七年级下册数学期末综合练习卷_4
江西省九江市七年级下册数学期末练习卷(含答案)

江西省九江市七年级下册数学期末练习卷一、选择题(共8题;共24分)1.(3分)下面四幅作品分别代表二十四节气中的“大雪”“白露”“芒种”“立春”,其中是轴对称图形的是( )A.B.C.D.2.(3分)清代袁枚的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为( )A.0.84×10−4B.8.4×10−6C.8.4×10−4D.8.4×10−53.(3分)下列运算中正确的是( ).A.2x+y=2xy B.−(3a2b)2=6a4b2C.(x+y)2=x2+y2D.(a2−ab)÷a=a−b4.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,不是红球的概率为( )A.47B.37C.57D.175.(3分)如图,下列推理中正确的是( )A.因为∠1=∠4,所以AD∥BCB.因为∠2=∠3,所以AB∥CDC.因为∠BAD+∠D=180°,所以AB∥CDD.因为∠D+∠3+∠4=180°,所以AB∥CD6.(3分)如图,直线m∥n,点A、C在直线m上,点B在直线n上,BC平分∠ABD,若∠BAC=122°,则∠ACB的度数为( )A.58°B.61°C.30°D.29°7.(3分)如图,下面是物理课上测量铁块A的体积实验,将铁块匀速向上提起,直至完全露出水面一定高度,下面能反映这一过程中,液面高度h与铁块被提起的时间t之间的大致图象是( )A.B.C.D.8.(3分)已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( )A.M>N B.M≥N C.M≤N D.不能确定二、填空题(共8题;共24分)9.(3分)“任意打开七年级数学课本,正好是第35页”,这个事件是 事件.(填“随机”或“必然”)10.(3分)如图,若△ABC≌△DEF,AF=2,FD=8,则FC的长度是 .11.(3分)如图,程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.根据图中的程序算法过程,可得y与x之间的关系式是 .12.(3分)若x m=4,x n=6,则x2m−n的值为 .13.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=3,AB=10,则△ABD的面积是 .14.(3分)若x−y=4,xy=−3,则(x+y)2= .15.(3分)如图,在△ABC中,点D为BC的中点,AB=5,AC=3,AD=2,则△ABC边BC上的高为 .16.(3分)如图,两条平行直线l1,l2被直线AB所截,点C位于两平行线之间,且在直线AB右侧,点E是l1上一点,位于点A右侧.小明进行了如下操作:连结AC,BC,在∠EAC平分线上取一点D,过点D作DF∥BC,交直线l2于点F.记∠ACB=α,∠CBF=β,∠ADF=γ,则γ= (用含α,β的代数式表示).三、解答题(共8题;共52分)17.(3分)计算:2×(−3)+4−(36−1)0.18.(3分)如图,在平面直角坐标系中,三角形ABC在坐标系中A(1,1),B(4,2),C(3,4).在图中画出三角形ABC关于x轴的对称图形A1B1C1,并分别写出对应点A1、B1、C1的坐标.19.(5分)如图所示,已知AD⊥BC于点D,EG⊥BC于点G,∠E=∠1,说明:AD平分∠BAC.下面是推理过程,请你将其补充完整,因为AD⊥BC于点D,EG⊥BC于点G(已知)所以∠ADC=∠EGC=90°所以AD//EG()所以∠1=∠2( ) =∠3(两直线平行,同位角相等)又因为∠E=∠1(已知),所以∠2=∠3( )所以AD平分∠BAC().20.(5分)某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)(2分)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)(3分)求选中乙、丙两位同学参加第一场比赛的概率.21.(5分)先化简,再求值:(2a−b)2+(a+b)(a−2b),其中a=−1,b=2.22.(5分)如图,在≤ABCD中,点E为边CD的中点,延长AE交BC的延长线于点F.(1)(2分)求证:△ADE≌△FCE.(2)(3分)若AD=5,求BF的长.23.(12分)王师傅非常喜欢自驾游,他为了了解新买轿车的耗油情况,将油箱加满后进行了耗油试验,得到下表中的数据:行驶的路程s(km)0100200300400…油箱剩余油量Q(L)5042342618…(1)(4分)在这个问题中,自变量是 ,因变量是 ;(2)(4分)该轿车油箱的容量为 L,行驶150km时,油箱中的剩余油量为 L;(3)(2分)请写出两个变量之间的关系式;(用s来表示Q);(4)(2分)王师傅将油箱加满后驾驶该轿车从A地前往B地,到达B地时油箱中的剩余油量为22L,请求出A,B两地之间的距离.24.(14分)【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)(3分)【直接应用】若x+y=3,x2+y2=5,求xy的值;(2)(6分)【类比应用】①若(x−3)(x−4)=1,则(x−3)2+(x−4)2=;②若x满足(2023−x)2+(2020−x)2=2023,求(2023−x)(2020−x)的值.(3)(5分)【知识迁移】两块全等的特制直角三角板(∠AOB=∠COD=90°)如图2所示放置,其中A,O,D在一直线上,连接AC,BD.若AD=16,S△AOC+S△BOD=68,求一块直角三角板的面积.答案解析部分1.【答案】A 2.【答案】C 3.【答案】D 4.【答案】C 5.【答案】C 6.【答案】D 7.【答案】B 8.【答案】B 9.【答案】随机10.【答案】611.【答案】y =−3x +212.【答案】8313.【答案】1514.【答案】415.【答案】6131316.【答案】12α+12β或90°+12α−12β或180°−12α−12β17.【答案】−518.【答案】解:如图,△A 1B 1C 1即为所求;A 1,B 1,C 1的坐标分别为:(1,−1)、(4,−2)、(3,−4);19.【答案】同位角相等,两直线平行;两直线平行,内错角相等 ;∠E ;等量代换 ;角平分线定义20.【答案】(1)解:根据题意,甲参加第一场比赛时,有(甲,乙)、(甲,丙)两种可能,∴另一位选手恰好是乙同学的概率12;(2)解:画树状图如下:由树状图知共有6种等可能结果,其中乙、丙两位同学参加第一场比赛的情况有2种,∴选中乙、丙两位同学参加第一场比赛的概率为26=13.21.【答案】解:(2a−b )2+(a +b )(a−2b )=4a 2−4ab +b 2+a 2+ab−2ab−2b 2.=5a 2−5ab−b 2当a =−1,b =2时,原式=5×(−1)2−5×(−1)×2−22=11.22.【答案】(1)证明:∵E 是边CD 的中点,∴DE =CE ,∵四边形ABCD 是平行四边形,∴AD ∥BF ,∴∠D =∠DCF ,在△ADE 和△FCE 中,{∠D =∠ECFED =CE ∠AED =∠CEF,,∴△ADE ≌△FCE (ASA )(2)解:∵四边形ABCD 是平行四边形,∴AD =BC =5,∵△ADE ≌△FCE ,∴AD =CF =5,∴BF =BC+CF =5+5=10.23.【答案】(1)行驶的路程;油箱剩余油量(2)50;38(3)解:因为开始油箱中的油为50L ,每行驶100km ,耗油8L ,所以Q 与s 的关系式为:Q =50−0.08s ,(4)解:由(3)得Q =50−0.08s ,当Q =22时,22=50−0.08s ,解得s =350,故A ,B 两地之间的距离为350km ,24.【答案】(1)解:∵x +y =3,x 2+y 2=5,而(x +y)2=x 2+2xy +y 2,∴32=5+2xy ,解得:xy =2;(2)解:①3②[(2023−x)−(2020−x)]2=(2023−x−2020+x)2=9,∵(2023−x)2+(2020−x)2=2023,∴(2023−x)(2020−x)=(2023−x)2+(2020−x)2−[(2023−x)−(2020−x)]22=2023−92=1007.故答案为:1007.(3)解:∵A ,O ,D 三点共线,且∠AOB =∠COD =90°,∴∠AOC =180°−∠COD =90°,∴∠AOC +∠AOB =180°,∴B ,O ,C 三点共线,∴∠BOD =∠AOC =90°,∵△AOB≌△COD ,∴OA =OC ,OB =OD ,∵AD =16,S △AOC +S △BOD =68,∴OA +OD =16,12A O 2+12O D 2=68,∴O A 2+O D 2=136,∴2OA ⋅OD =(OA +OD)2−(OA 2+OD 2)=162−136=120,∴OA ⋅OD =60,∴S △AOB =12OA ⋅OB =12OA ⋅OD =30,即一块直角三角板的面积为30.。
七年级下册数学期末测试卷【含答案】

