2017年湖北高考数学专题训练试题

合集下载

2017年湖北省荆门市、荆州市、襄阳市、宜昌市四地七校联盟高考数学模拟试卷(理科)(2月份)(解析版)

2017年湖北省荆门市、荆州市、襄阳市、宜昌市四地七校联盟高考数学模拟试卷(理科)(2月份)(解析版)

2017年湖北省荆门市、荆州市、襄阳市、宜昌市四地七校联盟高考数学模拟试卷(理科)(2月份)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的答案填涂在答题卡上.1.已知复数z=1﹣i(i是虚数单位),则﹣z2的共轭复数是()A.1﹣3i B.1+3i C.﹣1+3i D.﹣1﹣3i2.设集合A={x|x<2},B={y|y=2x﹣1,x∈A},则A∩B=()A.(﹣∞,3)B.[2,3) C.(﹣∞,2)D.(﹣1,2)3.已知α为第四象限角,,则的值为()A.B.C.D.4.有一长、宽分别为50m、30m的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线交点)处呼唤工作人员,其声音可传出,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是()A.B.C. D.5.抛物线y2=4x的焦点到双曲线x2﹣=1的渐近线的距离是()A.B.C.1 D.6.函数y=ln|x|﹣x2的图象大致为()A.B.C.D.7.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直,则该几何体的体积是()A .B .C .D .328.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n 等于( )A .2B .3C .4D .59.设随机变量η服从正态分布N (1,ς2),若P (η<﹣1)=0.2,则函数没有极值点的概率是( ) A .0.2 B .0.3 C .0.7 D .0.810.已知圆C :x 2+y 2=4,点P 为直线x +2y ﹣9=0上一动点,过点P 向圆C 引两条切线PA 、PB ,A 、B 为切点,则直线AB 经过定点( )A .B .C .(2,0)D .(9,0)11.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B 3C 3上有10个不同的点P 1,P 2,…P 10,记m i =(i=1,2,…,10),则m 1+m 2+…+m 10的值为( )A.180 B.C.45 D.12.已知函数f(x)=,其中[x]表示不超过x的最大整数.设n∈N*,(x))(n≥2),则下列说法定义函数f n(x):f1(x)=f(x),f2(x)=f(f1(x)),…,f n(x)=f(f n﹣1正确的有①y=的定义域为;②设A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;③;④若集合M={x|f12(x)=x,x∈[0,2]},则M中至少含有8个元素.()A.1个 B.2个 C.3个 D.4个二、填空题:本题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.13.的展开式中,x4的系数为.14.某校今年计划招聘女教师x人,男教师y人,若x、y满足,则该学校今年计划招聘教师最多人.15.已知函数的两个零点分别为m、n(m<n),则=.16.“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:1,1,2,3,5,8…,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{a n}为“斐波那契”数列,S n为数列{a n}的前n项和,则(Ⅰ)S7=;(Ⅱ)若a2017=m,则S2015=.(用m表示)三、解答题:本题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知函数.(1)求函数f(x)的值域;(2)已知锐角△ABC的两边长分别为函数f(x)的最大值与最小值,且△ABC的外接圆半径为,求△ABC的面积.18.如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答如下问题.(Ⅰ)求全班人数及分数在[80,100]之间的频率;(Ⅱ)现从分数在[80,100]之间的试卷中任取 3 份分析学生情况,设抽取的试卷分数在[90,100]的份数为X,求X的分布列和数学望期.19.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值.20.如图,曲线Γ由曲线C1:=1(a>b>0,y≤0)和曲线C2:=1(a>0,b>0,y >0)组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,(Ⅰ)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.21.设f(x)=,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.(Ⅰ)求a的值;(Ⅱ)若对于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的取值范围;(Ⅲ)求证:ln(4n+1)≤16(n∈N*).请考生在第22、23题中任选一题作答,如果多做,则按所做第一题记分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.在直角坐标系xoy中,直线l经过点P(﹣1,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ2﹣6ρcosθ+1=0.(Ⅰ)若直线l与曲线C有公共点,求α的取值范围;(Ⅱ)设M(x,y)为曲线C上任意一点,求x+y的取值范围.[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|2x﹣3|+2.(Ⅰ)解不等式|g(x)|<5;(Ⅱ)若对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.2017年湖北省荆门市、荆州市、襄阳市、宜昌市四地七校联盟高考数学模拟试卷(理科)(2月份)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的答案填涂在答题卡上.1.已知复数z=1﹣i(i是虚数单位),则﹣z2的共轭复数是()A.1﹣3i B.1+3i C.﹣1+3i D.﹣1﹣3i【考点】复数代数形式的乘除运算.【分析】把复数z=1﹣i,代入﹣z2,然后利用复数代数形式的乘除运算化简,则﹣z2的共轭复数可求.【解答】解:由复数z=1﹣i,得﹣z2==,则﹣z2的共轭复数是:1﹣3i.故选:A.2.设集合A={x|x<2},B={y|y=2x﹣1,x∈A},则A∩B=()A.(﹣∞,3)B.[2,3) C.(﹣∞,2)D.(﹣1,2)【考点】交集及其运算.【分析】由指数函数的值域和单调性,化简集合B,再由交集的定义,即可得到所求.【解答】解:集合A={x|x<2}=(﹣∞,2),B={y|y=2x﹣1,x∈A},由x<2,可得y=2x﹣1∈(﹣1,3),即B={y|﹣1<y<3}=(﹣1,3),则A∩B=(﹣1,2).故选:D.3.已知α为第四象限角,,则的值为()A.B.C.D.【考点】同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系求得sinα和cosα的值,可得tanα的值,再利用二倍角的正切公式结合tan的符号,求得tan的值.【解答】解:∵α为第四象限角,∴sinα<0,cosα>0,是第二或第四象限角,∵,∴1+2si nαcosα=,∴sinαcosα=﹣,∴sinα﹣cosα=﹣=﹣=﹣,∴sinα=﹣,cosα=,∴tanα==﹣=,∴=3 (舍去),或,=﹣,故选:C.4.有一长、宽分别为50m、30m的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线交点)处呼唤工作人员,其声音可传出,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是()A.B.C. D.【考点】几何概型.【分析】由题意可知所有可能结果用周长160表示,事件发生的结果可用两条线段的长度和60表示,即可求得.【解答】解:所有可能结果用周长160表示,事件发生的结果可用两条线段的长度和60表示,.故答案选:B.5.抛物线y2=4x的焦点到双曲线x2﹣=1的渐近线的距离是()A.B.C.1 D.【考点】抛物线的简单性质;双曲线的简单性质.【分析】根据抛物线的标准方程,算出抛物线的焦点F(1,0).由双曲线标准方程,算出它的渐近线方程为y=±x,化成一般式得:,再用点到直线的距离公式即可算出所求距离.【解答】解:∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==故选:B6.函数y=ln|x|﹣x2的图象大致为()A.B.C.D.【考点】函数的图象.【分析】先判断函数为偶函数,再根据函数的单调性即可判断.【解答】解:令y=f(x)=ln|x|﹣x2,其定义域为(﹣∞,0)∪(0,+∞),因为f(﹣x)=ln|x|﹣x2=f(x),所以函数y=ln|x|﹣x2为偶函数,其图象关于y轴对称,故排除B,D,当x>0时,f(x)=lnx﹣x2,所以f′(x)=﹣2x=,当x∈(0,)时,f′(x)>0,函数f(x)递增,当x∈(,+∞)时,f′(x)<0,函数f(x)递减,故排除C,方法二:当x→+∞时,函数y<0,故排除C,故选:A7.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直,则该几何体的体积是()A. B. C. D.32【考点】由三视图求面积、体积.【分析】由已知中的三视图,可知该几何体是一个正方体的上面挖去了一个底面为正方形,边长为4,高为2的四棱锥.正方体的体积减去挖去的四棱锥,可得该几何体的体积.【解答】解:由已知中的三视图,四边形都是边长为4的正方形,两条虚线互相垂直,可知该几何体是一个正方体的上面挖去了一个底面为正方形,边长为4,高为2的四棱锥.正方体的体积减去挖去的四棱锥,∴正方体体积V=43=64,四棱锥=.那么:该几何体为:64﹣=.故选B8.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的n等于()A.2 B.3 C.4 D.5【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:当n=1时,a=,b=4,满足进行循环的条件,当n=2时,a=,b=8满足进行循环的条件,当n=3时,a=,b=16满足进行循环的条件,当n=4时,a=,b=32不满足进行循环的条件,故输出的n值为4,故选C.9.设随机变量η服从正态分布N(1,ς2),若P(η<﹣1)=0.2,则函数没有极值点的概率是()A.0.2 B.0.3 C.0.7 D.0.8【考点】正态分布曲线的特点及曲线所表示的意义;函数在某点取得极值的条件.【分析】函数没有极值点,则f′(x)=x2+2x+η2=0无解,可得η的取值范围,再根据随机变量η服从正态分布N(1,ς2),可得曲线关于直线x=1对称,从而可得结论.【解答】解:∵函数没有极值点,∴f′(x)=x2+2x+η2=0无解,∴△=4﹣4η2<0,∴η<﹣1或η>1,∵随机变量η服从正态分布N(1,ς2),P(η<﹣1)=0.2,∴P(η<﹣1或η>1)=0.2+0.5=0.7,故选C.10.已知圆C:x2+y2=4,点P为直线x+2y﹣9=0上一动点,过点P向圆C引两条切线PA、PB,A、B 为切点,则直线AB经过定点()A.B.C.(2,0) D.(9,0)【考点】直线与圆的位置关系.【分析】根据题意设P的坐标为P(9﹣2m,m),由切线的性质得点A、B在以OP为直径的圆C上,求出圆C的方程,将两个圆的方程相减求出公共弦AB所在的直线方程,再求出直线AB过的定点坐标.【解答】解:因为P是直线x+2y﹣9=0的任一点,所以设P(9﹣2m,m),因为圆x2+y2=4的两条切线PA、PB,切点分别为A、B,所以OA⊥PA,OB⊥PB,则点A、B在以OP为直径的圆上,即AB是圆O和圆C的公共弦,则圆心C的坐标是(,),且半径的平方是r2=,所以圆C的方程是(x﹣)2+(y﹣)2=,①又x2+y2=4,②,②﹣①得,(2m﹣9)x﹣my+4=0,即公共弦AB所在的直线方程是:(2m﹣9)x﹣my+4=0,即m(2x﹣y)+(﹣9x+4)=0,由得x=,y=,所以直线AB恒过定点(,),故选A.11.如图,三个边长为2的等边三角形有一条边在同一条直线上,边B3C3上有10个不同的点P1,P2,…P10,记m i=(i=1,2,…,10),则m1+m2+…+m10的值为()A.180 B.C.45 D.【考点】平面向量数量积的运算.【分析】由题意可得,然后把m i=转化为求得答案.【解答】解:由图可知,∠B2AC3=30°,又∠AC3B3=60°,∴,即.则,∴m1+m2+…+m10=18×10=180.故选:A.12.已知函数f(x)=,其中[x]表示不超过x的最大整数.设n∈N*,定义函数f n(x):f1(x)=f(x),f2(x)=f(f1(x)),…,f n(x)=f(f n(x))(n≥2),则下列说法﹣1正确的有①y=的定义域为;②设A={0,1,2},B={x|f3(x)=x,x∈A},则A=B;③;④若集合M={x|f12(x)=x,x∈[0,2]},则M中至少含有8个元素.()A.1个 B.2个 C.3个 D.4个【考点】分段函数的应用.【分析】对于①,先根据定义域选择解析式来构造不等式,当0≤x≤1时,由2(1﹣x)≤x求解;当1<x≤2时,由x﹣1≤x求解,取后两个结果取并集;对于②,先求得f(0),f(1),f(2),再分别求得f(f(0)),f(f(f(0)));f(f(1)),f(f(f(1)));f(f(f(2))).再观察与自变量是否相等即可;对于③,看问题有2016,2017求值,一定用到周期性,所以先求出几个,观察是以4为周期,求解即可;对于④,结合①②③可得、0、1、2、、、、∈M,进而可得结论.【解答】解:当0≤x<1时,f(x)=2(1﹣x);当1≤x≤2时,f(x)=x﹣1.