表面积与体积练习题(含答案)
数学六年级下册试题一课一练2.1圆柱的表面积和体积(含答案)

苏教版数学六年级下册试题一课一练2.1圆柱的表面积和体积(含答案)4、求下列圆柱体的侧面积(1)底面半径是3厘米,高是4厘米。
(3)底面周长是12.56厘米,高是4厘米。
5、求下列圆柱体的表面积(1)底面半径是4厘米,高是6厘米。
(3)底面周长是25.12厘米,高是8厘米。
6、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
8、一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥20千克,一共要用多少千克水泥?一、圆柱体积1、求下面各圆柱的体积。
(3)底面直径是8米,高是10米。
(4)底面周长是25.12分米,高是2分米。
2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。
这支牙膏可用36次。
该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。
这样,这一支牙膏只能用多少次?5、一根圆柱形钢材,截下1.5米,量得它的横截面的直径是4厘米。
如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。
)6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?7、右图是一个圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米。
这个圆柱体积减少多少立方厘米?参考答案(四):上图上面从左到右依次是:底面、侧面积中间从左到右依次是:高、高下面从左到右依次是:底面、底面周长、底面周长下面( A )图形旋转会形成圆柱。
高二数学空间几何体的表面积与体积试题答案及解析

高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米.A.B.C.D.【答案】D.【解析】所求几何体的体积为阴影部分的面积与高的乘积,在中,,则,,体积.【考点】组合体的体积.3.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是_________.【答案】【解析】由正视图可知四棱锥的底面边长为2,高为2,可求出斜高为,因此四棱锥的侧面积,答案为.【考点】1.几何体的三视图;2.锥体的侧面积计算4.已知球的直径SC=4,A.,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为_________【答案】【解析】设AB的中点为D,球心为O,连结SD,CD,OD,由SC=4为球的直径知,∠SBC=∠SAC=90o,因为∠ASC=∠BSC=45°,所以SA=BC=SB=AC=,所以SD⊥AB,DC⊥AB,所以AB⊥面SDC,因为AB=2,所以SD=DC==,所以DO= =,所以= ===.考点:球的性质,线面垂直判定,三棱锥的体积公式,转化思想5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.6.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。
圆柱表面积与体积实际应用练习题精选

圆柱表面积与体积实际应用练习题精选一选择:(在正确答案下划线)(1)一只铁皮水桶能装水多少升是求水桶的(侧面积、表面积、容积、体积)(2)做一只圆柱体的油桶,至少要用多少铁皮是求油桶的(侧面积、表面积、容积、体积)(3)做一节圆柱形铁皮通风管,要用多少铁皮是求通风管的(侧面积、表面积、容积、体积)(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)二、深化练习1、一个圆柱的体积是94.2平方厘米,底面直径是4厘米,它的高是多少?2、一个圆柱形水池底面直径8米,池深2米,如果在水池的底面和四周涂上水泥,涂水泥的面积有多少平方米?水池最多能盛水多少立方米?3、用铁皮制10节同样大小的通风管,每节长是5分米,底面直径是1.2分米,至少需要多少平方分米铁皮?4、一种压路机的滚筒是圆柱形的,筒宽1.5米,直径是0.8米。
这种压路机每分钟向前滚动5周。
这种压路机1分钟压路多少平方米?5、一个圆柱形蓄水池,从里面量底面直径是20米,深为5米,(1) 要在这个蓄水池的四周和底面抹上水泥,抹水泥部分的面积是多少平方米?(2) 这个蓄水池最多可以蓄水多少吨?(每立方米水重1吨)6、做一个底面直径是4分米,高是5分米的圆柱形铁皮油桶,(1) 做这个铁皮油桶,至少要用铁皮多少平方分米?( 得数用进一法保留整平方分米)(2) 这个油桶里装了4/5的油,这些油重多少千克?(每升油重0.85千克,得数保留整千克数)7、一根长4米,底面直径是4厘米的圆柱形钢材,把它锯成同样长的3段,表面积比原来增加了多少平方厘米?8、用一块边长是9.42分米的正方形铁皮配上一个地面,做成一个圆柱形铁皮水桶。
(1)这个水桶的底面半径是多少?(2)这个水桶的侧面积是多少?(3)这个水桶最多能容纳多少升水?9、一个水杯从里面量底面直径10厘米,高15厘米,杯里的水面离杯口5厘米,这个杯子有水多少升?10、有两个等底的圆柱,第一个圆柱的高是第二个圆柱高的4/5,第一个圆柱的体积是3.2立方厘米,第二个圆柱比第一个圆柱多多少立方厘米?11、一个零件,底面直径5厘米,高10厘米,沿着它的一条底面直径往下切,切成相同大小的两份,(1)总面积比原来增加了多少平方厘米?(2每半个零件的表面积是多少?体积是多少?12、某宾馆大堂有6根圆柱形大柱,高10米,大柱周长25.12分米,要全部涂上油漆,如果按每平方米的油漆费为80元计算,需用多少钱?13、一根长2米,底面积半径是4厘米的圆柱形木段,把它据成同样长的4根圆柱形的木段。
六年级下册试题一课一练2.1圆柱的表面积和体积(含答案)

六年级下册试题一课一练2.1圆柱的表面积和体积(含答案)4、求下列圆柱体的侧面积(1)底面半径是3厘米,高是4厘米。
(3)底面周长是12.56厘米,高是4厘米。
5、求下列圆柱体的表面积(1)底面半径是4厘米,高是6厘米。
(3)底面周长是25.12厘米,高是8厘米。
6、用铁皮制作一个圆柱形烟囱,要求底面直径是3分米,高是15分米,制作这个烟囱至少需要铁皮多少平方分米?(接头处不计,得数保留整平方分米)7、请你制作一个无盖圆柱形水桶,有以下几种型号的铁皮可供搭配选择。
8、一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。
如果每平方米要用水泥20千克,一共要用多少千克水泥?一、圆柱体积1、求下面各圆柱的体积。
(3)底面直径是8米,高是10米。
(4)底面周长是25.12分米,高是2分米。
2、有两个底面积相等的圆柱,第一个圆柱的高是第二个圆柱的4/7。
第一个圆柱的体积是24立方厘米,第二个圆柱的的体积比第一个圆柱多多少立方厘米?3、在直径0.8米的水管中,水流速度是每秒2米,那么1分钟流过的水有多少立方米?4、牙膏出口处直径为5毫米,小红每次刷牙都挤出1厘米长的牙膏。
这支牙膏可用36次。
该品牌牙膏推出的新包装只是将出口处直径改为6毫米,小红还是按习惯每次挤出1厘米长的牙膏。
这样,这一支牙膏只能用多少次?5、一根圆柱形钢材,截下1.5米,量得它的横截面的直径是4厘米。
如果每立方厘米钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数。
)6、把一个棱长6分米的正方体木块,削成一个最大的一圆柱体,这个圆柱的体积是多少立方分米?7、右图是一个圆柱体,如果把它的高截短3厘米,它的表面积减少94.2平方厘米。
这个圆柱体积减少多少立方厘米?参考答案(四):上图上面从左到右依次是:底面、侧面积中间从左到右依次是:高、高下面从左到右依次是:底面、底面周长、底面周长下面( A )图形旋转会形成圆柱。
