗粒大小,大的颗粒孔径大,小的颗粒孔径小。

蛋白质分子较小,可通过大孔径的颗粒进入凝胶孔隙,而较大的物质被挡在颗粒外部无法穿过凝胶。

因此,蛋白质经过凝胶时易出现分子量排阻效应,使得小分子在大分子之前流出,从而实现了蛋白质的分离。

凝胶过滤层析操作简单,无需特殊设备或条件,但分离程度相对较低,不适宜纯化目标蛋白质。

三、亲和层析亲和层析是利用蛋白质与亲和柱中特定配体发生特异性结合,从而对蛋白质进行分离的方法。

亲和层析适用于具有特定结构、功能或序列的蛋白质,例如抗体、标签化蛋白、细胞受体等。

常见的亲和柱配体有融合蛋白、金属离子、细胞色素C等。

蛋白质样品在亲和柱上进行结合,待不结合蛋白质被洗脱后对结合蛋白质进行洗脱。

亲和层析具有选择性强、纯化程度高等优点,但亲和柱的制备成本较高,操作上也需注意其特异性。

蛋白纯化方法大全

蛋白纯化方法大全蛋白纯化的技术很复杂,以下就会大家熟知蛋白纯化步骤。

那为什么蛋白质要纯化呢,去掉蛋白质含有的一些杂质与其他蛋白质一起沉淀。

那么又要去除蛋白质的杂质又要保证蛋白质的营养不被流失,于是就要制作不同的方案来应对,称为蛋白纯化技术。

根据蛋白的相似度和差异去除蛋白中的杂质!1、粗分级分离当蛋白质提取液(有时还杂有核酸、多糖之类)获得后,选用一套适当的方法,将所要的蛋白与其他杂蛋白分离开来。

一般这一步的分离用盐析、等电点沉淀和有机溶剂分级分离等方法。

这些方法的特点是简便、处理量大,既能除去大量杂质,又能浓缩蛋白溶液。

有些蛋白提取液体积较大,又不适于用沉淀或盐析法浓缩,则可采用超过滤、凝胶过滤、冷冻真空干燥或其他方法进行浓缩。

2样品经粗分级分离以后,一般体积较小,杂蛋白大部分已被除去。

进一步纯化,一般使用层析法包括凝胶过滤、离子交换层析、吸附层析以及亲和层析等。

必要时还可选择电泳法,包括区带电泳、等电点聚焦等作为最后的纯化步骤。

用于细分级分离的方法一般规模较小,但分辨率很高。

3结晶是蛋白质分离纯化的最后步骤。

尽管结晶过程并不能保证蛋白一定是均一的,但是只有某种蛋白在溶液中数量上占有优势时才能形成结晶。

结晶过程本身也伴随着一定程度的纯化,而重结晶又可除去少量夹杂的蛋白。

由于结晶过程中从未发现过变性蛋白,因此蛋白的结晶不仅是纯度的一个标志,也是断定制品处于天然状态的有力指标。

41.机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。

常用设备有,高速组织捣碎机、匀浆器、研钵等。

2.渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。

3.反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。

这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。

4.超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。

以上就是蛋白纯化的步骤,给大家了解一下。

这项技术目前在国内越来越先进,去除蛋白中的杂质让蛋白更纯粹。

蛋白质的分离纯化实验报告

蛋白质的分离纯化实验报告一、实验目的1、掌握蛋白质分离纯化的基本原理和方法。

2、学会运用不同的技术手段对蛋白质进行提取、分离和纯化。

3、熟悉蛋白质纯度鉴定的常用方法。

二、实验原理蛋白质是生物体中重要的大分子化合物,其分离纯化是研究蛋白质结构和功能的重要前提。

蛋白质的分离纯化主要依据其物理化学性质的差异,如分子大小、电荷、溶解度、亲和力等。

常见的分离纯化方法包括:1、盐析法:通过向蛋白质溶液中加入中性盐,如硫酸铵,使蛋白质溶解度降低而沉淀析出。

2、凝胶过滤层析:利用凝胶颗粒的多孔网状结构,根据蛋白质分子大小进行分离。

3、离子交换层析:基于蛋白质所带电荷的不同,在离子交换树脂上进行吸附和解吸。

4、亲和层析:利用蛋白质与特定配体之间的特异性亲和力进行分离。