即有f(x)=,画出y=f(x)在[0,2]的图象.对于①,可得f(x)≤x,当1≤x≤2时,x﹣1≤x成立;当0≤x<1时,2(1﹣x)≤x,解得≤x<1,即有定义域为{x|≤x≤2},故①正确;对于②,当x=0时,f3(0)=f[f2(0)]=f(f(f(0)))=f(f(2))=f(1)=0成立;当x=1时,f3(1)=f[f2(1)]=f(f(f(1)))=f(f(0))=f(2)=1成立;当x=2时,f3(2)=f[f2(2)]=f(f(f(2)))=f(f(1))=f(0)=2成立;即有A=B,故②正确;对于③,f1()=2(1﹣)=,f2()=f(f())=f()=2(1﹣)=,f3()=f(f2())=f()=﹣1=,f4()=f(f3())=f()=2(1﹣)=,一般地,f4k()=f r()(k,r∈N).+r即有f2016()+f2017()=f4()+f1()=+=,故③不正确;对于④,由(1)知,f()=,∴f n()=,则f12()=,∴∈M.由(2)知,对x=0、1、2,恒有f3(x)=x,∴f12(x)=x,则0、1、2∈M.由(3)知,对x=、、、,恒有f12(x)=x,∴、、、∈M.综上所述、0、1、2、、、、∈M.∴M中至少含有8个元素.故④正确.故选:C.二、填空题:本题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分.13.的展开式中,x4的系数为﹣56.【考点】二项式系数的性质.【分析】利用二项式展开式的通项公式,令x的指数为4,求出r的值,即可得出展开式中x4的系数.【解答】解:展开式的通项公式为:=•x8﹣r•=(﹣1)r••,T r+1令8﹣=4,解得r=3;∴展开式中x4的系数为:(﹣1)3•=﹣56.故答案为:﹣56.14.某校今年计划招聘女教师x人,男教师y人,若x、y满足,则该学校今年计划招聘教师最多10人.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,则目标函数为z=x+y,利用线性规划的知识进行求解即可.【解答】解:设z=x+y,作出不等式组对应的平面区域如图:由z=x+y得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.但此时z最大值取不到,由图象当直线经过整点E(5,5)时,z=x+y取得最大值,代入目标函数z=x+y得z=5+5=10.即目标函数z=x+y的最大值为10.故答案为:10.15.已知函数的两个零点分别为m、n(m<n),则=.【考点】定积分;函数零点的判定定理.【分析】先求出m,n,再利用几何意义求出定积分.【解答】解:∵函数的两个零点分别为m、n(m<n),∴m=﹣1,n=1,∴===.故答案为.16.“斐波那契”数列由十三世纪意大利数学家斐波那契发现.数列中的一系列数字常被人们称之为神奇数.具体数列为:1,1,2,3,5,8…,即从该数列的第三项数字开始,每个数字等于前两个相邻数字之和.已知数列{a n}为“斐波那契”数列,S n为数列{a n}的前n项和,则(Ⅰ)S7=33;(Ⅱ)若a2017=m,则S2015=m﹣1.(用m表示)【考点】归纳推理.【分析】(Ⅰ)写出前7项,即可得出结论;(Ⅱ)迭代法可得a n+2=a n+a n﹣1+a n﹣2+a n﹣3+…+a2+a1+1,可得S2015=a2017﹣1,代值计算可得.【解答】解:(Ⅰ)S7=1+1+2+3+5+8+13=33;(Ⅱ)∵a n+2=a n+a n+1=a n+a n﹣1+a n=a n+a n﹣1+a n﹣2+a n﹣1=a n+a n﹣1+a n﹣2+a n﹣3+a n﹣2=…=a n+a n﹣1+a n﹣2+a n﹣3+…+a2+a1+1,∴S2015=a2017﹣1=m﹣1.故答案为33;m﹣1.三、解答题:本题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知函数.(1)求函数f(x)的值域;(2)已知锐角△ABC的两边长分别为函数f(x)的最大值与最小值,且△ABC的外接圆半径为,求△ABC的面积.【考点】正弦定理的应用;三角函数中的恒等变换应用.【分析】(1)利用辅助角公式、二倍角公式化简函数,即可求函数f(x)的值域;(2)不妨设a=,b=2,利用△ABC的外接圆半径为,求出sinA,sinB,进而求出sinC,即可求△ABC的面积.【解答】解:(1)f(x)=sin2x﹣cos2x=2sin(2x﹣),∵,∴,∴≤sin(2x﹣)≤1,∴≤2sin(2x﹣)≤2,∴函数f(x)的值域为[,2];(2)不妨设a=,b=2,∵△ABC的外接圆半径为,∴sinA==,sinB==,∴cosA=,cosB=,∴sinC=sin(A+B)=sinAcosB+cosAsinB=,=absinC==.∴S△ABC18.如图所示,某班一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,其中,频率分布直方图的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答如下问题.(Ⅰ)求全班人数及分数在[80,100]之间的频率;(Ⅱ)现从分数在[80,100]之间的试卷中任取 3 份分析学生情况,设抽取的试卷分数在[90,100]的份数为X,求X的分布列和数学望期.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(I)利用茎叶图的性质、频率的计算公式即可得出.(II)[80,90)的人数为6人;分数在[90,100)的人数为4人X的取值可能为0,1,2,3.再利用超几何分布列的概率计算公式及其数学期望计算公式即可得出.【解答】解:(Ⅰ)由茎叶图知分数在[50,60)的人数为4人;[60,70)的人数为8人;[70,80)的人数为10人.∴总人数为….∴分数在[80,100)人数为32﹣4﹣8﹣10=10人,∴频率为….(Ⅱ)[80,90)的人数为6人;分数在[90,100)的人数为4人X的取值可能为0,1,2,3.,,,.…∴分布列为E(X)=0+=.….19.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值.【考点】直线与平面所成的角;直线与平面垂直的判定.【分析】(I)由平行四边形的性质可得AB⊥AC,即EF⊥AC,由面面垂直的性质得出PA⊥平面ABCD,故PA⊥EF,故EF⊥平面PAC;(II)以A为原点建立空间直角坐标系,设=λ(0≤λ≤1),求出平面PBC,平面ABCD的法向量及的坐标,根据线面角相等列方程解出λ.【解答】(Ⅰ)证明:∵在平行四边形ABCD中,∠BCD=135°,∴∠ABC=45°,∵AB=AC,∴AB⊥AC.∵E,F分别为BC,AD的中点,∴EF∥AB,∴EF⊥AC.∵侧面PAB⊥底面ABCD,且∠BAP=90°,∴PA⊥底面ABCD.又EF⊂底面ABCD,∴PA⊥EF.又∵PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,∴EF⊥平面PAC.(Ⅱ)解:∵PA⊥底面ABCD,AB⊥AC,∴AP,AB,AC两两垂直,以A为原点,分别以AB,AC,AP为x轴、y轴和z轴建立空间直角坐标系如图:则A(0,0,0),B(2,0,0),C(0,2,0),P(0,0,2),D(﹣2,2,0),E(1,1,0),∴=(2,0,﹣2),=(﹣2,2,﹣2),,=(1,1,﹣2).设=λ(0≤λ≤1),则=(﹣2λ,2λ,﹣2λ),∴==(1+2λ,1﹣2λ,2λ﹣2),显然平面ABCD的一个法向量为=(0,0,1).设平面PBC的法向量为=(x,y,z),则,即令x=1,得=(1,1,1).∴cos<,>==,cos<>==.∵直线ME与平面PBC所成的角和此直线与平面ABCD所成的角相等,∴||=||,即,解得,或(舍).∴.20.如图,曲线Γ由曲线C1:=1(a>b>0,y≤0)和曲线C2:=1(a>0,b>0,y >0)组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,(Ⅰ)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.【考点】圆锥曲线的综合.【分析】(Ⅰ)由F2(2,0),F3(﹣6,0),可得)⇒a(Ⅱ)曲线C2的渐近线为±,如图,设点A(x1,y1),B(x2,y2),M(x0,y0),设直线l:y=,与椭圆方程联立化为2x2﹣2mx+(m2﹣a2)=0,利用△>0,根与系数的关系、中点坐标公式,只要证明y0=﹣即可.(Ⅲ)设直线l1的方程为x=ny+6(n>0).与椭圆方程联立可得(5+4n2)y2+48ny+64=0,利用根与系数的关系、弦长公式、三角形的面积计算公式、基本不等式的性质即可得出.【解答】解:(Ⅰ)∵F2(2,0),F3(﹣6,0),∴⇒a则曲线Γ的方程为和(y>0)….(Ⅱ)曲线C2的渐近线为y=±,如图,设直线l:y=则⇒2x2﹣2mx+(m2﹣a2)=0△=(2m)2﹣4•2•(m2﹣a2)=8a2﹣4m2>0⇒﹣又由数形结合知m≥a,设点A (x 1,y 1),B (x 2,y 2),M (x 0,y 0)则,∴,∴,即点M 在直线y=﹣上. …(Ⅲ)由(Ⅰ)知,曲线C 1为,点F 4(6,0).设直线l 1的方程为x=ny +6(n >0) 由⇒(4n 2+5)y 2+48ny +64=0△=(48n )2﹣4×64(4n 2+5)>0⇒n 2>1设C (x 3,y 3),D (x 4,y 4)由韦达定理:|y 3﹣y 4|=.s △CDF1=|F 1F 4|×|y 3﹣y 4|=令t=,∴n 2=t 2+1,s △CDF1=64×∵t >0,∴,当且仅当t=即n=时等号成立∴n=时,△CDF 1面积的最大值….21.设f (x )=,曲线y=f (x )在点(1,f (1))处的切线与直线x +y +1=0垂直.(Ⅰ)求a 的值;(Ⅱ)若对于任意的x ∈[1,+∞),f (x )≤m (x ﹣1)恒成立,求m 的取值范围;(Ⅲ)求证:ln (4n +1)≤16(n ∈N *).【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出原函数的导函数,结合f'(1)=1列式求得a值;(Ⅱ)把(Ⅰ)中求得的a值代入函数解析式,由f(x)≤m(x﹣1)得到,构造函数,即∀x∈[1,+∞),g(x)≤0.然后对m分类讨论求导求得m的取值范围;(Ⅲ)由(Ⅱ)知,当x>1时,m=1时,成立.令,然后分别取i=1,2,…,n,利用累加法即可证明结论.【解答】(Ⅰ)解:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由题设f'(1)=1,∴,即a=0;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)解:,∀x∈[1,+∞),f(x)≤m(x﹣1),即,设,即∀x∈[1,+∞),g(x)≤0.,g'(1)=4﹣4m.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①若m≤0,g'(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾;②若m∈(0,1),当,g(x)单调递增,g(x)>g(1)=0,与题设矛盾;③若m≥1,当x∈(1,+∞),g'(x)≤0,g(x)单调递减,g(x)≤g(1)=0,即不等式成立;综上所述,m≥1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)证明:由(Ⅱ)知,当x>1时,m=1时,成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣不妨令,∴,即,,,…,.累加可得:ln(4n+1)≤16(n∈N*).请考生在第22、23题中任选一题作答,如果多做,则按所做第一题记分.[选修4-4:坐标系与参数方程](共1小题,满分10分)22.在直角坐标系xoy中,直线l经过点P(﹣1,0),其倾斜角为α,在以原点O为极点,x轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C的极坐标方程为ρ2﹣6ρcosθ+1=0.(Ⅰ)若直线l与曲线C有公共点,求α的取值范围;(Ⅱ)设M(x,y)为曲线C上任意一点,求x+y的取值范围.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)由直线l经过点P(﹣1,0),且倾斜角为α,可得直线l的参数方程,利用互化公式可得C的直角坐标方程.由直线l与曲线C有公共点,可得△=64cos2α﹣32≥0,解出即可得出的取值范围;(Ⅱ)设M(x,y)为曲线C上任意一点,利用参数方程为(θ为参数),结合三角函数知识求x+y的取值范围.(Ⅰ)∵曲线C的极坐标方程为ρ2﹣6ρcosθ+1=0,∴曲线C的直角坐标方程为x2+y2﹣6x+1=0【解答】解:∵直线l经过点P(﹣1,0),其倾斜角为α,∴直线l的参数方程为(t为参数)将,代入x2+y2﹣6x+1=0整理得t2﹣8tcosα+8=0∵直线l与曲线C有公共点,∴△=64cos2α﹣32≥0即或∵α∈[0,π)∴α的取值范围是…(Ⅱ)曲线C的直角坐标方程为x2+y2﹣6x+1=0可化为(x﹣3)2+y2=8其参数方程为(θ为参数)…∵M(x,y)为曲线C上任意一点,∴∴x+y的取值范围是[﹣1,7].…[选修4-5:不等式选讲](共1小题,满分0分)23.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|2x﹣3|+2.(Ⅰ)解不等式|g(x)|<5;(Ⅱ)若对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(Ⅰ)去掉绝对值,求出不等式的解集即可;(Ⅱ)问题转化为{y|y=f(x)}⊆{y|y=g(x)},分别求出f(x)和g(x)的最小值,求出a的范围即可.【解答】解:(Ⅰ)由|2x﹣3|+2<5,得:|2x﹣3|<3,故﹣3<2x﹣3<3,解得:0<x<3;(Ⅱ)由题意知{y|y=f(x)}⊆{y|y=g(x)}又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,g(x)=|2x﹣3|+2≥2,所以|a+3|≥2⇒a≥﹣1或a≤﹣5.2017年3月4日。