简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( )A .11∶8B .3∶8C .8∶3D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32[典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.练1.如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点,若截面△BC1D是面积为6的直角三角形,则此三棱柱的体积为________.例2.已知五棱台的上、下底面均是正五边形,边长分别是8 cm和18 cm,侧面是全等的等腰梯形,侧棱长是13 cm,求它的侧面积.练2.圆台上底的面积为16π cm2,下底半径为6 cm,母线长为10 cm,那么,圆台的侧面积和体积各是多少?例3.如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).练3.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm.例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.练4.如图所示,一个圆锥形的空杯子上放着一个直径为8 cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?简单几何体的表面积和体积活页作业一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.943.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π34.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π 6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23π C.736πD.733π8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心, 则三棱锥B 1-BCO 的体积为________.10.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC , DA =AB =BC =3,则球O 的体积等于________.12. 如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2. 三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱.(1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3.(1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.简单几何体的表面积和体积答案[基础知识]1.旋转体的侧面积名称 图形侧面积公式 圆柱侧面积:S 侧=______圆锥侧面积:S 侧=______圆台侧面积:S 侧=________ 2.直棱柱、正棱锥、正棱台的侧面积S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高)S 正棱台侧=12(c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高)3.体积公式(1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____(3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =13(S ′+S ′S +S)h .答案:1.名称 图形 侧面积公式圆柱侧面积:S 侧=2πrl圆锥侧面积:S 侧=πrl 圆台侧面积:S 侧=π(r 1+r 2)l 2.ch 12ch ′ 3.(1)Sh (2)13Sh[基础练习]1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8 B .3∶8 C .8∶3 D .13∶84.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 25.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确 6.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .32答案:1.B [易知2πr =4,则2r =4π,所以轴截面面积=4π×2=8π.]2.A [设底面半径为r ,侧面积=4π2r 2,全面积为=2πr 2+4π2r 2,其比为:1+2π2π.] 3.A [设圆锥的底面半径为r ,母线长为l ,则2πr =34πl ,则l =83r ,所以A =83πr 2+πr 2=113πr 2,B =83πr 2,得A ∶B =11∶8.]4.B [以长为a 的直角边所在直线旋转得到圆锥体积V =13πb 2a ,以长为b 的直角边所在直线旋转得到圆锥体积V =13πa 2b .]5.A [该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24π cm 2,12π cm 3.]6.A [图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2,表面积S 表面=2S 底+S 侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2.][典型例题]例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.解析:折叠起来后,B 、D 、C 三点重合为S 点,则围成的三棱锥为S -AEF ,这时SA ⊥SE ,SA ⊥SF ,SE ⊥SF ,且SA =2,SE =SF =1,所以此三棱锥的体积V =13·12·1·1·2=13.练1. (2011·昆山模拟)如图,在正三棱柱ABC -A 1B 1C 1中,D 为棱AA 1的中点,若截面△BC 1D 是面积为6的直角三角形,则此三棱柱的体积为________.解析:由题意,设AB =a ,AA 1=b ,再由12BD ·DC 1=6可得a 2+b 24=12.又由BC 2+CC 21=BC 21, 得a 2+b 2=24, 可得a =22,b =4, ∴V =34×(22)2×4=8 3. 答案:8 3例2. 已知五棱台的上、下底面均是正五边形,边长分别是8 cm 和18 cm ,侧面是全等的等腰梯形,侧棱长是13 cm ,求它的侧面积.解析:如图所示的是五棱台的一个侧面,它是一个上、下底的边长分别为8 cm 和18 cm ,且腰长为13 cm 的等腰梯形,由点A 向BC 作垂线,垂足为点E ;由点D 向BC 作垂线,垂足为点F .∵四边形ABCD 为等腰梯形,∴BE =CF =12(BC -AD )=12(18-8)=5 cm.在Rt △ABE 中,AB =13 cm ,BE =5 cm ,∴AE =12 cm ,∴S 四边形ABCD =12(AD +BC )·AE =12×(8+18)×12=156(cm 2).∴S 五棱台侧=5×156=780(cm 2).即此五棱台的侧面积为780 cm 2.练2. 圆台上底的面积为16π cm 2,下底半径为6 cm ,母线长为10 cm ,那么,圆台的侧面积和体积各是多少?解析:首先,圆台的上底的半径为4 cm ,于是S 圆台侧=π(r +r ′)l =100π(cm 2). 其次,如图,圆台的高h =BC=BD 2-OD -AB 2=102-6-42=46(cm),所以V 圆台=13h (S +SS ′+S ′)=13×46×(16π+16π×36π+36π) =3046π3(cm 3). 例3. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S 平方米塑料片制成圆柱的侧面和下底面(不安装上底面). (1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该最大值(结果精确到0.01平方米); (2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出用于制作灯笼的三视图(作图时,不需考虑骨架等因素).解析:由题意可知矩形的高即圆柱的母线长为9.6-8×2r8=1.2-2r ,∴塑料片面积S =πr 2+2πr (1.2-2r ) =πr 2+2.4πr -4πr 2=-3πr 2+2.4πr =-3π(r 2-0.8r )=-3π(r -0.4)2+0.48π.∴当r =0.4时,S 有最大值0.48π,约为1.51平方米.(2)若灯笼底面半径为0.3米,则高为1.2-2×0.3=0.6(米).制作灯笼的三视图如图.练3. 圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是______cm .