七年级下册数学期末测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 25厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么这个长方体的对角线长是多少dm?A. 5dmB. 6dmC. 7dmD. 9dm4. 下列哪个数是偶数?A. 101B. 103C. 105D. 1075. 下列哪个分数是最简分数?A. $\frac{4}{6}$B. $\frac{6}{9}$C. $\frac{8}{10}$D. $\frac{10}{12}$二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。
()2. 一个三角形的内角和等于180度。
()3. 任何两个偶数相乘的积都是偶数。
()4. 两个负数相乘的积是正数。
()5. 任何数乘以1都等于它本身。
()三、填空题(每题1分,共5分)1. 2的平方根是______。
2. 一个正方形的边长是6cm,那么它的面积是______平方厘米。
3. 1千米等于______米。
4. 5的立方是______。
5. $\frac{3}{5}$的倒数是______。
四、简答题(每题2分,共10分)1. 请简述勾股定理。
2. 请解释什么是最简分数。
3. 请简述平行线的性质。
4. 请解释什么是质数。
5. 请简述长方体的体积公式。
五、应用题(每题2分,共10分)1. 一个长方体的长、宽、高分别是10cm、6cm、4cm,求这个长方体的体积。
2. 一个等腰三角形的底边长是8cm,腰长是5cm,求这个三角形的周长。
3. 一个数的平方是49,求这个数。
4. 一个数的立方是64,求这个数。
5. 两个数的和是15,它们的差是3,求这两个数。
六、分析题(每题5分,共10分)1. 请分析并解答以下问题:一个长方体的长、宽、高分别是3cm、4cm、5cm,求这个长方体的对角线长。
七年级数学下册期末测试题及答案共五套

七下期期末姓名: 学号 班级一、选择题:本大题共10个小题,每小题3分,共30分1.若m >-1,则下列各式中错误的...是 A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是A.±4B.=-4 3.已知a >b >0,那么下列不等式组中无解..的是 A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为A 先右转50°,后右转40°B 先右转50°,后左转40°C 先右转50°,后左转130°D 先右转50°,后左转50°5.解为12xy=⎧⎨=⎩的方程组是A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩6.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是A.1000 B.1100 C.1150 D.1200PCBA小刚小军小华1 2 37.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用•0,0表示,小军的位置用2,1表示,那么你的位置可以表示成A.5,4B.4,5C.3,4D.4,3二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3x+1的解集是________. 13.如果点Pa,2在第二象限,那么点Q-3,a 在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便即距离最近,请你在铁路旁选一点来建火车站位置已选好,说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.将所有答案的序号都填上 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.C BAD19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗请说明理由;22.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.23.如图, 已知A-4,-1,B-5,-4,C-1,-3,△ABC 经过平移得到的△A′B′C′,△ABC 中任意一点Px 1,y 1平移后的对应点为P′x 1+6,y 1+4;1请在图中作出△A′B′C′;2写出点A′、B′、C′的坐标.24.某校九年级甲、乙两个班共100•多人去该公园举行毕业联欢活动,•其中甲班有50多人,乙班不足50人,如果以班为单位分别买门票,两个班一共应付920元;•如果两个班联合起来作为一个团体购票,一共要付515元,问甲、乙两班分别有多少人25、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A,B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A,B 两种货厢的节数,有哪几种运输方案请设计出来.答案:一、选择题:共30分BCCDD,CBBCD二、填空题:共24分11.±7,7,-2 12. x≤613.三 14.垂线段最短;15. 40 16. 40017. ①②③ 18. x=±5,y=3三、解答题:共46分19. 解:第一个不等式可化为x-3x+6≥4,其解集为x≤1.第二个不等式可化为22x-1<5x+1,有 4x-2<5x+5,其解集为x>-7.∴原不等式组的解集为-7<x≤1.把解集表示在数轴上为:20. 解:原方程可化为896 27170 x yx y-=⎧⎨++=⎩∴8960 828680 x yx y--=⎧⎨++=⎩两方程相减,可得 37y+74=0,∴ y=-2.从而32x=-.因此,原方程组的解为322 xy⎧=-⎪⎨⎪=-⎩21. ∠B=∠C; 理由:∵AD∥BC∴∠1=∠B,∠2=∠C∵∠1=∠2∴∠B=∠C22. 解:因为∠AFE=90°,所以∠AEF=90°-∠A=90°-35°=55°.所以∠CED=•∠AEF=55°,所以∠ACD=180°-∠CED-∠D=180°-55°-42=83°.23. A′2,3,B′1,0,C′5,1.24. 解:设甲、乙两班分别有x、y人.根据题意得810920 55515 x yx y+=⎧⎨+=⎩解得5548 xy=⎧⎨=⎩故甲班有55人,乙班有48人.25. 解:设用A型货厢x节,则用B型货厢50-x节,由题意,得解得28≤x≤30.因为x为整数,所以x只能取28,29,30.相应地5O-x的值为22,21,20.所以共有三种调运方案.第一种调运方案:用 A型货厢 28节,B型货厢22节;第二种调运方案:用A型货厢29节,B型货厢21节;第三种调运方案:用A型货厢30节,用B型货厢20节.人人教版七年级第二学期综合测试题二班别姓名成绩一、填空题:每题3分,共15分的算术平方根是2.如果1<x<2,化简│x-1│+│x-2│=________.3.在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.4.若三角形三个内角度数的比为2:3:4,则相应的外角比是_______.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,则周长是________.二、选择题:每题3分,共15分6.点Pa,b在第四象限,则点P到x轴的距离是FDCBH EG A C.│a │ D.│b │ 7.已知a<b,则下列式子正确的是+5>b+5 B.3a>3b; C.-5a>-5b D.3a >3b8.如图,不能作为判断AB ∥CD 的条件是A.∠FEB=∠ECDB.∠AEC=∠ECD;C.∠BEC+∠ECD=180°D.∠AEG=∠DCH9.以下说法正确的是A.有公共顶点,并且相等的两个角是对顶角B.两条直线相交,任意两个角都是对顶角C.两角的两边互为反向延长线的两个角是对顶角D.两角的两边分别在同一直线上,这两个角互为对顶角 10.下列各式中,正确的是A.±34 B.34; C.±38±34三、解答题: 每题6分,共18分11.解下列方程组: 12.解不等式组,并在数轴表示:2525,4315.x y x y +=⎧⎨+=⎩ 236,145 2.x x x x -<-⎧⎨-≤-⎩13.若A2x-5,6-2x 在第四象限,求a 的取值范围. 四,作图题:6分① 作BC 边上的高② 作AC 边上的中线;五.有两块试验田,原来可产花生470千克,改用良种后共产花生532千克,已知第一块田的产量比原来增加16%,第二块田的产量比原来增加10%,问这两块试验田改用良种后,各增产花生多少千克8分六,已知a 、b 、c 是三角形的三边长,化简:|a -b +c|+|a -b -c|6分FDC B EA 八,填空、如图1,已知∠1 =∠2,∠B =∠C,可推得AB ∥CD;理由如下:10分∵∠1 =∠2已知,且∠1 =∠4 ∴∠2 =∠4等量代换∴CE ∥BF ∴∠ =∠3 又∵∠B =∠C 已知 ∴∠3 =∠B 等量代换 ∴AB∥CDFEDCBA2143图1 图2九.