2017年山东省、湖北省部分重点中学高考数学冲刺模拟试卷(理科)(四)

2017年山东省、湖北省部分重点中学高考数学冲刺模拟试卷(理科)(四)

2017年山东省、湖北省部分重点中学高考数学冲刺模拟试卷(理科)(四)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.已知复数z满足为纯虚数,则复数|z|的模为()A. B.2 C. D.【答案】C【解析】解:,为纯虚数,∴=0,≠0,解得,∴z=i.∴.故选:C.利用复数的运算法则、纯虚数的定义、模的计算公式即可得出.本题考查了复数的运算法则、纯虚数的定义、模的计算公式,考查了推理能力与计算能力,属于基础题.2.已知U={y|y=log2x,x>1},P={y|y=,x>2},则∁U P=()A.[,+∞)B.(0,)C.(0,+∞)D.(-∞,0)∪(,+∞)【答案】A【解析】解:由集合U中的函数y=log2x,x>1,解得y>0,所以全集U=(0,+∞),同样:P=(0,),得到C U P=[,+∞).故选A.先求出集合U中的函数的值域和P中的函数的值域,然后由全集U,根据补集的定义可知,在全集U中不属于集合P的元素构成的集合为集合A的补集,求出集合P的补集即可.此题属于以函数的值域为平台,考查了补集的运算,是一道基础题.3.A,B是圆O:x2+y2=1上不同的两点,且,若存在实数λ,μ使得,则点C在圆O上的充要条件是()A.λ2+μ2=1B.+=1C.λ•μ=1D.λ+μ=1【答案】A【解析】解:∵,∴点C在圆O上⇔,即,∴.∵,且,∴λ2+μ2=1.故选:A.由点C在圆O上⇔,即,展开后结合已知整理得答案.本题考查平面向量的数量积运算,考查充分必要条件的应用,是中档题.4.现有四个函数:①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的图象(部分)如图:则按照从左到右图象对应的函数序号安排正确的一组是()A.①④③②B.③④②①C.④①②③D.①④②③【答案】D【解析】解:根据①y=x•sinx为偶函数,它的图象关于y轴对称,故第一个图象即是;根据②y=x•cosx为奇函数,它的图象关于原点对称,它在(0,)上的值为正数,在(,π)上的值为负数,故第三个图象满足;根据③y=x•|cosx|为奇函数,当x>0时,f(x)≥0,故第四个图象满足;④y=x•2x,为非奇非偶函数,故它的图象没有对称性,故第2个图象满足,故选:D.根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到.本题主要考查函数的图象,函数的奇偶性、函数的值的符号,属于中档题.5.三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,则球O的表面积为()A. B. C.3π D.12π【答案】C【解析】解:三棱锥S-ABC的所有顶点都在球O的表面上,SA⊥平面ABC,AB⊥BC,又SA=AB=BC=1,三棱锥扩展为正方体的外接球,外接球的直径就是正方体的对角线的长度,∴球的半径R==.球的表面积为:4πR2=4=3π.故选:C.根据题意,三棱锥S-ABC扩展为正方体,正方体的外接球的球心就是正方体体对角线的中点,求出正方体的对角线的长度,即可求解球的半径,从而可求三棱锥S-ABC的外接球的表面积.本题考查三棱锥S-ABC的外接球的表面积,解题的关键是确定三棱锥S-ABC的外接球的球心与半径.6.已知定义在R上的函数f(x)=x2+|x-m|(m为实数)是偶函数,记a=f(log e),b=f(log3π),c=f(e m)(e为自然对数的底数),则a,b,c的大小关系()A.a<b<cB.a<c<bC.c<a<bD.c<b<a【答案】B【解析】解:由f(x)为R上的偶函数,可得f(-x)=f(x),即为x2+|x-m|=x2+|-x-m|,求得m=0,即f(x)=x2+|x|,当x>0时,f(x)=x2+x递增,由a=f(log e)=f(log3e)b=f(log3π),c=f(e m)=f(e0)=f(1),又log3π>1>log3e,可得f(log3π)>f(1)>f(log3e),即有b>c>a.故选:B.利用f(x)是定义在R上的偶函数,可得m=0,化简a,c,利用函数在(0,+∞)上是增函数,可得a,b,c的大小关系.本题考查函数单调性与奇偶性的结合,考查学生分析解决问题的能力,属于中档题.7.若实数a,b均不为零,且x2a=(x>0),则(x a-2x b)9展开式中的常数项等于()A.672B.-672C.-762D.762【答案】B【解析】解:由题意知:x2a+b=1,x>0,则2a+b=0,∴b=-2a,(x a-2x b)9展开式的通项为:,若为常数项,则:r=3,则常数项为:.故选:B.利用已知条件求出a,b关系,利用二项展开式的通项公式,求解常数项即可.本题考查二项式定理的应用,考查转化思想以及计算能力.8.阅读如图的程序框图,运行相应的程序,若,则输出的S的值为()A.0B.671.5C.671D.672【答案】A【解析】解:由程序框图知:算法的功能是求S=cos+cos+cos+…+cos的值,∵cos+cos+cos+…+cos=0,k∈Z,∵2016=6×336,∴输出S=0.故选:A.模拟执行程序框图,可得程序框图的功能是计算并输出S=cos+cos+cos+…+cos的值,根据三角函数取值的周期性即可计算得解.本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.9.设A1,A2分别为双曲线C:-=1(a>0,b>0)的上下顶点,若双曲线上存在点M使得两直线斜率k•k,则双曲线C的离心率的取值范围为()A.(0,)B.(1,)C.(,+∞)D.(1,)【答案】B【解析】解:设M(x,y),A1(0,a),A2(0,-a),则=,=,∴•=,(*).又M(x,y)在双曲线-=1(a>0,b>0)上,∴y2=a2(+1),代入(*)式得,=>2,∴<,∴=e2-1<,解得:1<e<.故选:B.由题意可知:求得MA1和MA2斜率,•=,代入双曲线,求得b和a的关系,由离心率公式,即可求得双曲线C的离心率的取值范围.本题考查双曲线的性质,考查斜率公式及双曲线的离心率公式,考查计算能力,属于中档题.10.已知a>2,函数f(x)=,>若函数f(x)有两个零点x1,x2,则()A.∃a>2,x1-x2=0B.∃a>2,x1-x2=1C.∀a>2,|x1-x2|=2D.∀a>2,|x1-x2|=3【答案】D【解析】解:当x>0时,y=log a(x+1)+x-2,令y=0,则有log a(x+1)=3-(x+1)不妨设其根为x1;当x≤0时,,令y=0,则有,即:a-(x+1)=3-[-(x+1)],不妨设其根为x2,则有:(x1+1)+[-(x2+1)]=3,即:x1-x2=3;同理,若x>0时的零点为x2,x≤0时的零点为x1,则有:x2-x1=3,因而答案为D.故选:D.通过当x>0时,不妨设其根为x1;当x≤0时,不妨设其根为x2,推出x1-x2=3;转化求出结果即可.本题考查函数的零点的应用,考查函数与方程的思想,是中档题.二、填空题(本大题共5小题,共25.0分)11.某校高三有800名学生,第二次模拟考试数学考试成绩X~N(110,σ2)(试卷满分为150分),其中90~130分之间的人数约占75%,则成绩不低于130分的人数约为______ .【答案】100【解析】解:∵考试的成绩ξ服从正态分布N(110,σ2).∴考试的成绩ξ关于ξ=110对称,∵P(90≤ξ≤130)=0.75,∴P(ξ≥130)=P(ξ≤90)=(1-0.75)=0.125,∴该班数学成绩在130分以上的人数为0.125×800=100.故答案为:100.根据考试的成绩ξ服从正态分布N(110,σ2).得到考试的成绩ξ关于ξ=110对称,根据P(90≤ξ≤130)=0.75,得到P(ξ≥130)=0.125,根据频率乘以样本容量得到这个分数段上的人数.本题考查正态曲线的特点及曲线所表示的意义,解题的关键是考试的成绩ξ关于ξ=110对称,利用对称写出要用的一段分数的频数,题目得解.属于基础题12.= ______ .【答案】2π【解析】解:dx,表示以原点为圆心,以2为半径的圆的面积的二分之一,故dx=π×22=2π,2xdx=x2|=22-(-2)2=0,∴=2π故答案为:2π根据定积分的几何意义和定积分的计算法则计算即可.本题考查了定积分的几何意义和定积分的计算,属于基础题.13.若直线l:ax-y-a+3=0将关于x,y的不等式组表示的平面区域分成面积相等的两部分,则z=2x-ay的最小值为______ .【答案】-6【解析】解:直线l:a(x-1)-(y-3)=0过定点C(1,3),x,y的不等式组表示的平面区域:区域的三个顶点为A(-1,2),B(3,4),C(0,1),M为A,B的中点,则l过(0,1)点,直线平分可行域的面积,则a=2,z=2x-ay=2x-2y,即y=x-,经过区域内的点A时,目标函数取得最小值.此时最大值为:-2×1-2×2=-6.从而易求:z min=-6.故答案为:-6.根据条件求出直线恒过定点C(1,3),根据面积相等得到直线过AB的中点,求出a 的值,结合直线斜率的几何意义进行求解即可.本题主要考查线性规划的应用,直线恒过定点以及三角形面积相等的应用,直线斜率的计算,综合性较强,利用数形结合是解决本题的关键.14.某几何体的三视图如图,则该几何体的体积为______ .【答案】【解析】解:由题意作图如下,其由三棱柱截去三棱锥可得,其中三棱柱的体积V=×1×1×2=1,被截去的三棱锥的体积V=××1×1×1=,故该几何体的体积为1-=,故答案为:.由题意作图,从而可得其由三棱柱截去三棱锥得到,从而解得.本题考查了学生的空间的想象力与数形结合的思想应用.15.已知抛物线的方程为x2=2py(p>0),过点A(0,-a)(a>0)作直线l与抛物线相交于P,Q两点,点B的坐标为(0,a),连接BP,BQ.且QB,QP与x轴分别交于M,N两点,如果QB的斜率与PB的斜率之积为-3,则∠PBQ= ______ .【答案】【解析】解:设PQ:y=kx-a,与抛物线方程x2=2py联立得:x2-2pkx+2pa=0,设P(x1,y1),Q(x2,y2),则有:x1+x2=2pk,x1x2=2pa,,所以:k BP=-k BQ而:k BP•k BQ=-3.从而,,从而得∠,∠.故答案为:.