解析:设球的半径为r cm ,则πr 2×8+43πr 3×3=πr 2×6r .解得r =4 (cm 3).例4.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.解析:由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3,而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r .即容器中水的深度为315r .练4. 如图所示,一个圆锥形的空杯子上放着一个直径为8 cm 的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?解析: 要使冰淇淋融化后不会溢出杯子,则必须V 圆锥≥V 半球,V 半球=12×43πr 3=12×43π×43,V 圆锥=13Sh =13πr 2h =13π×42×h .依题意:13π×42×h ≥12×43π×43,解得h ≥8.即当圆锥形杯子杯口直径为8 cm ,高大于或等于8 cm 时,冰淇淋融化后不会溢出杯子. 又因为S 圆锥侧=πrl =πrh 2+r 2,当圆锥高取最小值8时,S 圆锥侧最小,所以高为8 cm 时,制造的杯子最省材料.简单几何体的表面积和体积活页作业答案一、选择题1.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为( )A .6π(4π+3)B .8π(3π+1)C .6π(4π+3)或8π(3π+1)D .6π(4π+1)或8π(3π+2)解析: 设圆柱的底面半径为r ,母线为l ,则⎩⎪⎨⎪⎧ 2πr =4πl =6π或⎩⎪⎨⎪⎧2πr =6πl =4π, ∴⎩⎪⎨⎪⎧ r =2l =6π或⎩⎪⎨⎪⎧r =3l =4π, ∴圆柱的全面积为24π2+8π或24π2+18π,即8π(3π+1)或6π(4π+3).答案: C2.正棱锥的高缩小为原来的12,底面外接圆半径扩大为原来的3倍,则它的体积是原来体积的( )A.32B.92C.34D.94解析: 设原棱锥高为h ,底面面积为S ,则V =13Sh ,新棱锥的高为h2,底面面积为9S ,∴V ′=13·9S ·h2,∴V ′V =92.答案: B3.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3 答案: B解析: S 圆=πr 2=1⇒r =1,而截面圆圆心与球心的距离d =1,∴球的半径为R =r 2+d 2=2,∴V=43πR 3=82π3,故选B.4.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( )A .18πB .30πC .33πD .40π解析: 由三视图知该几何体由圆锥和半球组成.球半径和圆锥底面半径都等于3,圆锥的母线长等于5,所以该几何体的表面积S =2π×32+π×3×5=33π.答案: C 5.(2011·福州质检)某几何体的三视图如图所示,则该几何体的体积等于( )A.283πB.163πC.43π+8 D .12π解析: 由三视图可知,该几何体为底面半径是2,高为2的圆柱体和半径为1的球体的组合体,则该几何体的体积为π×22×2+43π=283π.答案: A6.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD =a ,则三棱锥D -ABC 的体积为( )A.a 36B. a 312C.312a 3D.212a 3 解析: 设正方形ABCD 的对角线AC 、BD 相交于点E ,沿AC 折起后,依题意得:当BD =a 时,BE ⊥DE ,∴DE ⊥面ABC ,∴三棱锥D -ABC 的高为DE =22a , ∴V D -ABC =13·12a 2·22a =212a 3.答案: D7.圆台上、下底面面积分别是π、4π,侧面积是6π,这个圆台的体积是( )A.233πB .23πC.736πD.733π解析:上底半径r =1,下底半径R =2.∵S 侧=6π,设母线长为l ,则π(1+2)·l =6π,∴l =2,∴高h =l 2-(R -r )2=3,∴V =13π·3(1+1×2+2×2)=733π.答案:D8.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是( )A .96 3B .16 3C .24 3D .48 3解析:由43πR 3=323π,∴R =2,∴正三棱柱的高h =4,设其底面边长为a ,则13·32a =2,∴a =43,∴V =34(43)2·4=48 3. 答案:D二、填空题9.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,O 为底面正方形ABCD 的中心,则三棱锥B 1-BCO 的体积为________.解析: V =13S △BOC ·B 1B =13×12BO ·BC ·sin 45°·B 1B =16×2×2×22×2=23.答案: 2310.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.解析: 由三视图可知,该几何体为底面半径为1,母线长为2的圆锥的一半,所以圆锥的高为3,因此所求体积V =12×13×π×12×3=36π.答案: 36π11.已知球O 的表面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________. 解析: 如图, 易知球心O 为DC 中点,由题意可求出CD =3,所以球O 的半径为32,故球O 的体积为43π×⎝⎛⎭⎫323=9π2. 答案: 9π212.如图所示是一个几何体的三视图,根据图中标出的尺寸(单位:cm),可得该几何体的表面积为________cm 2.答案 36解析 由三视图可知,此几何体是一个以AA ′=2,AD =4,AB =2为棱的长方体被平面A ′C ′B 截去一个角后得到的,在△A ′C ′B 中,因为A ′C ′=BC ′=25,BA ′=22,所以S △A ′C ′B =12×22×(25)2-(2)2=6,故几何体表面积为2×4×2+2×2+12×4×2×2+12×2×2+6=36.三、解答题13.如图所示,以圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,则该圆锥与圆柱等底等高.若圆锥的轴截面是一个正三角形,求圆柱的侧面积与圆锥的侧面积之比.解析: 设圆锥底面半径为r ,则母线为2r ,高为3r ,∴圆柱的底面半径为r ,高为3r ,∴S 圆柱侧S 圆锥侧=2πr ·3r πr ·2r = 3. 14如图,如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体解析:(1)如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=446-131222⎛⎫⨯⨯ ⎪⎝⎭2=2843(cm 3).15.有一个圆锥的侧面展开图是一个半径为5、圆心角为6π5的扇形,在这个圆锥中内接一个高为x 的圆柱. (1)求圆锥的体积.(2)当x 为何值时,圆柱的侧面积最大?解析: (1)因为圆锥侧面展开图的半径为5,所以圆锥的母线长为5.设圆锥的底面半径为r ,则2πr =5×6π5,解得r =3. 所以圆锥的高为4.从而圆锥的体积V =13πr 2×4=12π.(2)右图为轴截面图,这个图为等腰三角形中内接一个矩形.设圆柱的底面半径为a ,则3-a 3=x 4,从而a =3-34x . 圆柱的侧面积S (x )=2π(3-34x )x =32π(4x -x 2) =32π[4-(x -2)2](0<x <4). 当x =2时,S (x )有最大值6π.所以当圆柱的高为2时,圆柱有最大侧面积为6π.16.如图所示,从三棱锥P -ABC 的顶点P 沿着三条侧棱P A 、PB 、PC 剪开成平面图形得到△P 1P 2P 3,且P 2P 1=P 2P 3. (1)在三棱锥P -ABC 中,求证:P A ⊥BC .(2)若P 1P 2=26,P 1P 3=20,求三棱锥P -ABC 的体积.解析: (1)证明:由题设知A 、B 、C 分别是P 1P 3,P 1P 2,P 2P 3的中点,且P 2P 1=P 2P 3,从而PB =PC ,AB =AC ,取BC 的中点D ,连AD 、PD ,则AD ⊥BC ,PD ⊥BC ,∴BC ⊥面P AD .故P A ⊥BC .(2)由题设有AB =AC =12P 1P 2=13,P A =P 1A =BC =10, PB =PC =P 1B =13,∴AD =PD =AB 2-BD 2=12,在等腰三角形DP A 中, 底边P A 上的高h =AD 2-⎝⎛⎭⎫12P A 2=119, ∴S △DP A =12P A ·h =5119,又BC ⊥面P AD , ∴V P -ABC =V B -PDA +V C -PDA=13BD ·S △DP A +13DC ·S △PDA =13BC ·S △PDA =13×10×5119 =503119.。