如图2,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,∠D=42°,求∠ACD 的度数.8分十、14分某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要A、B两种花砖共50万块,全部由某砖瓦厂完成此项任务;该厂现有甲种原料180万千克,乙种原料145万千克,已知生产1万块A砖,用甲种原料万千克,乙种原料万千克,造价万元;生产1万块B砖,用甲种原料2万千克,乙种原料5万千克,造价万元;1利用现有原料,该厂能否按要求完成任务若能,按A、B两种花砖的生产块数,有哪几种生产方案请你设计出来以万块为单位且取整数;2试分析你设计的哪种生产方案总造价最低最低造价是多少人都版七年级数学下学期末模拟试题三1.若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为A、()3,3B、()3,3-C、()3,3-- D、()3,3-2.△ABC中,∠A=13∠B=14∠C,则△ABC是 A.锐角三角形B.直角三角形 C.钝角三角形 D.都有可能3.商店出售下列形状的地砖:①正方形;②长方形;③正五边形;正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有. A1种 B2种 C3种 D4种4. 用代入法解方程组⎩⎨⎧-=-=-)2(122)1(327y x y x 有以下步骤: ①:由⑴,得237-=x y ⑶ ②:由⑶代入⑴,得323727=-⨯-x x ③:整理得 3=3 ④:∴x 可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是 A 、① B 、② C 、③ D 、④5. 地理老师介绍到:长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,小东根据地理教师的介绍,设长江长为x 千米,黄河长为y 千米,然后通过列、解二元一次方程组,正确的求出了长江和黄河的长度,那么小东列的方程组可能是A 、⎩⎨⎧=-=+128465836y x y x B 、⎩⎨⎧=-=-128456836y x y x C 、⎩⎨⎧=-=+128456836x y y x D 、⎩⎨⎧=-=-128456836x y y x 6. 若x m-n -2y m+n-2=2007,是关于x,y 的二元一次方程,则m,n 的值分别是=1,n=0B. m =0,n=1C. m =2,n=1D. m =2,n=354D3E21C BA7. 一个四边形,截一刀后得到的新多边形的内角和将A 、增加180oB 、减少180oC 、不变D 、以上三种情况都有可能8. 如右图,下列能判定AB ∥CD 的条件有 个.1 ︒=∠+∠180BCD B ;221∠=∠;3 43∠=∠;4 5∠=∠B . .2 C9. 下列调查:1为了检测一批电视机的使用寿命;2为了调查全国平均几人拥有一部手机;3为了解本班学生的平均上网时间;4 为了解中央电视台春节联欢晚会的收视率;其中适合用抽样调查的个数有 A 、1个 B 、2个 C 、3个 D 、4个10. 某人从一鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条2ba +元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是 A .a >b B .a <b C .a =b D .与ab 大小无关11. 如果不等式⎩⎨⎧-b y x <>2无解,则b 的取值范围是A .b >-2B . b <-2C .b ≥-2D .b ≤-212. 某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果见上图.根据此条形图估计这一天该校学生平均课外阅读时为 A 时 B 时 C 时 D 时13. 两边分别长4cm 和10cm 的等腰三角形的周长是________cm 14. 内角和与外角和之比是1∶5的多边形是______边形15. 有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种四边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直;请把你认为是真命题的命题的序号填在横线上___________________16. 不等式-3≤5-2x <3 的正整数解是_________________.17. 如图.小亮解方程组 ⎩⎨⎧=-=+1222y x y x ●的解为 ⎩⎨⎧==★y x 5,由于不小心,滴上了两滴墨水, 刚好遮住了两个数●和★,请你帮他找回★这个数★= 18. 数学解密:若第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8…,观察以上规律并猜想第六个数是_______.19. 解方程组和解不等式组并把解集表示在数轴上8分 132522(32)28x y x x y x +=+⎧⎨+=+⎩ .2()4321213x x xx -<-⎧⎪⎨++>⎪⎩ 20. 如图,EF 1∠2∠明:∠DGA+∠BAC=180°.请将说明过程填写完成.5分解:∵EF 2∠_____________________________.又∵1∠=2∠,______∴1∠=3∠,________________________. ∴AB_____________________________21. 如图,在3×3的方格内,填写了一些代数式和数6分1在图中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值.2把满足1的其它6个数填入图2中的方格内.A2x y 4y32-332-3图(1)图(2)22.如图,AD为△ABC的中线,BE为△ABD的中线;81∠ABE=15°,∠BAD=40°,求∠BED的度数;2在△BED中作BD边上的高;3若△ABC的面积为40,BD=5,则点E到BC边的距离为多少23.小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况收入取整数,单位:元,并绘制了如下的频数分布表和频数分布直方图.8分分组频数百分比600≤x<80025%800≤x<1000615%1000≤x<120045%9%1补全频数分布表.2补全频数分布直方图.3绘制相应的频数分布折线图.4请你估计该居民小区家庭属于中等收入大于1000不足1600元的大约有多少户24.四川5·12大地震中,一批灾民要住进“过渡安置”房,如果每个房间住3人,则多8人,如果每个房间住5人,则有一个房间不足5人,问这次为灾民安置的有多少个房间这批灾民有多少人7分25.学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表:8分娃”和微章前,了解到如下信息:1求一盒“福娃”和一枚徽章各多少元2若本次活动设一等奖2名,则二等奖和三等奖应各设多少名26..情系灾区. 5月12日我国四川汶川县发生里氏级大地震,地震给四川,甘肃,陕西等地造成巨大人员伤亡和财产损失.灾难发生后,我校师生和全国人民一道,迅速伸出支援的双手,为灾区人民捐款捐物.为了支援灾区学校灾后重建,我校决定象灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床架10个和课桌凳10套.10分1学校如何安排甲、乙两种货车可一次性把这些物资运到灾区有几种方案2若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少最少运费是多少。
七年级下册数学期末试卷

篇一:人教版七年级数学下册期末测试题及答案(共五套)七下期期末姓名:学号班级一、选择题:(本大题共10个小题,每题3分,共30分) 1.假设m>-1,那么以下各式中错误的选项是〔〕...A.6m>-6B.-5m<-5 C.m+1>0 D.1-m<2 2.以下各式中,正确的选项是() ±4 B.=-43.a>b>0,那么以下不等式组中无解的是〔〕..A.xaxaxaxaB.C.D.xbxbxbxb4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为〔〕(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130°(D) 先右转50°,后左转50° 5.解为x1的方程组是〔〕y2xy1xy1xy3x2y3A. B.C. D.3xy13xy53xy53xy56.如图,在△ABC中,∠ABC=50,∠ACB=80,BP平分∠ABC,CP平分∠ACB,那么∠BPC的大小是〔〕A.1000B.1100 C.1150D.120APBA1C1(1) (2)(3)7.四条线段的长分别为3,4,5,7,那么它们首尾相连可以组成不同的三角形的个数是〔〕 A.4 B.3 C.2D.1 8.在各个内角都相等的多边形中,一个外角等于一个内角的1,那么这个多边形的边数是〔〕 2A.5 B.6 C.7D.89.如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,假设△ABC的面积为20 cm2,那么四边形A1DCC1的面积为〔〕A.10 cm2B.12 cm2 C.15 cm2D.17 cm210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A沿北偏东60°的方向行驶到B,再从B沿南偏西20°的方向行驶到C,那么∠ABC=_______度.16.如图,AD∥BC,∠D=100°,CA平分∠BCD,那么∠DAC=_______.DA17.给出以下正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)18.假设│x2-25│那么x=_______,y=_______.BC三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.x3(x2)4,19.解不等式组:2x1x1,并把解集在数轴上表示出来..25312xy20.解方程组:3 424(xy)3(2xy)1721.如图, AD∥BC , AD平分∠EAC,你能确定∠B与∠C的数量关系吗请说明理由。