设PQ:y=kx-a,与抛物线方程x2=2py联立,设P(x1,y1),Q(x2,y2),利用韦达定理,表示直线的斜率,通过k BP=-k BQ,k BP•k BQ=-3.求解即可.本题考查直线与抛物线的位置关系的应用,考查转化思想以及计算能力.三、解答题(本大题共6小题,共75.0分)16.已知函数f(x)=4sinx•cos2(+)-cos2x.(1)将函数y=f(2x)的图象向右平移个单位长度得到函数y=g(x)的图象,求函数g(x)在x∈[,]上的值域;(2)已知a,b,c分别为△ABC中角A,B,C的对边,且满足b=2,f(A)=,a=2bsin A,B∈(0,),求△ABC的面积.【答案】解:分=2sinx-2sin2x-cos2x=2sinx-1,…2分∴函数f(2x)=2sin2x-1的图象向右平移个单位得到函数g(x)=2sin2(x-)-1=2sin(2x-)-1的图象,…4分∵x∈[,],∴2x-∈[-,],当x=时,g(x)min=-2;当x=时,g(x)max=1,所求值域为[-2,1].…6分(2)由已知a=2bsin A及正弦定理得:sin A=2sin B sin A,…7分∴sin B=,∵0<<,∴B=,…8分由f(A)=-1,得sin A=.…9分又a=b<b,∴A=,…10分由正弦定理得:a=,…11分∴S△ABC=absin C=×2×=.…12分【解析】(1)利用三角函数恒等变换的应用化简可得f(x)=2sinx-1,由题意可求g(x)=2sin (2x-)-1,由x∈[,],可求2x-∈[-,],利用正弦函数的性质可求值域.(2)由已知及正弦定理得:sin A=2sin B sin A,可求sin B=,结合范围0<<可求B=,进而可求sin A,由正弦定理得a,利用三角形面积公式即可计算得解.本题主要考查了三角函数恒等变换的应用,正弦函数的性质,正弦定理,三角形面积公式在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.17.已知正三棱柱ABC-A′B′C′如图所示,其中G是BC的中点,D,E分别在线段AG,A′C上运动,使得DE∥平面BCC′B′,CC′=2BC=4.(1)求二面角A′-B′C-C′的余弦值;(2)求线段DE的最小值.【答案】解:(1)如图,∵ABC-A′B′C′为正三棱柱,G是BC的中点,∴AG⊥平面BCC′B′,以GB所在直线为x轴,以过G且垂直于BG的直线为y轴,以GA所在直线为z轴建立空间直角坐标系,则G(0,0,0),A(0,0,),C(-1,0,0),B′(1,4,0),A′(0,4,),′=(1,4,),′,,,平面B′CC′的一个法向量为,,,设平面A′B′C的一个法向量为,,,由′′,取y=1,得x=-2,z=.∴,,,∴cos<,>===.∴二面角A′-B′C-C′的余弦值为;(2)设D(0,0,t)(0≤t≤),E(x,y,z),则′,∴(x+1,y,z)=(λ,4λ,),即x=λ-1,y=4λ,z=.∴E(λ-1,4λ,),=(λ-1,4λ,),由DE∥平面BCC′B′,得,得λ=.∴当t=时,有最小值,∴线段DE的最小值为.【解析】(1)由题意画出图形,以GB所在直线为x轴,以过G且垂直于BG的直线为y轴,以GA所在直线为z轴建立空间直角坐标系,求出平面B′CC′与平面A′B′C的一个法向量,由两法向量所成角的余弦值求得二面角A′-B′C-C′的余弦值;(2)设D(0,0,t)(0≤t≤),E(x,y,z),由′,结合DE∥平面BCC′B′把λ用含有t的代数式表示,然后求出的最小值得答案.本题考查二面角的平面角的求法,训练了利用空间向量求二面角的大小,考查数学转化思想方法,属中档题.(I)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“购买基金”,若一年后他们中至少有一人盈利的概率大于,求p的取值范围;(II)某人现有10万元资金,决定在“投资股市”和“购买基金”这两种方案中选出一种,若购买基金现阶段分析出,那么选择何种方案可使得一年后的投资收益的数学期望值较大?【答案】解:(I)设事件A为“甲投资股市且盈利”,事件B为“乙购买基金且盈利”,事件C 为“一年后甲、乙中至少有一人盈利”,则,其中A,B相互独立. (2)分因为,,则,即,由>解得>;…4分又因为且q≥0,所以,故<.…6分(II)假设此人选择“投资股市”,记ξ为盈利金额(单位万元),则ξ的分布列为:则;…8分假设此人选择“购买基金”,记η为盈利金额(单位万元),则η的分布列为:则;…10分因为>,即Eξ>Eη,所以应选择“投资股市”可使得一年后的投资收益的数学期望值较大.…12分.【解析】(I)设事件A为“甲投资股市且盈利”,事件B为“乙购买基金且盈利”,事件C为“一年后甲、乙中至少有一人盈利”,则,其中A,B相互独立.利用相互独立事件、互斥事件的概率计算公式即可得出概率.(II)假设此人选择“投资股市”,记ξ为盈利金额(单位万元),可得ξ的分布列为.假设此人选择“购买基金”,记η为盈利金额(单位万元),可得η的分布列,计算即可比较出大小关系.本题考查了相互独立事件、互斥事件的概率计算公式、随机变量的分布列与数学期望,考查了推理能力与计算能力,属于中档题.19.已知数列{a n}为等差数列,a1=3且(a3-1)是(a2-1)与a4的等比中项.(1)求a n;(2)若数列{a n}的前n项和为S n,b n=,T n=-b1+b2+b3+…+(-1)n b n,求T n.【答案】解:(1)设等差数列{a n}的公差为d,a1=3且(a3-1)是(a2-1)与a4的等比中项.∴(3+2d-1)2=(3+3d)(3+d-1),整理为:d2-d-2=0,解得d=2,或-1(舍去).∴a n=2n+1.(2)S n==n2+2nb n===,当n为偶数时,T n=-b1+b2+b3+…+(-1)n b n=-+-…+=-1+=.当n为奇数时,T n=-b1+b2+b3+…+(-1)n b n=-+-…-=-1-=.∴T n=,为偶数,为奇数.【解析】(1)设等差数列{a n}的公差为d,a1=3且(a3-1)是(a2-1)与a4的等比中项.可得(3+2d-1)2=(3+3d)(3+d-1),整理为:d2-d-2=0,解得d并且验证即可得出.(2)S n==n2+2n,b n===,对n分类讨论即可得出.本题考查了等差数列与等比数列的通项公式与求和公式、分类讨论方法、裂项求和方法,考查了推理能力与计算能力,属于中档题.20.已知D(x0,y0)为圆O:x2+y2=12上一点,E(x0,0),动点P满足=+,设动点P的轨迹为曲线C.(1)求曲线C的方程;(2)若动直线l:y=kx+m与曲线C相切,过点A1(-2,0),A2(2,0)分别作A1M⊥l 于M,A2N⊥l于N,垂足分别是M,N,问四边形A1MNA2的面积是否存在最值?若存在,请求出最值及此时k的值;若不存在,说明理由.【答案】解:(1)由题意设P(x,y),则=,+(x0,0)=,.∴,y=,解得x0=x,y0=2y,又+=12,代入可得:3x2+4y2=12,化为:=1.(2)联立,可得(3+4k2)x2+8kmx+4m2-12=0,△=64k2m2-4(3+4k2)(4m2-12)=48(3+4k2-m2)=0,可得:m2=3+4k2.A1(-2,0)到l的距离d1=,A2(2,0)到l的距离d2=,则|MN|2=-=16-[+-]=16-=16-=16-=.=++==.∴四边形A1MNA2的面积S===4=4≤4.当k=0时,取等号.【解析】(1)由题意设P(x,y),则=,+(x0,0)=,.可得,y=,解得x0=x,y0=2y,又+=12,代入圆的方程即可得出.(2)联立,可得(3+4k2)x2+8kmx+4m2-12=0,△=0,可得:m2=3+4k2.A1(-2,0)到l的距离d1=,A2(2,0)到l的距离d2=,可得|MN|2=-=.=.可得四边形A1MNA2的面积S=,利用二次函数的单调性即可得出.本题考查了椭圆与圆的标准方程方程、直线与椭圆相切的性质、点到直线的距离公式、四边形面积计算公式、二次函数的性质,考查了推理能力与计算能力,属于难题.21.已知函数f(x)=ax2e x+blnx,且在P(1,f(1))处的切线方程为(3e-1)x-y+1-2e=0,g(x)=(-1)ln(x-2)++1.(1)求a,b的值;(2)证明:f(x)的最小值与g(x)的最大值相等.【答案】解:(1)当x=1时,y=e,即f(1)=ae=e,解得a=1,∵f′(x)=e x(x2+2x)+,∴f′(1)=e(1+2)+b=3e-1,解得b=-1,(2)证明:由(1)得f′(x)=e x(x2+2x)-,令h(x)=e x(x2+2x)-,∴h′(x)=e x(x2+4x+2)+,∴h(x)为增函数,∵f()=-4<-4<2-4<0,f(1)=3e-1>0,∴存在唯一的x1∈(,1),使得f′(x)=0,即(x12+2x1)-=0,亦即2lnx1+ln(x1+2)+x1=0,且f(x)在(0,x1)为减函数,在(x1,+∞)为增函数,∴f(x)min=f(x1)=x12+lnx1=-lnx1=-lnx1,∵g′(x)=-ln(x-2)+(-1)+=,令φ(x)=-2ln(x-2)-x+2-lnx,则φ(x)在(2,+∞)上为减函数,∵φ(3)=-3+2-ln3=-1-ln3<0,φ(2+)=4-(2+)+2-ln(2+)>4-(2+1)+2-1>0,∴存在唯一的x2∈(2+,3),使得φ(x2)=0,即φ(x2)=-2ln(x2-2)-x2+2-lnx2=0亦即lnx2+2ln(x2+2)+x2-2=0,且g(x)在(2,x2)为增函数,在(x2,+∞)为减函数,∴g(x)max=g(x2)=(-1)ln(x2-2)++1=(-1)ln(x2-2)++1,=[(2-x2)ln(x2-2)-2ln(x2-2)-x2+1]+1=[-x2ln(x2-2)-x2+1]+1=-ln(x2-2),∵2lnx1+ln(x1+2)+x1=2ln[(x1+2)-2]+ln(x1+2)+(x1+2)-2=0∴x1+2=x2,∴g(x)max=-ln(x2-2)=-lnx1=f(x)min;问题得以证明.【解析】(1)求导,由题意可得f'(1)=1,代入即可求得a,b的值;(2)分别利用导数求出函数f(x),g(x)的最值,再比较判断,即可证明.本题考查导数的综合应用,导数的几何意义,考查导数与函数的单调性和最值的关系,考查计算能力,属于难题.。