高中数学必修2球的表面积与体积(含答案)

球的表面积与体积典例1、(2019∙西湖区校级模拟)半径为1的球的表面积等于______________【解析】ππ442==r S变式:半径为2的球的表面积等于_____________【解析】ππ1642==r S典例2、(2019∙红塔区校级月考)棱长为4的正方体的所有棱与球O 相切,则球的半径为__________ 【解析】22,242=∴=r r变式:棱长分别为4,3,2的长方体内接一个球O ,则球的表面积为___________【解析】ππ164,22==∴=r S r典例3、(2019∙城关区校级期末)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为___________ 【解析】πππ1441444,214,1412322222=⋅==∴=∴=++=r S r r 变式:棱长为3的正方体的所有顶点都在球O 的球面上,则球O 的体积为___________ 【解析】πππ2742744,227,2733322222=⋅==∴=∴=++=r S r r 典例4、(2019∙肥城市校级月考)若一个长方体共一顶点的三个面的面积分别是6,3,2,则这个长方体外接球的体积是_____________【解析】设长方体的棱长分别为a,b,c,则,321,632⎪⎩⎪⎨⎧===∴⎪⎪⎩⎪⎪⎨⎧===c b a bc ac ab 261)3()2(21222=++=∴r , πππ686634)26(343=⋅⋅==V 变式:若个长方体共一顶点的三个面的对角线分别是,5,2,3则这个长方体外接球的表面积是_________【解析】设长方体的棱长分别为a,b,c,则,321,523222222⎪⎩⎪⎨⎧===∴⎪⎪⎩⎪⎪⎨⎧=+=+=+c b a c b c a b a 261)3()2(21222=++=∴r , πππ6464)26(42=⋅⋅==S 典例5、(2019∙南充期末)若两个球的半径之比为1:3,则这两个球的体积之比为__________ 【解析】271)3(,3,3:1:31313231211221===∴=∴=R R R R V V R R R R 变式:若两个球的体积之比为27:8,则这两个球的表面积之比为__________ 【解析】23,8273434213231323121=∴===r r r r r r V V ππ 典例6、(2019∙十堰模拟)若一个实心球对半分成两半后表面积增加了π4,则原来实心球的表面积为_____ 【解析】πππππ8)2(44,2,2,4222===∴=∴=∴=r S r S S 球圆圆变式:若一个实心球平均分成三份后表面积增加了π12,则原来实心球的体积为_____ 【解析】ππππ33234,2,4,1233==∴=∴=∴=r V r S S 球圆圆典例7、一个正方体的棱长为2,可以完全放进一个球,则这个球的体积是___________ 【解析】πππ33223434,233=⋅⋅==∴=r V r变式:棱长分别为1,2,3的长方体内完全放进一个球,则该球的表面积是__________ 【解析】πππ3413434,133=⋅⋅==∴=r V r 典例8、(2018∙安庆期末)正三棱柱111C B A ABC -中,底面边长AB=3,侧棱长21=AA ,则该棱柱的外接球表面积等于___________【解析】底面ABC ∆的外接圆半径1)]321(3[32=⋅⋅⋅=r ,,211)2(222=+=+=h r R ππ842==R S 变式:正四棱柱1111D C B A ABCD -中,底面边长为2,侧棱长为4,则该棱柱的外接球的体积为______【解析】底面四边形ABCD 的外接圆半径,1222=⋅=r ,541)2(222=+=+=h r R ππ3520343==R V典例9、(2019∙增城区月考)三棱柱111C B A ABC -的侧棱垂直于底面,且AB=BC=2,AC=1AA =2,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为___________【解析】ABC ABC AC BC AB ∆∴=∠∴=+,90,0222 外接圆半径1=r ,2112=+=∴R , ππ842==∴R V变式:三棱柱111C B A ABC -的侧棱垂直于底面,且0120=∠ABC ,2==BC AB ,61=AA ,若该三棱柱的所有顶点都在同一球面上,则该球的表面积为___________【解析】底面ABC ∆的外接圆半径为2=r ,1332222=+=∴R ,ππ5242==∴R S典例10、(2019∙广元模拟)若三棱锥P-ABC 的底面边长与侧棱长都是3,则它的外接球的表面积为_______【解析】正四面体的边长为3,外接球的球心到各顶点的距离都等于半径R ,过一顶点作底面的垂线,垂足就是底面三角形的中心,故3321332=⋅⋅⋅=r ,63322=-=h ,222)(R h r R -+= 即463,)6(3222=∴-+=R R R ,πππ227)463(4422=⋅==∴R S 。
人教版五年级数学下册长方体和正方体表面积和体积 解决问题专项训练2(50道含答案)
人教版五年级数学下册长方体和正方体表面积和体积解决问题专项训练2(50道含答案)1.计算下面图形的表面积和体积。
2.一个长方体,如果高增加3 厘米,就变成棱长为8 厘米的正方体。
原长方体的体积是多少?3.一个长方体高26cm,如下图,把它切成两个小长方体,表面积增加了80cm2,求原来长方体的体积。
4.红星农场运来的沙子。
现在把这些沙子铺在一个长24dm、宽20dm 的沙坑里,能铺多厚?5.在一个长为120cm、宽为60cm的长方体水箱里,浸没一块长方体的铁块后,水面就比原来上升2cm。
求铁块的体积。
6.一个游泳池长50米,宽25米,内蓄满水2500立方米。
(1)这个游泳池的高是多少米?(2)如果要把游泳池内贴上瓷砖,需下面规格的瓷砖多少块?边长是:5分米×5分米的正方形方砖(3)如果每块方砖1.4元,你会到哪个商店去购买更合算?7.有一个长方体的木料,截面是一个正方形,正方形的边长是2dm,这块木料的体积是.这块木料的长是多少分米?8.如图是一个长方体的空心管,掏空部分的长方体的长为10厘米,宽为7厘米。
求这根空心管的体积是多少?如果每立分米重7.8千克,这根管子重多少千克?(单位:厘米)9.有甲、乙两个水箱,从里面测量,甲水箱长12dm、宽8dm、高5dm,乙水箱长8dm、宽8dm、高6dm.甲水箱装满水,乙水箱空着.现将甲水箱里的一部分水抽到乙水箱中,使两箱水面高度一样.现在两个水箱的水面高多少分米?10.把下图所示的长方体木料切割成最大的正方体,正方体的体积是多少立方分米?最多能切成几个这样的正方体?11.有一个长方体的铁块,底面积是,高是4cm.把它锻造成一个截体的长是多少厘米.12.用右面的两块铁皮做一个无盖的长方体水箱。
(1)做好后里外都刷上防锈漆,刷漆的面积是多少?(2)这个水箱的容积是多少升?(忽略铁皮厚度和接头)13.一块正方体铁锭,棱长5分米.每立方分米的铁重7.8千克,这块铁锭重多少千克?14.一个长方体油箱的容积是30升.已知这个油箱底面长3分米,宽2.5分米,油箱的深是多少分米?(用方程解)15.有一个长方体,高2米,底面的周长是14米,宽3米.这个长方体的体积是多少?16.有一个正方体,底面周长是32分米,这个正方体的体积是多少?17.一个长方形水箱,长5分米,宽4分米,高3分米.装满水后倒入一个棱长是5分米的水箱内,水深多少分米?18.如图所示,在一个大长方体中挖去一个小长方体,求这个物体的表面积和体积.(单位:厘米)(按表面积、体积的顺序填写)19.一辆运土机运了36立方米的沙子,准备铺在一个长45米,宽20米的长方体沙坑里,所铺沙子的厚度是多少厘米?20.一个从里面量长和宽都是10厘米,高14厘米的长方体容器,装有8厘米深的水,现将一个铁球浸没在水中,这时量得水深是12厘米,铁球的体积是多少立方厘米?21.一个正方体容器,从里面量棱长是10厘米。
小升初专题二长方体正方体的表面积及体积含答案