七年级数学下册期末试卷练习(Word版 含答案)

七年级数学下册期末试卷练习(Word 版 含答案)一、选择题1.如图图形中,∠1和∠2不是同位角的是( )A .B .C .D .2.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )A .B .C .D .3.在平面直角坐标系中,点(3,1) P -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )A .3个B .2个C .1个D .0个5.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个6.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a ∥b ,b ∥c ,则a ∥cC .49的平方根是7D .负数没有立方根7.如图,直线//AB CD ,E 为CD 上一点,G 为AB 上一点,BF EG ⊥,垂足为F ,若35B ∠=︒,则DEF ∠的度数为( )A .35︒B .45︒C .55︒D .65︒8.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次2,4,6,8,,…顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点2021A 的坐标是( )A .(505,505)-B .(505,505)--C .(506,506)--D .(506,506)-二、填空题9. 6.213,62.13621.3.10.在平面直角坐标系中,点A (2,1)关于x 轴对称的点的坐标是_____.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____.12.如下图,C 岛在A 岛的北偏东65°方向,在B 岛的北偏西35°方向,则ACB =∠______度.13.如图,折叠宽度相等的长方形纸条,若∠1=54°,则∠2=____度.14.用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b=. 例如:(-3)☆2= 32322-++-- = 2.从﹣8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a ,b(a≠b)的值,并计算a ☆b ,那么所有运算结果中的最大值是_____. 15.如图,若“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-,则“将"所在位置的坐标为_______.16.如图,点A (0,1),点1A (2,0),点2A (3,2),点3A (5,1)…,按照这样的规律下去,点1000A 的坐标为 _____.三、解答题17.计算(每小题4分)(1)323(3)29()-+--(2)2335+-.(3)20203|2|8(1)-+-+-.(4)4+|﹣2 | + ( -1 )201718.求下列各式中的x 的值:(1)2810x -=;(2)()3164x -=.19.填充证明过程和理由.如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°(已知),∴AB ∥CD ( ).∴∠B = ( ).又∵∠B =∠D (已知),∴∠D =∠ .∴AD ∥BE ( ).∴∠E =∠DFE ( ).20.如图,()3,2A -,()1,2B --,()1,1C -.将 ABC 向右平移 3 个单位长度,然后再向上平移 1 个单位长度,可以得到 111A B C .(1)画出平移后的 111A B C ,111A B C 的顶点 1A 的坐标为 ;顶点 1C 的坐标为 . (2)求 111A B C 的面积.(3)已知点 P 在 x 轴上,以 1A ,1C ,P 为顶点的三角形面积为 32,则 P 点的坐标为 .21.实数A 在数轴上的对应点A 的位置如图所示,|2||3|b a a =-+-.(1)求b 的值;(2)已知2b +的小数部分是m ,8b -的小数部分是n ,求221++m n 的平方根. 二十二、解答题22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.二十三、解答题23.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数. ②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)24.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.25.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明;(2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.26.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、选择题1.B解析:B【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:∵选项B 中∠1和∠2是由四条直线组成,∴∠1和∠2不是同位角.故选:B .【点睛】本题主要考查的是同位角的定义,掌握同位角的定义是解题的关键.2.C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C .【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.解析:C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C.【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.3.B【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点P的横坐标是负数,纵坐标是正数,∴点P(-3,1)在第二象限,故选:B.【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-).4.A【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案.【详解】平面内,垂直于同一条直线的两直线平行;故①正确,经过直线外一点,有且只有一条直线与这条直线平行,故②正确垂线段最短,故③正确,两直线平行,同旁内角互补,故④错误,∴正确命题有①②③,共3个,故选:A.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB//CD,∴∠1=∠2,∵AC平分∠BAD,∴∠2=∠3,∴∠1=∠3,∵∠B=∠CDA,∴∠1=∠4,∴∠3=∠4,∴BC//AD,∴①正确;∴CA平分∠BCD,∴②正确;∵∠B=2∠CED,∴∠CDA=2∠CED,∵∠CDA=∠DCE+∠CED,∴∠ECD=∠CED,∴④正确;∵BC//AD,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A,由a>b,b>c,则a>c,可得选项A错误;选项B,若a∥b,b∥c,则a∥c,正确;选项C,由49的平方根是±7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B.【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.C【分析】根据FGB 内角和定理可知FGB ∠的度数,再根据平行线的性质即可求得DEF ∠的度数.【详解】∵BF EG ⊥∴90F ∠=︒∵35B ∠=︒∴180180903555FGB F B ∠=︒-∠-∠=︒-︒-︒=︒∵//AB CD∴55FGB DEF ∠=∠=︒.故选:C【点睛】本题主要考查了三角形内角和定理及平行线的性质,熟练掌握相关角度计算方法是解决本题的关键.8.C【分析】根据正方形的性质找出部分An 点的坐标,根据坐标的变化找出变化规律“A4n +1(−n−1,−n−1),A4n +2(−n−1,n +1),A4n +3(n +1,n +1),A4n +4(n +1,−解析:C【分析】根据正方形的性质找出部分A n 点的坐标,根据坐标的变化找出变化规律“A 4n +1(−n −1,−n −1),A 4n +2(−n −1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,−n −1)(n 为自然数)”,依此即可得出结论.