2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 .15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.【考点】CF:几何概型.【专题】35:转化思想;4O:定义法;5I:概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【考点】2K:命题的真假判断与应用;A1:虚数单位i、复数;A5:复数的运算.【专题】2A:探究型;5L:简易逻辑;5N:数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8【考点】84:等差数列的通项公式;85:等差数列的前n项和.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【考点】3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题. 8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11:计算题;38:对应思想;49:综合法;5K:算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题;35:转化思想;57:三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.10【考点】K8:抛物线的性质.【专题】11:计算题;34:方程思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35:转化思想;51:函数的性质及应用;59:不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2 .【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;4O:定义法;5A:平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 ﹣5 .【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 4cm3 .【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】法一:由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABC=3,V==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.法二:设正三角形的边长为x,则OG=,FG=SG=5﹣,SO=h===,由此能示出三棱锥的体积的最大值.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG=,∴FG=SG=5﹣,SO=h===,∴三棱锥的体积V===,令b(x)=5x4﹣,则,令b'(x)=0,则4x3﹣=0,解得x=4,∴(cm3).故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;33:函数思想;4R:转化法;56:三角函数的求值;58:解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】15:综合题;31:数形结合;41:向量法;5G:空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB ⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;35:转化思想;4A:数学模型法;5I:概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【考点】K3:椭圆的标准方程;KI:圆锥曲线的综合.【专题】14:证明题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2=,则=====﹣1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4R:转化法;53:导数的综合应用.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1。

2017年高考真题-全国卷1-理科数学-A4精排版可打印-附答案-无水印

2017年高考真题-全国卷1-理科数学-A4精排版可打印-附答案-无水印

2017年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学一、选择题:本题共12小题 , 每小题5分 , 共60分。

在每小题给出的四个选项中 , 只有一项是符合题目要求的。

1 . 已知集合, , 则()A .B .C .D .2 . 如图 , 正方形内的图形来自中国古代的太极图 . 正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称 . 在正方形内随机取一点 , 则此点取自黑色部分的概率是()A .B .C .D .3 . 设有下面四个命题,其中的真命题为():若复数满足, 则;:若复数满足, 则;:若复数, 满足, 则;:若复数, 则.A . ,B . ,C . ,D . ,4 . 记为等差数列的前项和.若, , 则的公差为()A . 1B . 2C . 4D . 85 . 函数在单调递减 , 且为奇函数.若, 则满足的的取值范围是()A .B .C .D .6 . 展开式中的系数为()A . 15B . 20C . 30D . 357 . 某多面体的三视图如上图所示 , 其中正视图和左视图都由正方形和等腰直角三角形组成 , 正方形的边长为 2 , 俯视图为等腰直角三角形 . 该多面体的各个面中有若干个是梯形 , 这些梯形的面积之和为()A . 10B . 12C . 14D . 168 . 右面程序框图是为了求出满足的最小偶数, 那么在和两个空白框中 , 可以分别填入()A . 和B . 和C . 和D . 和9 . 已知曲线, , 则下面结论正确的是()A . 把上各点的横坐标伸长到原来的 2 倍 , 纵坐标不变 , 再把得到的曲线向右平移个单位长度 , 得到曲线B . 把上各点的横坐标伸长到原来的 2 倍 , 纵坐标不变 , 再把得到的曲线向左平移个单位长度 , 得到曲线C . 把上各点的横坐标缩短到原来的倍 , 纵坐标不变 , 再把得到的曲线向右平移个单位长度 , 得到曲线D . 把上各点的横坐标缩短到原来的倍 , 纵坐标不变 , 再把得到的曲线向左平移个单位长度 , 得到曲线10 . 已知为抛物线的焦点 , 过作两条互相垂直的直线, , 直线与交于、两点 , 直线与交于、两点 , 则的最小值为()A . 16B . 14C . 12D . 1011 . 设, , 为正数 , 且, 则()A .B .C .D .12 . 几位大学生响应国家的创业号召 , 开发了一款应用软件。

高考数学试题2017年全国各地试题精校Word版试卷真题含答案(二)

高考数学试题2017年全国各地试题精校Word版试卷真题含答案(二)

2017年全国各省市数学高考试题精校Word版(二)目录本文档分全国卷部分和自主命题部分,本文档试题为自主命题省省份试题。

全国Ⅰ卷省份:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建;全国Ⅱ卷省份:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆、海南;全国Ⅲ卷省份云南、广西、贵州、四川;自主命题省份:北京、天津、江苏、浙江、山东卷。

全国卷试题请下载本人《2017年全国各省市数学高考试题精校Word版(一)》文档。

-2017年北京卷文科数学试题Word版试卷精校版含答案·················-2017年北京卷理科数学试题Word版试卷精校版含答案·················-2017年天津卷文科数学试题Word版试卷精校版含答案·················-2017年天津卷理科数学试题Word版试卷精校版含答案·················-2017年江苏卷数学试题Word版试卷精校版含答案······················-2017年浙江卷数学试题Word版试卷精校版含答案·····················-2017年山东卷理科数学试题Word版试卷精校版含答案··················-2017年山东卷文科数学试题Word版试卷精校版含答案··················绝密★启封并使用完毕前2017年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

2017高考数学试题及答案

2017高考数学试题及答案

2017高考数学试题及答案2017年高考数学试题共分为选择题和非选择题两部分,其中选择题包括单选和多选,非选择题包括填空和解答题。

下面是整套试题及答案的详细内容。

选择题部分1. 单选题1.1 题目:在四边形ABCD中,∠A=90°,AB=AC=3,BC=4,过C 作AD的垂线交AD于E,过B作CD的垂线交CD于F,则BE的长度为A. 4√2B. 3√3C. 5D. 6答案:A1.2 题目:函数y=|x-2|+2的图像是直线段和:A. parabolaB. 椭圆C. 抛物线D. 射线答案:D2. 多选题2.1 题目:反正弦函数y=arcsinx用途广泛,其中不包括A. 导弹控制技术B. 电子游戏C. 信号处理D. 信号加密答案:A、D非选择题部分1. 填空题1.1 题目:一组数据为{1, 3, 5, 7, 9, 11},则该数据的方差为_________,标准差为_________。

(注:用千分位表示)答案:方差为 20,标准差为 4.4721.2 题目:已知函数f(x)=ax2+bx+c,其中a≠0,若f(1)=3,f(2)=5,则实数t满足方程f(t)=0的两个根相等,求t的值。

(保留两位小数)答案:t=1.52. 解答题2.1 题目:已知函数f(x)=eax+1,且f(0)=6,求函数f(x)的解析式。

解答:由已知条件得到 f(0)=6,代入函数f(x)的表达式可以得到 e^0 + 1 = 6,解得 e = 5。

因此,函数f(x)的解析式为 f(x) = 5^x + 1。

2.2 题目:已知等差数列{an}的前n项和为Sn=5n^2+n,求数列的公差d及首项a1。

解答:根据等差数列的前n项和公式 Sn = (n/2)(2a1 + (n-1)d),将已知的表达式代入可得 5n^2 + n = (n/2)(2a1 + (n-1)d)。