专题二长方体、正方体的表面积及体积一.选择题(共27小题)1.(2012?常熟市校级自主招生)如图所示,甲和乙两幅图的阴影面积相比,下列说法正确的是()A.甲>乙B.甲<乙C.甲=乙2.大圆的半径与小圆的直径相等,小圆的面积是10平方米,大圆的面积是()A.20平方米B.40平方米C.60平方米D.80平方米3.(2015?鹤山市模拟)在图中,圆的面积与长方形的面积相等.长方形的长是12.56厘米,圆的半径是()厘米A.4 B.5 C.6 D.74.(2013春?龙陵县期中)长方体的前、后、左、右四个面积都相等,符合这一条件的是()A.长5cm、宽4 cm、高5 cm B.长5 cm、宽5 cm、高4 cm C.长4 cm、宽5 cm、高5 cm5.(2010?雁江区)两块同样的肥皂用三种包装,第()种包装更省包装纸.A.B. C.6.(2012?武胜县)用同样的铝皮制作三个无盖的容器,不计损耗,需要铝皮最少的是()(单位:厘米)A.B.C.7.一个正方体的表面积是48平方厘米,它的占地面积是()平方厘米.A.48 B.6 C.88.(2014?长春)一个正方体木块,从顶点上挖去一个小正方体后,表面积()A.变大 B.变小 C.不变 D.无法确定9.(2012?上海)如图中两个物体的表面积比较,结果是()A.甲>乙B.甲<乙C.甲=乙10.把一个棱长是2分米的正方体截成4个完全一样的长方体,表面积比原来增加()平方分米.A.6 B.4 C.8 D.16或2411.把一个棱长为4厘米的正方体,分割成两个长方体,这两个长方体表面积总和是()平方厘米.A.64 B.128 C.80 D.9612.把一个棱长为a米的正方体,任意截成两个长方体,这两个长方体的表面积是()平方米.A.6a2B.8a2C.12a213.(2011?海港区)把2个棱长是acm的正方体拼成一个长方体,这个长方体的表面积是()cm2.A.10a2B.12a2C.8a2D.6a214.用两个棱长为5厘米的正方体拼成一个长方体,表面积减少了()平方厘米.A.25 B.50 C.75 D.10015.一个长方体的三个侧面面积是3、6、8平方厘米,这个长方体的体积等于()立方厘米.A.9 B.10 C.11 D.1216.(2012秋?襄垣县期末)棱长是6厘米的正方体,它的表面积和体积()A.相等 B.不相等C.不能相比17.(2010?广西)如图,它们的体积公式可以统一成()A.V=a b h B.V=a3 C.V=s h18.(2015春?汉寿县期末)如果把长方体的长、宽、高都扩大3倍,那么它的体积扩大()倍.A.3 B.9 C.27 D.1019.正方体的棱长扩大到原来的5倍,它的表面积就扩大到原来的(),体积就扩大到原来的()A.5倍25倍B.25倍5倍C.25倍125倍D.5倍125倍20.(2013春?启东市期中)将一块正方体形状的橡皮泥捏成长方体,长方体和正方体()A.体积相等,表面积不相等B.体积不相等,表面积相等C.体积和表面积都相等D.体积和表面积都不相等21.(2014?萝岗区)一个正方体的底面周长是12cm,它的体积是()cm3.A.9 B.27 C.36 D.7222.(2008?淳安县)一个棱长2厘米的正方体,挖掉一个棱长1厘米的小正方体后(如图),它的表面积()A.增大了B.减少了C.不变 D.无法断定23.(2012?陆良县)如图是一个长3厘米,宽与高都是2厘米的长方体,在它的上面挖掉一个棱长为1厘米的小正方体,这时它的表面积是()平方厘米.A.32 B.34 C.不能计算24.(2007?广州校级自主招生)把一根长9分米的长方体木料,平均锯成三个小长方体,表面积增加了2.4平方分米,这根木料的体积是()立方分米.A.3.6 B.5.4 C.7.2 D.10.825.(2014?蓝田县校级模拟)把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,这个圆柱的体积是()立方分米.A.50.24 B.64 C.12.56 D.200.9626.(2013春?通化期中)把一个长10厘米,宽8厘米,高6厘米的长方体木块削成一个最大的正方体,这个正方体的体积是()立方厘米.A.216 B.512 C.1000 D.48027.一个长8分米,宽6分米,高5分米的长方体纸盒,最多能放()个棱长为2分米的正方体木块.A.36 B.30 C.24 D.12二.解答题(共3小题)28.(2014?延平区)用一根60厘米的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是立方厘米?29.(2014?桂林)一个长方体水箱,从里面量它的长是1.2dm,宽是4dm,高是8dm,这个水箱最多能装水多少升?30.(2013?巴中)计算图形的表面积和体积(单位厘米)专题二长方体、正方体的表面积及体积参考答案与试题解析一.选择题(共27小题)1.(2012?常熟市校级自主招生)如图所示,甲和乙两幅图的阴影面积相比,下列说法正确的是()A.甲>乙B.甲<乙C.甲=乙【考点】组合图形的面积.【分析】(1)在甲图中作一条高,把大长方形分成了两个长方形,根据三角形的面积=底×高÷2,因为等底等高,可得出甲图中左边阴影部分的三角形面积是所分成的左边长方形面积的一半,甲图中右边阴影部分三角形的面积是甲图形中右边长方形面积的一半,即得出阴影部分的面积是甲图整个面积的一半;(2)乙图形中阴影部分和乙图等底等高,得出阴影部分的面积是整个乙图面积的一半;(3)因为甲图和乙图面积相等,所以能得出两幅图的阴影部分的面积也相等.【解答】解:(1)如图:甲图形中阴影部分面积是甲图面积的一半;(2)乙图形中阴影部分的面积是乙图面积的一半;(3)因为甲图和乙图面积相等,所以能得出两幅图的阴影部分的面积相等;故选:C.【点评】此题属于面积的大小比较,做题时先作出一条高,然后根据三角形的面积计算公式进行分析,解答即可得出结论.2.大圆的半径与小圆的直径相等,小圆的面积是10平方米,大圆的面积是()A.20平方米B.40平方米C.60平方米D.80平方米【考点】组合图形的面积.【专题】平面图形的认识与计算.【分析】由“圆的面积=πr2”可知,圆的面积比就等于半径平方的比,再根据“大圆的半径与小圆的直径相等”即可求得它们的面积比.【解答】解:设小圆的半径为r,则大圆的半径2r;则大圆面积:小圆面积=π(2r)2:πr2=4:1,所以小圆的面积是10平方米,大圆的面积是:10×4=40(平方米)答:大圆的面积是40平方米;故选:B.【点评】解答此题的关键是明白:圆的面积比就等于半径平方的比,设出未知数即可求解.3.(2015?鹤山市模拟)在图中,圆的面积与长方形的面积相等.长方形的长是12.56厘米,圆的半径是()厘米A.4 B.5 C.6 D.7【考点】组合图形的面积.【专题】平面图形的认识与计算.【分析】此题只要抓住“圆的面积与长方形的面积是相等的”且长方形的宽也是圆的半径这两个条件,用圆和长方形的面积公式表示出来,将“长方形的长是12.56厘米”代入公式既可以求得结果.【解答】解:πR2=R×12.56,则πR=12.56,R=4(厘米);答:圆的半径是4厘米.故选:A.【点评】此题主要考查长方形和圆的面积公式及长方形的宽也是圆的半径,据此就可以代入公式计算.4.(2013春?龙陵县期中)长方体的前、后、左、右四个面积都相等,符合这一条件的是()A.长5cm、宽4 cm、高5 cm B.长5 cm、宽5 cm、高4 cmC.长4 cm、宽5 cm、高5 cm【考点】长方体和正方体的表面积.【专题】立体图形的认识与计算.【分析】长方体的前、后、左、右四个面积都相等,说明上下两个面都是正方形,即长=宽,据此选择.【解答】解:只有选项B中的长=宽,故选:B.【点评】本题关键是知道一个长方体如果有四个面的面积相等,另外的两个面一定是正方形.5.(2010?雁江区)两块同样的肥皂用三种包装,第()种包装更省包装纸.A.B. C.【考点】长方体和正方体的表面积.【分析】根据把两个相同的长方体拼成一个大长方体,表面积都减少两个面,求哪种包装最省包装纸,只要减少两个最大的面(两个最大的面重合)即可.【解答】解:由分析知,求哪种包装最省包装纸,只要减少两个最大的面(两个最大的面重合)即可;由图可知A种包装最省纸;故选:A.【点评】解答此题要明确:把两个相同的长方体拼成一个大长方体,表面积减少了两个面的面积.6.(2012?武胜县)用同样的铝皮制作三个无盖的容器(如图),不计损耗,需要铝皮最少的是()(单位:厘米)A.B.C.【考点】长方体和正方体的表面积;圆柱的侧面积、表面积和体积.【专题】压轴题;立体图形的认识与计算.【分析】分别根据长方体,正方体,圆柱的表面积公式求出三个无盖的容器的表面积,再比较即可求解.