【详解】解:观察发现:A 1(−1,−1),A 2(−1,1),A 3(1,1),A 4(1,−1),A 5(−2,−2),A 6(−2,2),A 7(2,2),A 8(2,−2),A 9(−3,−3),…,∴A 4n +1(−n −1,−n −1),A 4n +2(−n −1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,−n −1)(n 为自然数),∵2021=505×4+1,∴A 2021(−506,−506)故选C .【点睛】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A 4n +1(−n −1,−n −1),A 4n +2(−n −1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,−n −1)(n 为自然数)”.二、填空题9.93【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则 点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开解析:93【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则24.93点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开方数每缩小100倍,则算术平方根就缩小10倍;对于立方根,当被开方数每扩大1000倍,则算术平方根就扩大10倍,当被开方数每缩小1000倍,则算术平方根就缩小10倍.10.(2,﹣1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标解析:(2,﹣1)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于x轴的对称点,横坐标不变,纵坐标变成相反数.【详解】解:点(2,1)关于x轴对称的点的坐标是(2,﹣1),故答案为(2,﹣1).【点睛】熟练掌握关于坐标轴对称的点的坐标特点是本题的解题关键. 关于x轴的对称点,横坐标不变,纵坐标变成相反数.关于y轴的对称点,纵坐标不变,横坐标变成相反数.11.120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),解析:120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB ),=180°-60°,=120°;∠DFE 的邻补角的度数为:180°-120°=60°.考点:角的度量.12.100【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴=65°.∵CE ∥BF ,∴=35°.解析:100【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴DAC ACE ∠=∠=65°.∵CE ∥BF ,∴B CBF E C =∠∠=35°.∴C C A B A E C B E =+∠∠∠=65°+35°=100°.故答案为:100.【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.13.72【分析】根据平行线的性质可得,由折叠的性质可知,由平角的定义即可求得.【详解】解:如图,长方形的两边平行,,折叠,,.故答案为:.【点睛】本题考查了平行线的性质,折叠的解析:72【分析】根据平行线的性质可得13∠=∠,由折叠的性质可知34∠=∠,由平角的定义即可求得2∠.【详解】解:如图,长方形的两边平行,∴13∠=∠,折叠,∴34∠=∠,218034180545472∴∠=︒-∠-∠=︒-︒-︒=︒.故答案为:72.【点睛】本题考查了平行线的性质,折叠的性质,掌握以上知识是解题的关键.14.8【解析】解:当a >b 时,a ☆b= =a ,a 最大为8;当a <b 时,a ☆b==b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:8【解析】解:当a >b 时,a ☆b =2a b a b++- =a ,a 最大为8;当a <b 时,a ☆b =2a b a b++-=b ,b 最大为8,故答案为:8.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为,“象”所在位置的坐标为∴棋盘中每一格代表1∴“将"所在位置的坐标为,即故答案为:.【点睛】本解析:()1,4【分析】结合题意,根据坐标的性质分析,即可得到答案.【详解】∵“马”所在的位置的坐标为()2,2-,“象”所在位置的坐标为()1,4-∴棋盘中每一格代表1∴“将"所在位置的坐标为()12,4-+,即()1,4故答案为:()1,4.【点睛】本题考查了坐标的知识;解题的关键是熟练掌握坐标的性质,从而完成求解.16.(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点(2,0),点(5,1),(8,2),…,(3n ﹣1,n ﹣1), 点解析:(1500,501).【分析】仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.【详解】观察图形可得,点1A (2,0),点3A (5,1),5A (8,2),…,21n A -(3n ﹣1,n ﹣1),点2A (3,2),4A (6,3),6A (9,4),…,2n A (3n ,n +1),∵1000是偶数,且1000=2n ,∴n=500,∴1000A(1500,501),故答案为:(1500,501).【点睛】本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键.三、解答题17.(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(23)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式=-3+4-3=-2(2)原式=(3)原式=2+(-2)+1=1(4)原式=2+2-1=3【点睛】本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.18.(1)或;(2)【分析】(1)方程整理后,利用平方根定义开方即可求出x的值;(2)方程利用立方根定义开立方即可求出x的值.【详解】解:(1),或.(2),.【点睛】此题考查了解析:(1)9x =或9x =-;(2)5x =【分析】(1)方程整理后,利用平方根定义开方即可求出x 的值;(2)方程利用立方根定义开立方即可求出x 的值.【详解】解:(1)2810x -=2x =81,9x =或9x =-.(2)()3164x -= 14x -=,5x =.【点睛】此题考查了立方根,以及平方根,熟练掌握运算法则是解本题的关键.19.同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出 解析:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B =∠DCE ,求出∠DCE =∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.【详解】证明:∵∠B +∠BCD =180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B =∠DCE (两直线平行,同位角相等),又∵∠B =∠D (已知 ),∴∠D =∠DCE (等量代换),∴AD ∥BE (内错角相等,两直线平行),∴∠E =∠DFE (两直线平行,内错角相等).故答案为:同旁内角互补,两直线平行;∠DCE ;两直线平行,同位角相等;DCE ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】本题主要考查平行线的判定和性质,掌握同旁内角互补,两直线平行;内错角相等,两直线平行;两直线平行,内错角相等是解题的关键.20.(1)见解析,,;(2)5;(3) 或【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可; (3)设P 点解析:(1)见解析,()0,3,()4,0;(2)5;(3) ()3,0 或 ()5,0【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据111A B C △的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P 点得坐标为 (),0t ,因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,求解即可. 【详解】解:(1) 如图,111A B C △ 为所作.1A (0,3),1C (4,0);(2) 计算 111A B C △ 的面积 111442421435222=⨯-⨯⨯-⨯⨯-⨯⨯=.