三、实验材料与设备1、材料新鲜的动物组织(如肝脏)各种试剂,包括硫酸铵、磷酸盐缓冲液、离子交换树脂、亲和配体等。

2、设备离心机层析柱紫外分光光度计电泳仪四、实验步骤1、蛋白质的提取将新鲜的动物组织剪碎,加入适量的磷酸盐缓冲液,在冰浴中匀浆。

低温离心(4℃,10000 rpm,20 min),收集上清液,即为粗提的蛋白质溶液。

2、盐析沉淀在上清液中缓慢加入硫酸铵粉末,边加边搅拌,使其饱和度逐渐增加到 50%。

搅拌 30 min 后,低温离心(4℃,10000 rpm,20 min),收集沉淀。

3、凝胶过滤层析装柱:将凝胶颗粒填充到层析柱中,用缓冲液平衡柱子。

上样:将盐析沉淀溶解后,缓慢上样到层析柱中。

洗脱:用缓冲液进行洗脱,收集不同洗脱峰的流出液。

4、离子交换层析装柱:将离子交换树脂填充到层析柱中,用起始缓冲液平衡柱子。

上样:将凝胶过滤层析收集的样品上样到离子交换层析柱中。

洗脱:采用梯度洗脱的方法,逐渐改变缓冲液的离子强度,收集洗脱峰。

5、亲和层析装柱:将亲和配体偶联到层析介质上,填充到层析柱中,用平衡缓冲液平衡柱子。

上样:将离子交换层析收集的样品上样到亲和层析柱中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质纯化方法总结
发布日期:2010-05-21 发布人:technew 最后更新时间:2010-05-21 浏览次数:454
分离纯化某一特定蛋白质的一般程序可以分为前处理、粗分级、细分级三步。
1.前处理:分离纯化某种蛋白质,首先要把蛋白质从原来的组织或细胞中以溶解的状态释放出来并保持原来的天然状
态(如果做不到呢?比如蛋白以包涵体形式存在),不丢失生物活性。为此,动物材料应先提出结缔组织和脂肪组织,种
子材料应先去壳甚至去种皮以免手单宁等物质的污染,油料种子最好先用低沸点(为什么呢)的有机溶剂如乙醚等脱脂。
然后根据不同的情况,选择适当的方法,将组织和细胞破碎。动物组织和细胞可用电动捣碎机或匀浆机破碎或用超声波处
理破碎。植物组织和细胞由于具有纤维素、半纤维素和果胶等物质组成的细胞壁,一般需要用石英砂或玻璃粉和适当的提
取液一起研磨的方法或用纤维素酶处理也能达到目的。细菌细胞的破碎比较麻烦,因为整个细菌细胞壁的骨架实际上是一
个借共价键连接而成的肽聚糖囊状大分子,非常坚韧。破碎细菌细胞壁的常用方法有超声波破碎,与砂研磨、高压挤压或
溶菌酶处理等。组织和细胞破碎后,选择适当的缓冲液把所要的蛋白提取出来。细胞碎片等不溶物用离心或过滤的方法除
去。
如果所要的蛋白主要集中在某一细胞组分,如细胞核、染色体、核糖体或可溶性细胞质等,则可利用差速离心的方法
将它们分开,收集该细胞组分作为下步纯化的材料。如果碰上所要蛋白是与细胞膜或膜质细胞器结合的,则必须利用超声
波或去污剂使膜结构解聚,然后用适当介质提取。
2. 粗分级分离:当蛋白质提取液(有时还杂有核酸、多糖之类)获得后,选用一套适当的方法,将所要的蛋白与其
他杂蛋白分离开来。一般这一步的分离用盐析、等电点沉淀和有机溶剂分级分离等方法。这些方法的特点是简便、处理量
大,既能除去大量杂质,又能浓缩蛋白溶液。有些蛋白提取液体积较大,又不适于用沉淀或盐析法浓缩,则可采用超过滤、
凝胶过滤、冷冻真空干燥或其他方法进行浓缩。
3.细分级分离:样品经粗分级分离以后,一般体积较小,杂蛋白大部分已被除去。进一步纯化,一般使用层析法包括
凝胶过滤、离子交换层析、吸附层析以及亲和层析等。必要时还可选择电泳法,包括区带电泳、等电点聚焦等作为最后的
纯化步骤。用于细分级分离的方法一般规模较小,但分辨率很高。
结晶是蛋白质分离纯化的最后步骤。尽管结晶过程并不能保证蛋白一定是均一的,但是只有某种蛋白在溶液中数量上
占有优势时才能形成结晶。结晶过程本身也伴随着一定程度的纯化,而重结晶又可除去少量夹杂的蛋白。由于结晶过程中
从未发现过变性蛋白,因此蛋白的结晶不仅是纯度的一个标志,也是断定制品处于天然状态的有力指标。

相关文档
最新文档