将该式展开后整理可得 10n^2 + 2n = 4a1n + nd^2 - d。

2017年湖北省新联考高考数学四模试卷(理科) 有答案

2017年湖北省新联考高考数学四模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A={x|y=},B={x|x2﹣x>0},则A∩B=()A.{x|x≥0}B.{x|0<x<1}C.{x|x>1}D.{x|x<0或x>1}2.设复数z满足z(1+i)=i(i为虚数单位),则|z|=()A.B.C.1 D.3.在[﹣1,2]内任取一个数a,则点(1,a)位于x轴下方的概率为()A.B.C.D.4.若x>2m2﹣3是﹣1<x<4的必要不充分条件,则实数m的取值范围是()A.[﹣3,3]B.(﹣∞,﹣3]∪[3,+∞)C.(﹣∞,﹣1]∪[1,+∞)D.[﹣1,1]5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.6.已知直线l过双曲线Γ:=1(a>0,b>0)的一个焦点且与Γ的一条渐近线平行,若l在y轴上的截距为a,则双曲线的离心率为()A.B.2 C.D.27.已知定义[x]表示不超过的最大整数,如[2]=2,[2,2]=2,执行如图所示的程序框图,则输出S=()A.1991 B.2000 C.2007 D.20088.若tanα=,则sin4α﹣cos4α+6sin cos cosα=()A.1 B.C.D.9.如图所示,单位位圆上的两个向量相互垂直,若向量满足()()=0,则||的取值范围是()A.[0,1]B.[0,]C.[1,]D.[1,2]10.直线y=kx﹣4,k>0与抛物线y2=2x交于A,B两点,与抛物线的准线交于点C,若AB=2BC,则k=()A.B.C.2D.11.已知函数f(x)=cos(2x+φ),且f(x)dx=0,则下列说法正确的是()A.f(x)的一条对称轴为x=B.存在φ使得f(x)在区间[﹣,]上单调递减C.f(x)的一个对称中心为(,0)D.存在φ使得f(x)在区间[,]上单调递增12.设定义在R上的可导函数f(x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>ln(x+1),则不等式(x﹣2017)3f(x﹣2017)﹣27>0的解集为()A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.(1+x)2017的展开式中,x2017的系数为.(用数字作答)14.已知点(x,y)满足约束条件,则的取值范围为.15.已知函数f(x)=,若f(a)=f(b)(0<a<b),则当取得最小值时,f(a+b)=.16.在△ABC中,角A,B,C的对边分别为a,b,c,且=,则cosC﹣2sinB的最小值为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知等差数列{a n}满足a n>1,其前n项和S n满足6S n=a n2+3a n+2(1)求数列{a n}的通项公式及前n项和S n;(2)设数列{b n}满足b n=,且其前n项和为T n,证明:≤T n<.18.如图1,四边形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,过点C作CO⊥AB,垂足为O,将△OBC沿CO折起,如图2使得平面CBO与平面AOCD所成的二面角的大小为θ(0<θ<π),E,F分别为BC,AO的中点(1)求证:EF∥平面ABD(2)若θ=,求二面角F﹣BD﹣O的余弦值.19.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.20.已知椭圆C:=1(a>b>0)过点A(0,3),与双曲线=1有相同的焦点(1)求椭圆C的方程;(2)过A点作两条相互垂直的直线,分别交椭圆C于P,Q两点,则PQ是否过定点?若是,求出定点的坐标,若不是,请说明理由.21.已知函数f(x)=8a2lnx+x2+6ax+b(a,b∈R)(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x,求a,b的值;(2)若a≥1,证明:∀x1,x2∈(0,+∞),且x1≠x2,都有>14成立.[选修4-4:参数方程与极坐标系]22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2﹣2ρcosθ﹣4=0(1)若直线l与曲线C没有公共点,求m的取值范围;(2)若m=0,求直线l被曲线C截得的弦长.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2a|+|x+|(1)当a=1时,求不等式f(x)>4的解集;(2)若不等式f(x)≥m2﹣m+2对任意实数x及a恒成立,求实数m的取值范围.2017年湖北省新联考高考数学四模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合A={x|y=},B={x|x2﹣x>0},则A∩B=()A.{x|x≥0}B.{x|0<x<1}C.{x|x>1}D.{x|x<0或x>1}【考点】交集及其运算.【分析】求函数定义域得集合A,解不等式得集合B,根据交集的定义写出A∩B.【解答】解:集合A={x|y=}={x|x≥0},B={x|x2﹣x>0}={x|x<0或x>1},则A∩B={x|x>1}.故选:C.【点评】本题考查了求函数定义域和解不等式的应用问题,也考查了交集的运算问题,是基础题.2.设复数z满足z(1+i)=i(i为虚数单位),则|z|=()A.B.C.1 D.【考点】复数求模.【分析】先求出复数z,然后利用求模公式可得答案.【解答】解:由z(1+i)=i得z===+i,则则|z|==,故选:B【点评】本题考查复数代数形式的运算、复数求模,属基础题.3.在[﹣1,2]内任取一个数a,则点(1,a)位于x轴下方的概率为()A.B.C.D.【考点】几何概型.【分析】根据几何概型的概率公式即可得到结论.【解答】解:在[﹣1,2]内任取一个数a,则点(1,a)位于x轴下方的概率为=,故选:C.【点评】本题主要考查概率的计算,根据几何概型的概率公式是解决本题的关键.4.若x>2m2﹣3是﹣1<x<4的必要不充分条件,则实数m的取值范围是()A.[﹣3,3]B.(﹣∞,﹣3]∪[3,+∞)C.(﹣∞,﹣1]∪[1,+∞)D.[﹣1,1]【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合不等式之间的关系进行求解即可.【解答】解:x>2m2﹣3是﹣1<x<4的必要不充分条件,∴(﹣1,4)⊆(2m2﹣3,+∞),∴2m2﹣3≤﹣1,解得﹣1≤m≤1,故选:D.【点评】本题主要考查充分条件和必要条件的应用,根据不等式的关系是解决本题的关键.5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】由题意,该几何体是由一个半圆柱与一个半球组成的组合体,其中半圆柱的底面半径为1,高为4,半球的半径为1,即可求出几何体的体积.【解答】解:由题意,该几何体是由一个半圆柱与一个半球组成的组合体,其中半圆柱的底面半径为1,高为4,半球的半径为1,几何体的体积为=π,故选C.【点评】本题考查三视图,考查几何体体积的计算,考查学生的计算能力,属于中档题.6.已知直线l过双曲线Γ:=1(a>0,b>0)的一个焦点且与Γ的一条渐近线平行,若l在y轴上的截距为a,则双曲线的离心率为()A.B.2 C.D.2【考点】双曲线的简单性质.【分析】利用已知条件,求出直线方程,代入焦点坐标,转化求解双曲线的离心率即可.【解答】解:不妨设直线l过双曲线的左焦点(﹣c,0),要使l在y轴上的截距为:为a,直线l方程:y=,直线经过(﹣c,0),可得,可得,e,平方化简解得e=.故选:A.【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.7.已知定义[x]表示不超过的最大整数,如[2]=2,[2,2]=2,执行如图所示的程序框图,则输出S=()A.1991 B.2000 C.2007 D.2008【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,依次写出每次循环得到的i,S的值,当i=10时,退出循环,输出的S的值为2000.【解答】解:i=1,s=2017,i=2;s=2016,i=3;s=2016,i=3;s=2016,i=4,s=2016,i=5;s=2015,i=6;s=2010,i=7;s=2009,i=8;s=2008,i=9;s=2007,i=10;s=2000,跳出循环,输出s=2000,故选:B.【点评】本题考查程序框图和算法,考查学生的运算能力.8.若tanα=,则sin4α﹣cos4α+6sin cos cosα=()A.1 B.C.D.【考点】三角函数的化简求值.【分析】利用同角三角函数的基本关系,二倍角公式求得要求式子的值.【解答】解:∵tanα=,则sin4α﹣cos4α+6sin cos cosα=sin2α﹣cos2α+3sinαcosα===,故选:D.【点评】本题主要考查同角三角函数的基本关系,二倍角公式,属于基础题.9.如图所示,单位位圆上的两个向量相互垂直,若向量满足()()=0,则||的取值范围是()A.[0,1]B.[0,]C.[1,]D.[1,2]【考点】平面向量数量积的运算.【分析】先由条件可得出,||=,这样便可由得出,从而得出的取值范围.【解答】解:由条件,,;∵;∴;∴;∴;∴的取值范围为.故选B.【点评】考查向量垂直的充要条件,单位向量的概念,向量数量积的运算及计算公式.10.直线y=kx﹣4,k>0与抛物线y2=2x交于A,B两点,与抛物线的准线交于点C,若AB=2BC,则k=()A.B.C.2D.【考点】直线与抛物线的位置关系.【分析】将直线方程代入抛物线方程,利用韦达定理及相似三角形的性质,即可求得x1,x2,由x1x2=,代入计算即可求得k的值.【解答】解:如图,过AB两点作抛物线的准线抛物线的准线的垂线,设A(x1,y1),B(x2,y2),则,整理得:k2x2﹣(8k+2)x+16=0,则x1+x2=,x1x2=,显然△CB′B∽△CA′A,则==,由抛物线的定义得:==,∴=,整理得:4x2=(x1+x2)﹣,∴x2=﹣,则x1=+,由x1x2=,则(+)(﹣)=,由k>,0解得:k=,或将选项一一代入验证,只有A成立,故选:A.【点评】本题考查直线与抛物线的位置关系,考查韦达定理,相似三角形的性质,计算量大,计算过程复杂,考查数形结合思想,属于中档题.11.已知函数f(x)=cos(2x+φ),且f(x)dx=0,则下列说法正确的是()A.f(x)的一条对称轴为x=B.存在φ使得f(x)在区间[﹣,]上单调递减C.f(x)的一个对称中心为(,0)D.存在φ使得f(x)在区间[,]上单调递增【考点】余弦函数的图象.【分析】利用f(x)=cos(2x+φ),f(x)dx,求出φ值,然后找出分析选项,即可得出结论.【解答】解:f(x)=cos(2x+φ),f(x)dx=sin(2x+φ)=sin(+φ)+sinφ=0,∴tanφ=﹣,解得φ=﹣+kπ,k∈Z.令2x﹣+kπ=nπ,n∈Z,可得x=(n﹣k)π+,令(n﹣k)π+=π,=,矛盾;令2mπ≤2x﹣+kπ≤π+2mπ,k为奇数,单调减区间为[+mπ, +mπ],不符合题意,k为偶数,单调减区间为[+mπ, +mπ],不符合题意;令2x﹣+kπ=π+mπ,x=+(m﹣k)=,∴=,矛盾;令π+2mπ≤2x﹣+kπ≤2π+2mπ,k为奇数,单调减区间为[+mπ, +mπ],符合题意.故选D.【点评】本题主要考查定积分,余弦函数的图象的性质,属于中档题.12.设定义在R上的可导函数f(x)的导函数为f′(x),若f(3)=1,且3f(x)+xf′(x)>ln(x+1),则不等式(x﹣2017)3f(x﹣2017)﹣27>0的解集为()A.(2014,+∞)B.(0,2014)C.(0,2020)D.(2020,+∞)【考点】利用导数研究函数的单调性;函数恒成立问题;导数的运算.【分析】利用函数的可导性,构造函数g(x)=x3f(x),利用函数的单调性以及不等式,转化求解不等式的解集即可.【解答】解:定义在R上的可导函数f(x)的导函数为f′(x),3f(x)+xf′(x)>ln(x+1),所以3x2f(x)+x3f′(x)>x2ln(x+1)>0(x>0),可得[x3f(x)]′>0,所以函数g(x)=x3f(x)在(0,+∞)是增函数,因为(x﹣2017)3f(x﹣2017)﹣27>0,且f(3)=1,所以(x﹣2017)3f(x﹣2017)>33f(3),即g(x﹣2017)>g(3),所以x﹣2017>3,解得x>2020.则不等式(x﹣2017)3f(x﹣2017)﹣27>0的解集为:(2020,+∞).故选:D.【点评】本题考查函数的导数,不等式的解集,不等式恒成立问题存在性问题,考查转化思想以及计算能力.二、填空题:本大题共4小题,每小题5分,共20分.13.(2016﹣x)(1+x)2017的展开式中,x2017的系数为﹣1.(用数字作答)【考点】二项式定理的应用.【分析】利用二项展开式的通项公式,求得(1+x)2017的展开式的通项公式,可得(2016﹣x)(1+x)2017的展开式中,x2017的系数.