(3)设P 点得坐标为(t ,0), 因为以 1A ,1C ,P 为顶点得三角形得面积为 32, 所以 133422t ⨯⨯-=∣∣,解得 3t = 或 5t =, 即 P 点坐标为 (3,0) 或(5,0).【点睛】本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1);(2)【分析】(1)根据A 点在数轴上的位置,可以知道2<a <3,根据a 的范围去绝对值化简即可;(2)先求出b +2,得到它的整数部分,用b +2减去整数部分就是小数部分,从而求出m ;同理可解析:(1)32)【分析】(1)根据A 点在数轴上的位置,可以知道2<a <3,根据a 的范围去绝对值化简即可; (2)先求出b +2,得到它的整数部分,用b +2减去整数部分就是小数部分,从而求出m ;同理可求出n .然后求出2m +2n +1,再求平方根.【详解】解:(1)由图知:23a <<,0a ∴>,30a ->,33∴=-=b a a(2)2325b +==2b ∴+整数部分是3,(532∴=--=-m88(35-=--=+b 8b ∴-的整数部分是6,(561=-=n ,2212()12(21)13m n m n ∴++=++=⨯-+=,221++m n 的平方根为【点睛】本题主要考查了无理数的估算,考核学生的运算能力,解题时注意一个正数的平方根有两个.二十二、解答题22.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1)400=20(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a =±20,∵3a 表示长度,∴a >0,∴a =20,∴这个长方形场地的周长为 2(3a +5a )=16a =1620(m ),∵80=16×5=16×25>1620,∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.二十三、解答题23.(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠; (2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠. 即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠, 1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒, 55BFD FBA FDC ∴∠=∠+∠=︒. 答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠. 即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=, 1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+.答:BFD∠的度数为11 18022αβ︒-+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.24.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【详解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×25=72°,故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.25.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AED80∠=︒.EKD【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI =∠BAI =α,则∠BAE =2α,如图3,∵AB ∥CD ,∴∠CHE =∠BAE =2α,∵∠AED =20°,∠I =30°,∠DKE =∠AKI ,∴∠EDI =α+30°-20°=α+10°,又∵∠EDI :∠CDI =2:1,∴∠CDI =12∠EDK =12α+5°,∵∠CHE 是△DEH 的外角,∴∠CHE =∠EDH +∠DEK , 即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK =70°+10°=80°,∴△DEK 中,∠EKD =180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和. 26.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
华师大版七年级数学下册期末综合检测试卷(含答案)

期末综合检测试卷(满分:120分)一、选择题(每小题3分,共30分)1.下列图形中既是轴对称图形又是中心对称图形的是( A )2.已知⎩⎪⎨⎪⎧ x =1,y =2 是方程组⎩⎪⎨⎪⎧ax +y =-1,2x -by =0 的解,则a +b =( B ) A .2 B .-2 C .4D .- 43.下列正多边形地砖的组合中,能够用来密铺地面的是( B )①正六边形与正三角形;②正五边形与正三角形;③正八边形与正方形;④正三角形与正方形.A .①②③B .①③④C .②③④D .①②③④4.一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( D ) A .106元 B .105元 C .118元D .108元5.一个多边形的内角和与它的一个外角的和为570°,那么这个多边形的边数为( A ) A .5 B .6 C .7D .86.我国民间流传着许多诗歌形式的数学题,如:鸡兔同笼不知数,三十六头笼中露,看来脚有一百只,几多鸡儿几多兔?设鸡为x 只,兔为y 只,则可列方程组( D )A .⎩⎪⎨⎪⎧x +y =1004x +2y =36B .⎩⎪⎨⎪⎧x +y =1002x +4y =36C .⎩⎪⎨⎪⎧x +y =364x +2y =100D .⎩⎪⎨⎪⎧x +y =362x +4y =1007.如图,∠ABC 和∠ACB 的外角平分线相交于点D ,设∠BDC =α,那么∠A =( D )A .90°-αB .90°-12αC .180°-12αD .180°-2α8.已知关于x 的不等式组⎩⎪⎨⎪⎧12(x -1)>m ,x -m >2 的解集是x > - 1 ,那么m 的取值是( D )A .1B .-1C .3D .-39.已知⎩⎪⎨⎪⎧x +2y =4k ,2x +y =2k +1, 且-1<x -y <0,则k 的取值范围为( D )A .-1<k <-12B .0<k <12C .0<k <1D .12<k <110.对于实数x ,我们规定[x ]表示不大于x 的最大整数,例如:[1.2]=1,[3]=3,[-2.5]=-3.若⎣⎡⎦⎤x +410=5,则x 的取值可以是( C )A .40B .45C .51D .56二、填空题(每小题3分,共18分)11.若关于x 的方程(k -2)x |k -1|+5k +1=0是一元一次方程,则k +x = 12.12. 如果2m 、m 、1-m 这三个实数是按在数轴上所对应的点从左到右依次排列的,那么m 的取值范围是 m <0 .13.如图所示,△COD 是△AOB 绕点O 顺时针方向旋转35°后所得的图形,点C 恰好在AB 上,∠AOD =90°,则∠BOC 的度数是 20° .14.如图,D 、E 、F 分别是△ABC 三边延长线上的点,则∠D +∠E +∠F +∠1+∠2+∠3= 180 度.15.将一筐橘子分给若干名儿童,若每人分4个橘子,则剩下9个橘子;若每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推知共有 7 个儿童分 37 个橘子.16.已知方程组⎩⎪⎨⎪⎧ax +5y =15, ①4x -by =-2, ② 由于甲看错了方程①中的a 得到方程组的解为⎩⎪⎨⎪⎧ x =-3,y =-1; 乙看错了方程②中的b 得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.若按正确的a 、b 计算,则原方程组的解为 ⎩⎪⎨⎪⎧x =14,y =295.三、解答题(共72分) 17.(8分)解方程(组):(1)7x -2=3(x +2); (2)⎩⎪⎨⎪⎧3x -2y =-12,①x +2y =4.②解:(1)去括号,得7x -2=3x +6.移项合并,得4x =8,解得x =2.(2)①+②,得4x =-8,解得x =-2.把x =-2代入②,得y =3,则方程组的解为⎩⎪⎨⎪⎧x =-2,y =3.18.(10分)(1)解不等式x +12>2x +23-1,并写出它的正整数解;(2)解不等式组:⎩⎪⎨⎪⎧6x +5≥4x ,18-7x <10-3x .解:(1)去分母,得3(x +1)>2(2x +2)-6.去括号,得3x +3>4x +4-6.移项,得3x -4x >4-6-3.合并同类项,得-x >-5.系数化为1,得x <5.故不等式的正整数解有1,2,3,4.(2)⎩⎪⎨⎪⎧6x +5≥4x , ①18-7x <10-3x . ②解不等式①,得x ≥-52.解不等式②,得x >2.