【解答】解:正方体:7×7×5=49×5=245(平方厘米);长方体:(8×7+6×7)×2+8×6,=(56+42)×2+48,=98×2+48,=196+48,=244(平方厘米);圆柱:3.14×(8÷2)2+3.14×8×7,=3.14×42+3.14×56,=3.14×16+175.84,=50.24+175.84,=226.08(平方厘米).因为226.08<244<245,所以需要铝皮最少的是圆柱.故选:C.【点评】考查了无盖的容器的表面积计算,注意在计算中不需要求上面的面积.7.一个正方体的表面积是48平方厘米,它的占地面积是()平方厘米.A.48 B.6 C.8【考点】长方体和正方体的表面积.【分析】占地面积,即底面积;因为正方体6个面的面积都相等,根据“正方体的表面积÷6=一个面的面积”,进而得出结论.【解答】解:48÷6=8(平方厘米);故选:C.【点评】根据正方体表面积的计算公式进行解答即可.8.(2014?长春)一个正方体木块,从顶点上挖去一个小正方体后,表面积()A.变大 B.变小 C.不变 D.无法确定【考点】长方体和正方体的表面积.【专题】立体图形的认识与计算.【分析】从顶点上挖去一个小正方体后,减少了3个正方体的面,同时增加了3个正方体的切面,所以表面积不变.【解答】解:根据分析可得,由于减少了3个正方体的面,同时增加了3个正方体的切面,所以表面积不变.故选:C.【点评】本题考查了正方体的切拼,如果在顶点上切一般表面积不变,如果在面的中间切没有切透,表面积增加.9.(2012?上海)如图中两个物体的表面积比较,结果是()A.甲>乙B.甲<乙C.甲=乙【考点】长方体和正方体的表面积.【分析】由图可知,乙物体是从长方体甲一个顶点处去掉了一个小正方体,减去3个面又增加了3个面,所以表面积不变,由此即可得答案.【解答】解:甲物体从一个顶点处去掉了一个小正方体得到了乙物体,体积减少,但表面积不变.故选:C.【点评】此题主要理解从长方体一个顶点处去掉小正方体后,体积虽然减少,但是表面积没减少.10.把一个棱长是2分米的正方体截成4个完全一样的长方体,表面积比原来增加()平方分米.A.6 B.4 C.8 D.16或24【考点】长方体和正方体的表面积.【专题】立体图形的认识与计算.【分析】把一个正方体切成4个完全一样的长方体,有两种切法:①沿一条棱长来切,切3次,表面积就增加原来正方体的6个面的面积,②纵、横各切一刀,表面积就增加原来正方体的4个面的面积;依此即可解答.【解答】解:把一个正方体切成4个完全一样的长方体,有两种切法:①沿一条棱长来切,切3次,表面积就增加原来正方体的6个面的面积,则表面积增加:2×2×6=24(平方分米);②纵、横各切一刀,表面积就增加原来正方体的4个面的面积,则表面积增加:2×2×4=16(平方分米).答:表面积比原来增加16平方分米或24平方分米.故选:D.【点评】解答本题的关键是明确:表面积增加几个原来正方体的面的面积.11.(2012秋?海淀区月考)把一个棱长为4厘米的正方体,分割成两个长方体,这两个长方体表面积总和是()平方厘米.A.64 B.128 C.80 D.96【考点】长方体和正方体的表面积.【分析】应明确把一个正方体,分割成两个长方体,增加两个面,增加的两个面的面积为:4×4×2=32平方厘米;然后根据“正方体的表面积=棱长×棱长×6”计算出原来正方体的表面积,加上增加的面积即可.【解答】解:42×6+4×4×2,=96+32,=128(平方厘米);故选:B.【点评】解答此题应明确把一个正方体分割成2个长方体,增加两个面,进而根据“正方体的表面积=棱长×棱长×6”计算出原来正方体的表面积,加上增加的面积即可.12.把一个棱长为a米的正方体,任意截成两个长方体,这两个长方体的表面积是()平方米.A.6a2B.8a2C.12a2【考点】长方体和正方体的表面积.【分析】由题意可知:把一个棱长为a米的正方体,任意截成两个长方体后,表面积增加了两个面的面积,即增加了2a2平方米,于是可以求出两个长方体的表面积.【解答】解:a×a×6+a×a×2,=6a2+2a2,=8a2;答:这两个长方体的表面积是8a2平方米.故选:B.【点评】解答此题的关键是明白:把一个正方体任意截成两个长方体后,表面积增加了两个面的面积.13.(2011?海港区)把2个棱长是acm的正方体拼成一个长方体,这个长方体的表面积是()cm2.A.10a2B.12a2C.8a2D.6a2【考点】长方体和正方体的表面积;简单的立方体切拼问题.【分析】把两个棱长是acm的正方体木块拼成一个大长方体,减少了两个正方形的面,所以总共有(6×2﹣2)=10个正方形的面;根据“正方形的面积=边长×边长”求出一个面的面积,进而乘10即可.【解答】解:(a×a)×(6×2﹣2),=a2×10,=10a2(平方厘米);答:这个长方体的表面积是10a2cm2.故选:A.【点评】解答此题的方法很多,也可以先求出两个正方体表面积的和,然后减去两个面的面积.14.用两个棱长为5厘米的正方体拼成一个长方体,表面积减少了()平方厘米.A.25 B.50 C.75 D.100【考点】长方体和正方体的表面积.【专题】立体图形的认识与计算.【分析】根据两个正方体拼组一个长方体的特点可知,拼组后的表面积正好减少了原来正方体的2个面的面积,所以此题只要求出小正方体的2个面的面积即可解决问题.【解答】解:根据题干分析,拼组后的表面积正好减少了原来正方体的2个面的面积,5×5×2=50(平方厘米),答:表面积比原来两个表面积之和减少50平方厘米.故选:B.【点评】根据题干,得出表面积减少部分是指原来正方体的2个面,是解决此类问题的关键.15.(2013?花都区校级自主招生)一个长方体的三个侧面面积是3、6、8平方厘米,这个长方体的体积等于()立方厘米.A.9 B.10 C.11 D.12【考点】长方体和正方体的表面积;长方体和正方体的体积.【分析】设长宽高分别为a,b,c则:ab=3,ac=6,bc=8;根据“长方体的体积=长×宽×高”进行解答即可.【解答】解:由分析知:因为ab=3,ac=6,bc=8;两边分别相乘,(abc)2=3×6×8,即:(abc)2=144,因为12×12=144;所以体积为12立方厘米;故答案应选:D.【点评】解答此题的关键是先分别设出长、宽、高,进而根据题意,根据长方体的体积计算方法列出式子,进行解答即可.16.(2012秋?襄垣县期末)棱长是6厘米的正方体,它的表面积和体积()A.相等 B.不相等C.不能相比【考点】长方体和正方体的表面积;长方体和正方体的体积.【专题】立体图形的认识与计算.【分析】(1)意义不同,正方体的表面积是指组成正方体所有面的总面积,而正方体的体积是指正方体所占空间的大小;(2)计算方法不同,表面积=a×a×6,而体积=a×a×a;(3)计量单位不同,表面积用面积单位,而体积用体积单位.【解答】解:正方体的表面积和体积意义不同,计算方法不同,计量单位不同,无法进行比较;故选:C.【点评】此题考查对表面积和体积的意义,计算方法,计量单位都不相同,无法进行比较.17.(2010?广西)如图,它们的体积公式可以统一成()A.V=a b h B.V=a3 C.V=s h【考点】长方体和正方体的体积;用字母表示数;圆柱的侧面积、表面积和体积.【专题】立体图形的认识与计算.【分析】长方体的长×宽=它的底面积,正方体的棱长×棱长=它的底面积,长方体和正方体的统一体积公式为:v=sh;再根据圆柱的体积公式的推导过程,把圆柱切拼成近似长方体,正方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高,因为长方体的体积=底面积×高,所以圆柱的体积=底面积×高.由此解答.【解答】解:根据分析:长方体、正方体和圆柱体的体积公式可以统一成:v=sh.故选:C.【点评】此题考查的目的是使学生理解掌握长方体、正方体和圆柱体的统一体积公式:v=sh.18.(2015春?汉寿县期末)如果把长方体的长、宽、高都扩大3倍,那么它的体积扩大()倍.A.3 B.9 C.27 D.10【考点】长方体和正方体的体积.【分析】利用长方体的体积公式V=abc,代入数值解答即可.【解答】解:V1=abc;长、宽、高都扩大3倍,V2=(a×3)×(b×3)×(c×3)=27abc,即体积扩大了27倍.故选:C.【点评】此题也可用假设法解答,先假设长、宽、高各是多少求得体积,再令长、宽、高都扩大3倍求得体积,最后比较即可.19.正方体的棱长扩大到原来的5倍,它的表面积就扩大到原来的(),体积就扩大到原来的()A.5倍25倍B.25倍5倍C.25倍125倍D.5倍125倍【考点】长方体和正方体的体积;积的变化规律;长方体和正方体的表面积.【专题】立体图形的认识与计算.【分析】根据正方体的表面积公式:s=6a2,体积公式:v=a3,再根据因数与积的变化规律:积扩大的倍数等于因数扩大倍数的乘积.