【解答】解:由于(1+x)2017的展开式的通项公式为T r+1=x r,分别令r=2017,r=2016,可得(2016﹣x)(1+x)2017的展开式中x2017的系数为2016﹣=2016﹣2017=﹣1,故答案为:﹣1.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题14.已知点(x,y)满足约束条件,则的取值范围为[﹣,] .【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点的坐标,结合z=的几何意义求出其范围即可.【解答】解:不等式组表示的可行域如图:z=的几何意义是可行域内的点与(﹣3,0)连线的斜率:结合图形可知在A处取得最大值,在B处取得最小值,由:解得A(2,4),z=的最大值为:;由解得B(﹣1,﹣3),z=的最小值为:﹣.则的取值范围为[﹣,].故答案为:[﹣,].【点评】本题考查了简单的线性规划问题,考查数形结合思想,判断目标函数的几何意义是解题的关键,是一道中档题.15.已知函数f(x)=,若f(a)=f(b)(0<a<b),则当取得最小值时,f(a+b)=1﹣2lg2.【考点】基本不等式.【分析】根据函数的性质可得ab=1,再根据基本不等式得到当取得最小值,a,b的值,再代值计算即可【解答】解:由f(a)=f(b)可得lgb=﹣lga,即lgab=0,即ab=1,则==4a+b≥2=4,当且仅当b=4a时,取得最小值,由,可得a=,b=2,∴f(a+b)=f()=lg=1﹣2lg2,故答案为:1﹣2lg2.【点评】本题主要考查函数的性质以及基本不等式的应用,意在考查学生的逻辑推理能力.16.在△ABC中,角A,B,C的对边分别为a,b,c,且=,则cosC﹣2sinB 的最小值为﹣1.【考点】余弦定理;正弦定理.【分析】利用余弦定理化简已知等式可求b2+c2﹣a2=bc,进而利用余弦定理可求cosA=,可得A=,C=﹣B,利用三角函数恒等变换的应用化简可得cosC﹣2sinB=﹣sin(B+),进而利用正弦函数的图象和性质可求最小值.【解答】解:在△ABC中,∵=,∴=,整理可得:b2+c2﹣a2=bc,∴cosA==,∴A=,C=﹣B,∴cosC﹣2sinB=cos(﹣B)﹣2sinB=﹣sinB﹣cosB=﹣sin(B+)≥﹣1,当B+=时等号成立,即当B=,C=时,cosC﹣2sinB的最小值为﹣1.故答案为:﹣1.【点评】本题主要考查了三角函数恒等变换的应用,余弦定理在解三角形中的综合应用,考查了学生的运算求解能力和转化思想,属于基础题.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知等差数列{a n}满足a n>1,其前n项和S n满足6S n=a n2+3a n+2(1)求数列{a n}的通项公式及前n项和S n;(2)设数列{b n}满足b n=,且其前n项和为T n,证明:≤T n<.【考点】数列的求和;数列递推式.【分析】(1)当n=1、2时,解得a1.a2,利用公差d=a2﹣a1=3.可得a n=a1+(n﹣1)d=3n﹣1.(2)由(1)可得a n=3n﹣1.利用“裂项求和”即可得出数列{b n}的前n项和T n.【解答】解:(1)∵6S n=a n2+3a n+2,∴6a1=a12+3a1+2,解得a1=1或a1=2.∵a n>1,∴a1=2.当n=2时,6S2=a22+3a2+2,即6(2+a2)=a22+3a2+2,解得a2=5或a2=﹣2(舍).∴等差数列{a n}的公差d=a2﹣a1=3.∴a n=a1+(n﹣1)d=3n﹣1.前n项和S n=.(2),前n项和为T n=b1+b2+b3+…+b n==∵b n>0,∴,∴≤T n<.【点评】本题考查了递推式的应用、等差数列的定义与通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.18.如图1,四边形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,过点C作CO⊥AB,垂足为O,将△OBC沿CO折起,如图2使得平面CBO与平面AOCD所成的二面角的大小为θ(0<θ<π),E,F分别为BC,AO的中点(1)求证:EF∥平面ABD(2)若θ=,求二面角F﹣BD﹣O的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)过点E作EH∥BD,交CD于点H,连结HF,推导出平面EHF∥平面ABD,由此能证明EF∥平面ABD.(2)由题得平面CBO与平面AOCD所成二面角的平面角为∠BOA=θ,连结BF,以点F为坐标原点,以FO,FH,FB分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角F﹣BD﹣O的余弦值.【解答】证明:(1)过点E作EH∥BD,交CD于点H,连结HF,则H为CD中点,∴HF∥AD∵AD⊂平面ABD,HF⊄平面ABD,∴HF∥平面ABD,同理,EH∥平面ABD,∵EH∩HF=H,∴平面EHF∥平面ABD,∵EF⊂平面EHF,∴EF∥平面ABD.解:(2)由题得平面CBO与平面AOCD所成二面角的平面角为∠BOA=θ,连结BF,∵θ=,OB=2,OF=1,∴BF⊥AO,以点F为坐标原点,以FO,FH,FB分别为x,y,z轴,建立空间直角坐标系,则F(0,0,0),B(0,0,),D(﹣1,2,0),O(1,0,0),设平面FBD的法向量=(x,y,z),则,取x=2,解得=(2,﹣1,0)同理得平面BDO的一个法向量=(,1),设二面角F﹣BD﹣O的平面角为α,cosα===,∴二面角F﹣BD﹣O的余弦值为.【点评】本题考查空间直线与增面的位置关系、空间角、数学建模,考查推理论证能力、运算求解能力、空间思维能力,考查转化化归思想、数形结合思想,是中档题.19.随着网络营销和电子商务的兴起,人们的购物方式更具多样化,某调查机构随机抽取10名购物者进行采访,5名男性购物者中有3名倾向于选择网购,2名倾向于选择实体店,5名女性购物者中有2名倾向于选择网购,3名倾向于选择实体店.(1)若从10名购物者中随机抽取2名,其中男、女各一名,求至少1名倾向于选择实体店的概率;(2)若从这10名购物者中随机抽取3名,设X表示抽到倾向于选择网购的男性购物者的人数,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P.(2)X的取值为0,1,2,3.P(X=k)=,即可得出.【解答】解:(1)设“至少1名倾向于选择实体店”为事件A,则表示事件“随机抽取2名,(其中男、女各一名)都选择网购”,则P(A)=1﹣P=1﹣=.(2)X的取值为0,1,2,3.P(X=k)=,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.E(X)=0×+1×+2×+3×=.【点评】本题考查了对立与互相独立事件概率计算公式、超几何分布列与数学期望、组合计算公式,考查了推理能力与计算能力,属于中档题.20.已知椭圆C:=1(a>b>0)过点A(0,3),与双曲线=1有相同的焦点(1)求椭圆C的方程;(2)过A点作两条相互垂直的直线,分别交椭圆C于P,Q两点,则PQ是否过定点?若是,求出定点的坐标,若不是,请说明理由.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)求得双曲线的焦点坐标,可得椭圆的c,由A点,可得b,求得a,即可得到椭圆方程;(2)设P(x1,y1),Q(x2,y2),直线AP的斜率为k,直线AQ的斜率为﹣,直线AP的方程为y=kx+3,代入椭圆方程,求得P的坐标,k换为﹣,可得Q的坐标,求出直线PQ的斜率,以及方程,整理可得恒过定点.【解答】解:(1)双曲线=1的焦点坐标为(3,0),(﹣3,0),可得椭圆中的c=3,由椭圆过点A(0,3),可得b=3,则a==6,则椭圆的方程为+=1;(2)设P(x1,y1),Q(x2,y2),直线AP的斜率为k,直线AQ的斜率为﹣,直线AP的方程为y=kx+3,代入椭圆x2+4y2﹣36=0,可得(1+4k2)x2+24kx=0,解得x1=﹣,y1=kx1+3=,即有P(﹣,),将上式中的k换为﹣,可得Q(,),则直线PQ的斜率为k PQ==,直线PQ的方程为y﹣=(x+),可化为x(k2﹣1)﹣(5y+9)k=0,可令x=0,5y+9=0,即x=0,y=﹣.则PQ过定点(0,﹣).【点评】本题考查椭圆方程的求法,注意运用双曲线的焦点坐标,考查直线恒过定点的求法,注意运用联立直线方程和椭圆方程,考查化简整理的运算能力,属于中档题.21.已知函数f(x)=8a2lnx+x2+6ax+b(a,b∈R)(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x,求a,b的值;(2)若a≥1,证明:∀x1,x2∈(0,+∞),且x1≠x2,都有>14成立.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【分析】(1)求导,由题意可知,即可求得a,b的值;(2)利用分析法,构造辅助函数,求导,根据函数的单调性即可求得结论.【解答】解:(1)函数f(x)的定义域为(0,+∞),求导f′(x)=+2x+6a,由曲线y=f(x)在点(1,f(1))处的切线方程为y=2x,则,解得:或,则a,b的值0,1或﹣,;(2)证明:①当x1<x2时,则x2﹣x1>0,欲证:∀x1,x2∈(0,+∞),都有>14成立,只需证∀x1,x2∈(0,+∞),都有f(x2)﹣f(x1)>14(x2﹣x1)成立,只需证∀x1,x2∈(0,+∞),都有f(x2)﹣14x2>f(x1)﹣14x1成立,构造函数h(x)=f(x)﹣14x,则h′(x)=2x++6a﹣14,由a≥1,则h′(x)=2x++6a﹣14≥8a+6a﹣14≥0,∴h(x)在(0,+∞)内单调递增,则h(x2)>h(x1)成立,∴f(x2)﹣14x2>f(x1)﹣14x1成立,则>14成立;②当x1>x2时,则x2﹣x2<0,欲证:∀x1,x2∈(0,+∞),都有>14成立,只需证∀x1,x2∈(0,+∞),都有f(x2)﹣f(x1)>14(x2﹣x1)成立,只需证∀x1,x2∈(0,+∞),都有f(x2)﹣14x2>f(x1)﹣14x1成立,构造函数H(x)=f(x)﹣14x,则H′(x)=2x++6a﹣14,由a≥1,则H′(x)=2x++6a﹣14≥8a+6a﹣14≥0,∴H(x)在(0,+∞)内单调递增,则H(x2)<H(x1)成立,∴>14成立,综上可知:∀x1,x2∈(0,+∞),且x1≠x2,都有>14成立.【点评】本题考查导数的综合应用,导数的几何意义,利用导数求函数的单调性及最值,考查分析法证明不等式,考查转化思想,属于中档题.[选修4-4:参数方程与极坐标系]22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ2﹣2ρcosθ﹣4=0(1)若直线l与曲线C没有公共点,求m的取值范围;(2)若m=0,求直线l被曲线C截得的弦长.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)曲线C的极坐标方程化为直角坐标方程,直线l的参数方程为,代入并整理可得t2+(m﹣1)t+m2﹣4=0,利用直线l与曲线C没有公共点,即可求m的取值范围;(2)若m=0,若m=0,直线l的极坐标方程为θ=,代入C的极坐标方程并整理可得ρ2﹣ρ﹣4=0,利用极径的意义求直线l被曲线C截得的弦长.【解答】解:(1)曲线C的极坐标方程对应的直角坐标方程为x2+y2﹣2x﹣4=0,即(x﹣1)2+y2=5直线l的参数方程为,代入并整理可得t2+(m﹣1)t+m2﹣4=0∵直线l与曲线C没有公共点,∴△=(m﹣1)2﹣4(m2﹣4)<0,∴m<﹣﹣2或m>﹣+2;(2)若m=0,直线l的极坐标方程为θ=,代入C的极坐标方程并整理可得ρ2﹣ρ﹣4=0.直线l被曲线C截得的弦的端点的极径分别为ρ1,ρ2,则ρ1+ρ2=1,ρ1ρ2=﹣4,∴直线l被曲线C截得的弦长=|ρ1﹣ρ2|==.【点评】本题考查三种方程的转化,考查极径的意义,属于中档题.[选修4-5:不等式选讲]23.(2017湖北四模)已知函数f(x)=|x﹣2a|+|x+|(1)当a=1时,求不等式f(x)>4的解集;(2)若不等式f(x)≥m2﹣m+2对任意实数x及a恒成立,求实数m的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)当a=1时,分类讨论,求不等式f(x)>4的解集;(2)f(x)=|x﹣2a|+|x+|≥|2a+|=|2a|+||,利用不等式f(x)≥m2﹣m+2对任意实数x及a恒成立,求实数m的取值范围.21 【解答】解:(1)当a=1时,不等式f (x )>4为|x ﹣2|+|x +1|>4.x <﹣1时,不等式可化为﹣(x ﹣2)﹣(x +1)>4,解得x<﹣,∴x<﹣;﹣1≤x ≤2时,不等式可化为﹣(x ﹣2)+(x +1)>4,不成立;x >2时,不等式可化为(x ﹣2)+(x +1)>4,解得x>,∴x>;综上所述,不等式的解集为{x |x<﹣或x>};(2)f (x )=|x ﹣2a |+|x+|≥|2a+|=|2a|+||, 不等式f (x )≥m 2﹣m +2对任意实数x 及a 恒成立,∴2m 2﹣m +2,∴0≤m ≤1. 【点评】本题主要考查绝对值的意义,带由绝对值的函数,函数的恒成立问题,体现了转化、数形结合的数学思想,属于中档题.。