故原不等式组的解集为x >2.19.(7分)已知x =2是方程2-13(m -x )=2x 的解,求代数式m 2-(6m +2)的值.解:把x =2代入方程,得2-13(m -2)=4,解得m =-4.故m 2-(6m +2)=16-(-24+2)=38.20.(7分)如图,在四边形ABCD 中,∠A =∠C =90°,BE 平分∠ABC ,DF 平分∠ADC ,试问BE 和DF 是否平行,为什么?解:BE 和DF 平行.理由如下:在四边形ABCD 中,因为∠A =∠C =90°,所以∠ABC +∠ADC =180°.因为BE 平分∠ABC ,DF 平分∠ADC ,所以∠CBE =12∠ABC ,∠CDF =12∠ADC ,所以∠CBE +∠CDF =12(∠ABC +∠ADC )=90°.在△BCE 中,因为∠C =90°,所以∠CBE +∠CEB =90°,所以∠CDF =∠CEB ,所以BE ∥DF .21.(8分)某厂接到长沙市一所中学的冬季校服订做任务,计划用A 、B 两台大型设备进行加工.如果单独用A 型设备需要90天做完,如果单独用B 型设备需要60天做完,为了同学们能及时领到冬季校服,工厂决定由两台设备同时赶制.(1)两台设备同时加工,共需多少天才能完成?(2)若两台设备同时加工30天后,B 型设备出了故障,暂时不能工作,此时离发冬季校服时间还有13天.如果由A 型设备单独完成剩下的任务,会不会影响学校发校服的时间?请通过计算说明理由.解:(1)设共需x 天才能完成.根据题意,得⎝⎛⎭⎫190+160x =1,解得x =36.即两台设备同时加工,共需36天才能完成.(2)设由A 型设备单独完成剩下的任务需要y 天才能完成.根据题意,得⎝⎛⎭⎫190+160×30+ y90=1,解得 y =15.因为 15>13,所以会影响学校发校服的时间.22.(10分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC 的顶点均在格点上.(1)请画出△ABC 向右平移5个单位长度后得到的△A 1B 1C 1; (2)请画出△ABC 关于点O 对称的△A 2B 2C 2;(3)在直线l 上求作一点P ,使△P AB 的周长最小,并求出此时△P AB 的面积.解:(1)△A 1B 1C 1如图所示. (2)△A 2B 2C 2如图所示.(3)如图所示,此时△P AB 的周长最小,此时S △P AB =12×(1+2)×3-12×1×1-12×2×2=2.23.(10分)某校为学生开展拓展性课程,拟在一块长比宽多6米的长方形场地内建造由两个大棚组成的植物养殖区,要求两个大棚之间有间隔4米的路,设计方案如下图,已知每个大棚的周长为44米.(1)求每个大棚的长和宽各是多少?(2)现有两种大棚造价的方案,方案一是每平方米60元,超过100平方米优惠500元;方案二是每平方米70元,超过100平方米优惠总价的20%,试问选择哪种方案更优惠?解:(1)设每个大棚的宽为a 米,长为b 米.根据题意,得⎩⎪⎨⎪⎧ a +b =22,2a +4-b =6,解得⎩⎪⎨⎪⎧a =8,b =14.即每个大棚的宽为8米,长为14米.(2)由(1)可知,两个大棚的总面积为2×14×8=224(平方米).若按方案一计算,则造价为224×60-500=12 940(元);若按方案二计算,则造价为224×70×(1-20%)=12 544(元),12 544<12 940,所以选择方案二更优惠.24.(12分)我市某商场出售的A 型冰箱每台售价2190元,每日耗电量为1千瓦时,最近商场又购进一批B 型冰箱,其售价比A 型冰箱高出10%,但每日耗电量却为0.55千瓦时,为了减少库存,商场决定对A 型冰箱降价销售.请解答下列问题:(1)已知A 型冰箱进价为1700元,商场为保证利润率不低于3%,试确定A 型冰箱的降价范围;(2)如果只考虑价格与耗电量,那么商场将A 型冰箱的售价至少打几折,消费者购买A 型冰箱比购买B 型冰箱划算?(按使用期为10年,每年为365天,每千瓦时电费为0.40元计算)解:(1)设商场将A 型冰箱降价x 元时,可以保证商场的利润率不低于3%.根据题意,得2190-x -17001700×100%≥3%,解得x ≤439.即A 型冰箱的降价不高于439元时,可以保证商场利润率不低于3%.(2)设商场将A 型冰箱的售价至少打y 折时,消费者购买A 型冰箱比购买B 型冰箱划算.此时购买A 型冰箱使用10年共耗费2190×y10+0.40×1×365×10=(219y +1460)(元);购买B型冰箱使用10年共耗费2190×(1+10%)+0.40×0.55×365×10=3212(元).依题意,得219y +1460≤3212,解得y ≤8.即商场将A 型冰箱的售价至少打8折时,消费者购买A 型冰箱比购买B 型冰箱划算.。
京改版七年级下册数学期末测试卷(综合卷)
京改版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、下列运算正确的是()A. a2⋅a3=a6B. a8÷ a4=a2C. a3+ a3=2 a6D.(a2)3=a62、不等式组的解集是()A. B. C. D.3、若数轴上表示数x的点在原点的左边,则化简的结果是( )A.-4xB.4xC.-2xD.2x4、有4万个不小于70的两位数,从中随机抽取了3000个数据,统计如下:数据x 70<x<79 80<x<89 90<x<99个数800 1300 900平均数78.1 85 91.9请根据表格中的信息,估计这4万个数据的平均数约为()A.92.16B.85.23C.84.73D.77.975、用简便方法计算,将99×101变形正确的是()A. B. C.D.6、在一组数据3,4,4,6,8中,下列说法错误的是()A.它的众数是4B.它的平均数是5C.它的中位数是5D.它的众数等于中位数7、若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5B. <C.a+5>b+6D.﹣a>﹣b8、下列不等式组:① ,② ,③ ,④,⑤ .其中一元一次不等组的个数是()A.2个B.3个C.4个D.5个9、方程组的解是()A. B. C. D.10、已知一个等腰三角形的两边长x,y满足方程组,则此等腰三角形的周长为()A.5B.4C.3D.5或411、下列运算正确的是()A.4a﹣a=3B.a 6÷a 3=a 3C.(ab)2=ab 2D.(a﹣b)2=a 2﹣b 212、五名女生的体重(单位:KG)分别为:37、40、38、42、42,这组数的众数和中位数分别是()A.42、40B.42、38C.40、42D.42、4213、下列运算正确的是()A.(a2)3=a6B.(ab)2=ab2C. a2+ a2=a4D. a• a2=a214、单项式乘以多项式运算法则的依据是()A.乘法交换律B.加法结合律C.乘法分配律D.加法交换律15、求1+2+22+23+…+22014的值,可令S=1+2+22+23+…+22014,则2S=2+22+23+24+…+22015,因此2S﹣S=22015﹣1,S=22015﹣1,我们把这种求和的方法叫错位相加减,仿照上述的思路方法,计算出1+5+52+53+…+52014的值为()A.5 2014﹣1B.5 2015﹣1C.D.二、填空题(共10题,共计30分)16、某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试面试体能甲83 79 90乙85 80 75丙80 90 73该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定________被录用.17、为了解某中学七年级学生的体重情况,从中随机抽取了30名学生进行检测,在该问题中,样本是________.18、分解因式:x²-9=________。
A4版打印人教版七年级下册数学期末测试卷
人教版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、某一段时间,小芳测得连续五天的日最高气温后,整理得出下表(有两个数据被遮盖).被遮盖的两个数据依次是()A.3℃,2;B.3℃,4;C.4℃,2;D.4℃,4.2、如右图,小手盖住的点的坐标可能为()A. B. C. D.3、下列各式正确的是( )A. =±3B. =2C.-3 2=9D.(-2) 3=-84、如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180° D.∠3+∠5=180°5、已知实数a,b满足a+1>b+1,则下列不符合题意的为()A.a>bB.a+2>b+2C.﹣a<﹣bD.2a>3b6、下列说法中错误的是()A. 是绝对值最小的实数B.C. 是的一个平方根D.负数没有立方根7、下列不等式中,是一元一次不等式的是()A.x 2+1>xB.﹣y+1>yC. >2D.x 2+1>08、如图,数轴上有O,A,B,C,D五点,根据图中各点所表示的数,表示数的点会落在( )A.点O和A之间B.点A和B之间C.点C和D之间D.