据此解答.【解答】解:根据分析知:正方体的棱长扩大到原来的5倍,它的表面积就扩大到原来的25倍,体积扩大到原来的125倍.故选:C.【点评】此题主要根据正方体的表面积公式、体积公式、以及运算与积的变化规律解决问题.20.(2013春?启东市期中)将一块正方体形状的橡皮泥捏成长方体,长方体和正方体()A.体积相等,表面积不相等B.体积不相等,表面积相等C.体积和表面积都相等D.体积和表面积都不相等【考点】长方体和正方体的体积.【分析】把一块正方体橡皮泥捏成一个长方体后,它的形状变了,但他所占空间的大小不变,所以体积不变;长方体的表面积会变大,因为正方体属于长方体的一种,而同体积时正方体是长方体中表面积最小的一种.【解答】解:假设正方体的棱长为6厘米,长方体的长、宽、高分别为12厘米、3厘米、6厘米,则正方体的体积=6×6×6=216(立方厘米),长方体的体积=12×3×6=216(立方厘米),所以长方体的体积=正方体的体积;正方体的表面积=6×6×6=216(平方厘米),长方体的表面积=(12×3+3×6+6×12)×2,=(36+18+72)×2,=126×2,=252(平方厘米);长方体的表面积>正方体的表面积;故选:A.【点评】解答此题的关键是:利用体积不变,举实例证明即可.21.(2014?萝岗区)一个正方体的底面周长是12cm,它的体积是()cm3.A.9 B.27 C.36 D.72【考点】长方体和正方体的体积.【专题】立体图形的认识与计算.【分析】正方体的底面是一个正方形,根据正方形的周长=边长×4,即可求出这个正方体的棱长是12÷4=3厘米,再利用正方体的体积公式即可解答.【解答】解:正方体的棱长是:12÷4=3(厘米),正方体的体积是:3×3×3=27(立方厘米),故选:B.【点评】此题考查了正方形的周长公式和正方体的体积公式的计算应用.22.(2008?淳安县)一个棱长2厘米的正方体,挖掉一个棱长1厘米的小正方体后(如图),它的表面积()A.增大了B.减少了C.不变 D.无法断定【考点】长方体和正方体的表面积.【专题】立体图形的认识与计算.【分析】根据正方体的特征,6个面都是正方形,6个面的面积都相等,正方体的表面积=棱长×棱长×6;从一个棱长2厘米的正方体,挖掉一个棱长1厘米的小正方体,因为这个小正方体在顶点上,有3个1平方厘米的把外露,挖掉一个棱长1厘米的小正方体后,又露出与原来相同的3个面,所以表面积不变.【解答】解:2×2×6=24(平方厘米);答:它的表面积不变,还是24平方厘米.故选:C.【点评】此题考查的目的是使学生理解掌握正方体的特征及表面积的计算方法.23.(2012?陆良县)如图是一个长3厘米,宽与高都是2厘米的长方体,在它的上面挖掉一个棱长为1厘米的小正方体,这时它的表面积是()平方厘米.A.32 B.34 C.不能计算【考点】长方体和正方体的表面积;简单的立方体切拼问题.【专题】立体图形的认识与计算.【分析】由图意可知:在它的上面挖掉一个棱长为1厘米的小正方体,则增加了小正方体的2个面的面积,于是利用正方体的表面积加上小正方体的2个面的面积,问题即可得解.【解答】解:3×2×4+2×2×2+(2÷2)×(2÷2)×2,=24+8+2,=34(平方厘米);答:这时它的表面积是34平方厘米.故选:B.【点评】弄清楚在它的上面挖掉一个棱长为1厘米的小正方体,面的增加或减少情况,是解答本题的关键.24.(2007?广州校级自主招生)把一根长9分米的长方体木料,平均锯成三个小长方体,表面积增加了2.4平方分米,这根木料的体积是()立方分米.A.3.6 B.5.4 C.7.2 D.10.8【考点】长方体和正方体的体积.【分析】把长方体木料,平均锯成三个小长方体,锯2次,增加4个面,用“2.4÷4”计算出这个长方体的底面积,进而根据“长方体的体积=底面积×高”解答即可.【解答】解:2.4÷4×9,=0.6×9,=5.4(立方分米);答:这根木料的体积是5.4立方分米.故选:B.【点评】解答此题的关键:应明确把长方体均锯成n个小长方体,锯(n﹣1)次,增加2(n﹣1)个面,进而解答即可.25.(2014?蓝田县校级模拟)把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,这个圆柱的体积是()立方分米.A.50.24 B.64 C.12.56 D.200.96【考点】长方体和正方体的体积;圆柱的侧面积、表面积和体积.【分析】把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,圆柱的底面直径是4分米,高是4分米;进而根据“圆柱的体积=πr2h”进行解答即可.【解答】解:3.14×(4÷2)2×4,=12.56×4,=50.24(立方分米);答:这个圆柱的体积是50.24立方分米.故选:A.【点评】解答此题的关键是要明确:把正方体钢坯削成最大的圆柱,圆柱的高和底面直径都等于正方体的棱长.26.(2013春?通化期中)把一个长10厘米,宽8厘米,高6厘米的长方体木块削成一个最大的正方体,这个正方体的体积是()立方厘米.A.216 B.512 C.1000 D.480【考点】长方体和正方体的体积.【专题】立体图形的认识与计算.【分析】把一个长10厘米,宽8厘米,高6厘米的长方体木块削成一个最大的正方体,这个正方体的棱长是6厘米,根据正方体的体积公式:v=a3,把数据代入公式解答即可.【解答】解:6×6×6=216(立方厘米),答:这个正方体的体积是216立方厘米.故选:A.【点评】此题主要考查正方体的体积公式的灵活运用.27.(2013?长沙)一个长8分米,宽6分米,高5分米的长方体纸盒,最多能放()个棱长为2分米的正方体木块.A.36 B.30 C.24 D.12【考点】长方体和正方体的体积.【分析】先看长,能放8÷2=4(个),再看宽,能放6÷2=3(个),最后看高,放5÷2=2层;进而得出答案.【解答】解:长:8÷2=4(个),宽:6÷2=3(个),高:5÷2=2…1(分米);最多放:4×3×2=24(个);故选:C.【点评】解答此题不能只根据体积计算公式,应结合题意,进行分步分析,进而得出结论.二.解答题(共3小题)28.(2014?延平区)用一根60厘米的铁丝围成一个最大的正方体形状的框架,这个正方体的体积是立方厘米?【考点】长方体和正方体的体积.【专题】立体图形的认识与计算.【分析】用一根60厘米的铁丝围成一个最大的正方体形状的框架,这个正方体的棱长总和就是60厘米,首先用棱长总和除以12求出棱长,再根据正方体的体积公式:v=a3,把数据代入公式解答.【解答】解:60÷12=5(厘米),5×5×5=125(立方厘米),答:这个正方体的体积是125立方厘米.【点评】此题主要考查正方体的棱长总和公式、体积公式的灵活运用.29.(2014?桂林)一个长方体水箱,从里面量它的长是1.2dm,宽是4dm,高是8dm,这个水箱最多能装水多少升?【考点】长方体和正方体的体积.【专题】立体图形的认识与计算.【分析】根据长方体的容积公式:v=abh,把数据代入公式求出水箱的容积,然后把体积单位换算成容积多少即可.【解答】解:1.2×4×8,=4.8×8,=38.4(立方分米),38.4立方分米=38.4升;答:这个水箱最多能装水38.4升.【点评】此题主要考查长方体的容积公式的灵活运用,注意:体积单位与容积之间的换算.30.(2013?巴中)计算图形的表面积和体积(单位厘米)【考点】长方体和正方体的体积;圆柱的侧面积、表面积和体积.【专题】压轴题;立体图形的认识与计算.【分析】(1)长方体的表面积=(长×宽+宽×高+高×长)×2,长方体的体积=长×宽×高;(2)圆柱的表面积=侧面积+(底面积×2),圆柱的体积=底面积×高,将所给数据分别代入相应的公式,即可分别求出对应图形的表面积和体积.【解答】解:(1)长方体的表面积:(10×4+10×6+4×6)×2,=(40+60+24)×2,=124×2,=248(平方厘米);长方体的体积:10×4×6,=40×6,=240(立方厘米);答:长方体的表面积是248平方厘米,体积是240立方厘米.(2)圆柱的表面积:3.14×10×8+3.14×(10÷2)2×2,=251.2+157,=408.2(平方厘米);圆柱的体积:3.14×(10÷2)2×8,=3.14×25×8,=628(立方厘米);答:圆柱的表面积是408.2平方厘米,体积是628立方厘米.【点评】此题主要考查长方体、圆柱的表面积和体积的计算方法.。
六年级下册数学试题-圆柱的表面积和体积(含答案) 通用版
例 4. 有一个圆柱形水桶,底面直径2分米,盛水未满,放入一个铁球,当铁球完全沉入水中之后,水面升高3厘米,求铁
球的体积?