2017年高考全国卷I-数学试题(含答案)

2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n−2n>1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件。

2017年高考数学真题(含答案)

2017年高考数学真题(含答案)本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项.1.函数()21x f x =-的定义域为 A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,1]2.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为 A .-1 B .1 C .-i D .i3.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为A .52 B .3 C .72D .44.某三棱锥的三视图如图所示,则其体积为 A .33 B .32 C .233 D .2635.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |= A .1 B .2 C .3 D . 2 7.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是A .,44a b ππ==-B .2,36a b ππ==C .,36a b ππ==D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则 下列叙述正确的是A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每小题5 分,共30 分.9.已知向量(1,),(,9)a t b t ==,若a b ,则t = _______. 10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______. 11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b -=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离为3,则C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有_______种; (ⅱ)当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,若存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得|()()|f x f t -≤2,则记a +b 的最大值为H (t ). (ⅰ)当 ()f x =2x 时,H (0)= _______.(ⅱ)当()f x 2x =且t [1,2]∈时,函数H (t )的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13 分) 如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β. (Ⅰ)求证:sin 3sin AC BC βα=; (Ⅱ)若,,1962AB ππαβ===,求BC 的长.16.(本小题满分13 分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推 广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法 上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中 分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4 株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量;(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据, 试估计21s 与22s 的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求 随机变量ξ的分布列和数学期望.17.(本小题满分14 分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB . (Ⅰ)求证: BC ⊥平面P AB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内; (Ⅲ)当P A =AB =2,二面角C -AN -D 的大小为3π时,求PN 的长.18.(本小题满分13 分) 已知函数f (x ) =ln x +1x -1,1()ln x g x x-= (Ⅰ)求函数 f (x )的最小值;(Ⅱ)求函数g (x )的单调区间;(Ⅲ)求证:直线 y =x 不是曲线 y =g (x )的切线。

2017年高考数学试题及答案word版

2017年高考数学试题及答案word版一、选择题(本题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = 2x^2 + 3x - 2,下列哪个选项是f(x)的对称轴?A. x = -3/4B. x = 3/4C. x = 1/2D. x = -1/22. 若a > 0,b > 0,且a + b = 2,则下列哪个不等式一定成立?A. ab ≤ 1B. ab ≤ 2C. ab ≤ 4D. ab ≤ 83. 已知三角形ABC的三边长分别为a、b、c,且满足a^2 + b^2 =c^2,下列哪个选项是三角形ABC的类型?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等边三角形4. 函数y = 1/x的图像经过点(2, 1/2),下列哪个函数的图像也经过该点?A. y = 2xB. y = 1/x^2C. y = x^2D. y = 1/x5. 已知数列{an}是等差数列,且a1 = 1,a4 = 10,下列哪个选项是数列{an}的公差d?A. 2B. 3C. 4D. 56. 已知集合A = {x | x^2 - 5x + 6 = 0},集合B = {x | x^2 - 3x + 2 = 0},则A∩B等于?A. {1, 2}B. {2, 3}C. {1, 3}D. {2}7. 若直线l的方程为y = 2x + 3,且直线l与x轴交于点M,与y轴交于点N,则|MN|的长度为?A. 5B. √5C. √13D. 138. 已知函数f(x) = x^3 - 3x^2 + 2x,下列哪个选项是f(x)的极值点?A. x = 1B. x = 2C. x = -1D. x = 0二、填空题(本题共4小题,每小题4分,共16分。

)9. 已知函数f(x) = x^2 - 4x + 3,求f(2)的值。

10. 若a、b、c是等比数列,且a = 2,c = 8,则b的值为多少?11. 已知向量a = (3, -1),向量b = (1, 2),求向量a与向量b的数量积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年湖北高考数学专题训练试题(八)
一、选择题:
1.已知0tan,0sin,则2sin1化简的结果为 ( )
A.cos B. cos C.cos D. 以上都不对
2.若角的终边过点(-3,-2),则 ( )
A.sintan>0 B.costan>0 C.sincos>0 D.sincot>0

3 已知3tan,23,那么sincos的值是 ( )

A 231 B 231 C 231 D 231
4.函数)22cos(xy的图象的一条对称轴方程是 ( )
A.2x B. 4x C. 8x D. x
5.已知)0,2(x,53sinx,则tan2x= ( )
A.247 B. 247 C. 724 D. 724
6.已知31)4tan(,21)tan(,则)4tan(的值为 ( )

A.2 B. 1 C. 22 D. 2
7.函数xxxxxfsincossincos)(的最小正周期为 ( )
A.1 B. 2 C. 2 D. 
8.函数)32cos(xy的单调递增区间是 ( )

A.)(322,342Zkkk B. )(324,344Zkkk

C.)(382,322Zkkk D. )(384,324Zkkk
9.函数xxycossin3,]2,2[x的最大值为 ( )
A.1 B. 2 C. 3 D. 23
10.要得到)42sin(3xy的图象只需将y=3sin2x的图象 ( )
A.向左平移4个单位 B.向右平移4个单位
C.向左平移8个单位 D.向右平移8个单位

11.已知sin(4π+α)=23,则sin(43π-α)值为 ( )
A. 21 B. —21 C. 23 D. —23
12.若).(),sin(32cos3sin3xxx,则 ( )
A. 6 B. 6 C. 65 D. 65

二、填空题
13.函数tan2yx的定义域是

14.)32sin(3xy的振幅为 初相为

15.求值:000cos20sin202cos10=_______________
16.把函数)32sin(xy先向右平移2个单位,然后向下平移2个单位后所得的函数解
析式为_____________2)322sin(xy___________________

三、解答题
17 已知1tantan,是关于x的方程2230xkxk的两个实根,且273,
求sincos的值

18.已知函数xxy21cos321sin,求:
(1)函数y的最大值,最小值及最小正周期;
(2)函数y的单调递增区间
19. 已知tantan、是方程04332xx的两根,且)2,2(、,
求的值

20.如下图为函数)0,0,0()sin(AcxAy图像的一部分

(1)求此函数的周期及最大值和最小值
(2)求与这个函数图像关于直线2x对称的函数解析式

参考答案
一、选择题:
1.B 2.A 3.D 4.B 5.D 6.B 7.D 8.D 9.B 10.C 11.C 12.B
二、填空题

13、Zkkk,42,2 14 3 32 15.略 16.答案:2)322sin(xy
三、解答题:
17. 【解】:21tan31,2tankkQ,而273,则1tan2,tank

得tan1,则2sincos2,cossin2
18.【解】∵ )321sin(2xy
(1)∴ 函数y的最大值为2,最小值为-2,最小正周期42T
(2)由Zkkxk,2232122,得

函数y的单调递增区间为:Zkkk,34,354
19.【解】∵ tantan、是方程04332xx的两根,
∴ 4tantan,33tantan,从而可知)0,2(、
故)0,(

又 3tantan1tantan)tan(
∴ 32
20.【解】(1)由图可知,从4~12的的图像是函数
)0,0,0()sin(AcxAy
的三分之二
)cos(2sinsin)cos(2
个周期的图像,所以

1)24(213)24(21c
A
,故函数的最大值为3,最小值为-3

∵ 8232
∴ 6
∴ 12T
把x=12,y=4代入上式,得2

所以,函数的解析式为:16cos3xy
(2)设所求函数的图像上任一点(x,y)关于直线2x的对称点为(yx,),则
yyxx,4
代入16cos3xy中得1)632cos(3xy

∴与函数16cos3xy的图像关于直线2x对称的函数解析:1)632cos(3xy

相关文档
最新文档