我爱展示
1. 一个圆柱体的侧面积是12.56平方分米,高2分米,它体积是(
)。
2. 一个长方体,长8分米,宽8分米,高12分米。把它削成一个最大的圆柱,这个圆柱的体积为多少立方分米?
1.2;125.6
解析:把圆柱体转化成长方体来求体积,这是书本圆柱体积的推导方法,增加的表面积为长方体左右两边的长方形,长方
体和圆柱体的高一样,长方体的宽为圆柱体的底面半径,根据增加的表面积求出圆柱体的底面半径。
底面半径:40÷2÷10=2(cm); 圆柱体积:3.14×2²×10=125.6(cm³)
减去直径d,圆柱体表面积=阴影长方形面积+两个圆面积。 圆柱的底面直径是:18.84÷3.14=6(厘米); 圆柱体的高是:10-6=4(厘米); 圆柱体表面积是:18.84×4+3.14×(6÷2)²×2=131.88(平方厘米)。 答:略。
我爱展示
1.94.2平方米
解析:分别求出图中三个圆柱体的侧面展开图的面积,之后求出最大圆柱体的两个底面面积,两部分相加即可求出这个物
5. 有一个高是10厘米的圆柱,如果它的高减少2厘米,表面积就减少18.84平方厘米,原来圆柱的体积是多少立方厘米?
2019/3/16
6. 压路机的前轮是圆柱,底面直径是1米,长是1.5米,从一条公路的一端压到另一端,共滚动了450周,这条公路有多
长?压过的路面有多少平方米?
7. 一种圆柱形的奶粉盒底面周长是37.68厘米,高15厘米,如果装在长3分米、宽3.6分米、高2.4分米的长方体纸箱内,
橡皮泥条底面积: 3.14×(2÷2)²=3.14(平方厘米);
高中人教A版数学必修二教师用书第1章 1.3.2 球的体积和表面积 Word版含答案
球的体积和表面积.了解并掌握球的体积和表面积公式..会用球的体积与表面积公式解决实际问题.(重点).会解决球的组合体及三视图中球的有关问题.(难点、易混点)教材整理球的表面积与体积公式阅读教材“练习”以下至“练习”以上内容,完成下列问题..球的体积设球的半径为,则球的体积=π..球的表面积π设球的半径为,则球的表面积=,即球的表面积等于它的大圆面积的倍.判断(正确的打“√”,错误的打“×”)()球的体积之比等于半径比的平方.( )()长方体既有外接球又有内切球.( )()球面展开一定是平面的圆面.( )()球的三视图都是圆.( )【解析】()错误.球的体积之比等于半径比的立方.()错误.长方体只有外接球,没有内切球.()错误.球的表面不能展开成平面图形,故错误.()正确.球的三视图都是圆.【答案】()×()×()×()√()()已知球的体积为π,求它的表面积.【精彩点拨】借助公式,求出球的半径,再根据表面积与体积公式求解.【自主解答】()设球的半径为,则由已知得π=π,=.所以球的体积:=×π×=π.()设球的半径为,由已知得π=π,所以=,所以球的表面积为:=π=π×=π..一个关键抓住球的表面积公式球=π,球的体积公式球=π是计算球的表面积和体积的关键,半径与球心是确定球的条件.把握住公式,球的体积与表面积计算的相关题目也就迎刃而解了..两个结论()两个球的表面积之比等于这两个球的半径之比的平方;()两个球的体积之比等于这两个球的半径之比的立方..()球的体积是,则此球的表面积是( ).π.π()用与球心距离为的平面去截球,所得的截面面积为π,则球的体积为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--
--
空间几何体的表面积和体积练习
(录自新教材完全解读)
1、一个证四棱台的两底面边长分别为)(,nmnm,侧面积等于两个底面积之和,则这个棱台的高位( )
A.nmmn B. nmmn C. mnnm D. mnnm
2、一个圆柱的侧面展开图示一个正方形,这个圆柱的表面积与侧面积的比是( )
A.221 B. 441 C. 21 D. 241
3、在斜三棱柱ABC-A1B1C1中,∠BAC=
0
90
,0110111190,60,CBBCAABAAaACAB,侧棱长为b,求其侧面积。
ab)23(
4、一个三棱锥的底面是正三角形,侧面都是等腰直角三角形,底面边长为a,求它的表面积。
2
)33(41a
5、已知圆台的上、下底面半径和高的比为1:4:4,母线长为10,求圆台的侧面积。
100
6、若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为( )
A. 62 B. 32 C. 33 D. 32
7、已知圆台两底面半径分别为)(,nmnm,求圆台和截得它的圆锥的体积比。
3
33
m
nm
8、直三棱柱(侧棱垂直底面的三棱柱)的高6,底面三角形的边长分别为3、4、5,将棱柱削成圆柱,求削
去部分体积的最小值。
)6(6
9、如图,三棱锥S-ABC的三条侧棱两两垂直,且
6,3,1SCSASB
,求该三棱锥的体积。
2
2
10、若两球表面积之比为4:9,则其体积之比为( )
S
C
B
A
--
--
A.8:27 B.16:81 C.64:729 D.2:3
11、如果三个球的半径之比是1:2:3,那么最大球的体积是其余两个球的体积之和的( )
A.1倍 B.2倍 C.3倍 D.4
倍
12、如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,
旋转一周得到一几何体,求该几何体的表面积。(其中030BAC)
2
2
311R
13、如图所示,长方体1111DCBAABCD中,cCCbBCaAB1,,,
且0cba,求沿着长方体的表面自A到1C的最短路线
的长。bccba2222
14、已知圆锥SO的底面半径为R,母线长SA=3R,D为SA的
中点,一个动点自底面圆周上的A点沿圆锥侧面移动到D,求
这点移动的最短距离。
R
2
73
O
C
B
A
D1
A
B
A1
C
B
1
C1
D