点B和C之间9、如图,已知a∥b,∠1=40°,则∠2=( )A.140°B.120°C.40°D.50°10、如图,直线a,b被直线c所截,a//b,∠1=60°,则∠2的度数是()A.120°B.60°C.45°D.30°11、①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查;②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查;③某班学生拟组织一次春游活动,为了确定春游的地点,向同学们进行调查;④为了解全班同学的作业完成情况,对学号为奇数的学生进行调查.以上调查中,用普查方式收集数据的是()A.①③B.①②C.②④D.②③12、方程组的解为,则a、b分别为()A.a=8,b=-2B.a=8,b=2C.a=12,b=2D.a=18,b=813、某商品原价800元,出售时,标价为1200元,要保持利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折14、如图,三条直线相交于一点O,其中,AB⊥CO,则∠1与∠2()A.互为补角B.互为余角C.相等D.对顶角15、下列各数:、1.414、0. 、、中,其中无理数有()个.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、点M(﹣1,5)向下平移4个单位得N点坐标是________.17、探究:如图①,,试说明.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.解: ∵ .(已知)∴ .(________)同理可证,.∵ ,∴ .(________)应用:如图②,,点F在之间,与交于点M,与交于点N.若,,则的大小为________度.拓展:如图③,直线在直线之间,且,点分别在直线上,点Q是直线上的一个动点,且不在直线上,连结.若,则=________度.18、对于给定的两点M、N,若存在点P,使得三角形PMN的面积等于1,则称点P为线段MN的“单位面积点”.已知在平面直角坐标系中,O为坐标原点,点P(1,0),A(0,2),B(1,3).若将线段OP沿y轴正方向平移t(t>0)个单位长度,使得线段AB上存在线段OP的“单位面积点”,则t的取值范围是________.19、如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=35°,则∠2的度数为________.20、已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是________.21、如果是关于x的一元一次不等式,则其解集为________22、如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=________度.23、目前,很多居民都在用手机里“微信运动”软件记录自己每天走步步数,为了调查长白山地区50岁---70岁市民每天走步步数情况,适合采取________调查(填“全面”或“抽样”).24、如图,点E在AC的延长线上,下列条件①∠3=∠4,②∠1=∠2,③∠D=∠ACD,④∠D+∠ACD=180°中,能判断AB∥CD的是________(填序号即可).25、完成下面推理过程如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.解:因为EF∥AD,所以∠2=________ (________)又因为∠1=∠2所以∠1=∠3 (________)所以AB∥________ (________)所以∠BAC+________=180°(________)因为∠BAC=70°所以∠AGD=________.三、解答题(共6题,共计25分)26、求下列各式中x的值:(1)4x2﹣16=0;(2)x3+3=2.27、如图,已知四边形ABCD中,∠A=106°﹣α,∠ABC=74°+α,BD⊥DC于D,EF⊥DC于F,求证:∠1=∠2.28、在一次“社会主义核心价值观”知识竞赛中,四个小组回答正确题数情况如图,求这四个小组回答正确题数的平均数.29、把下列各数分别填入相应的集合里:+(-2),0,﹣0.314,(两个1间的0的个数依次多1个)﹣(﹣11),,,,正有理数集合:{ …},无理数集合: { …},整数集合: {…},分数集合: {…}.30、已知方程组的解为负数,求k的取值范围.参考答案一、单选题(共15题,共计45分)1、D2、D3、D4、D5、D6、D7、B8、D9、A10、B11、A12、C13、B14、B15、A二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)27、28、29、。
七年级数学人教版下册 第五章《相交线与平行线》 综合练习题(四)
七年级数学第五章《相交线与平行线》综合练习题(四)1.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG=40°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE 平分∠CNG,2∠MEN+∠MGN=102°,求∠AME的度数.(直接写出结果)2.如图,直线PQ∥MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点,(1)若∠1与∠2都是锐角,如图甲,请直接写出∠C与∠1,∠2之间的数量关系;(2)若把一块三角尺(∠A=30°,∠C=90°)按如图乙方式放置,点D,E,F是三角尺的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数;(3)将图乙中的三角尺进行适当转动,如图丙,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,求的值.3.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC =80°.(1)若∠ABC=50°,求∠BED的度数;(2)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ABC=120°,求∠BED的度数.4.已知直线BC∥ED.(1)如图1,若点A在直线DE上,且∠B=44°,∠EAC=57°,求∠BAC的度数;(2)如图2,若点A是直线DE的上方一点,点G在BC的延长线上,求证:∠ACG=∠BAC+∠ABC;(3)如图3,FH平分∠AFE,CH平分∠ACG,且∠FHC比∠A的2倍少60°,直接写出∠A的度数.5.如图1,AB∥CD,直线AE分别交AB、CD于点A、E.点F是直线AE上一点,连结BF,BP平分∠ABF,EP平分∠AEC,BP与EP交于点P.(1)若点F是线段AE上一点,且BF⊥AE,求∠P的度数;(2)若点F是直线AE上一动点(点F与点A不重合),请直接写出∠P与∠AFB之间的数量关系.6.如图1所示,MN∥PQ,∠B与MN,PQ分别交于A、C两点.(1)若∠MAB=30°,∠QCB=20°,求∠B的度数;(2)如图2所示,直线AE,CD相交于D点,且满足∠BAM=n∠MAE,∠BCP=n∠DCP.①当n=2时,若∠ABC=90°,求∠CDA的度数;②试探究∠CDA与∠B的关系.7.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.8.综合与探究问题情境在综合实践课上,老师组织七年级(2)班的同学开展了探究两角之间数量关系的数学活动,如图,已知射线AM∥BN,连接AB,点P是射线AM上的一个动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.探索发现“快乐小组”经过探索后发现:(1)当∠A=60°时,∠CBD=∠A.请说明理由.(2)不断改变∠A的度数,∠CBD与∠A却始终存在某种数量关系,用含∠A的式子表示∠CBD为.操作探究(3)“智慧小组”利用量角器量出∠APB和∠ADB的度数后,探究二者之间的数量关系.他们惊奇地发现,当点P在射线AM上运动时,无论点P在AM上的什么位置,∠APB与∠ADB 之间的数量关系都保持不变,请写出它们的关系,并说明理由.(4)点P继续在射线AM上运动,当运动到使∠ACB=∠ABD时,请直接写出2∠ABC+∠A的结果.9.光线在不同介质的传播速度是不同的,因此当光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也平行.如图标注有∠1~∠8共8个角,其中已知∠1=64°,∠7=42°.(1)分别指出图中的两对同位角,一对内错角,一对同旁内角;(2)直接写出∠2,∠3,∠6,∠8的度数.10.如图,直线MN分别与直线AC、DG交于点B、F,且∠1=∠2.∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C.(1)求证:BE∥CF;(2)若∠C=35°,求∠BED的度数.参考答案1.解:(1)如图1,过G作GH∥AB,∵AB∥CD,∴GH∥AB∥CD,∴∠AMG=∠HGM,∠CNG=∠HGN,∵MG⊥NG,∴∠MGN=∠MGH+∠NGH=∠AMG+∠CNG=90°;(2)如图2,过G作GK∥AB,过点P作PQ∥AB,设∠GND=α,∵GK∥AB,AB∥CD,∴GK∥CD,∴∠KGN=∠GND=α,∵GK∥AB,∠BMG=40°,∴∠MGK=∠BMG=40°,∵MG平分∠BMP,ND平分∠GNP,∴∠GMP=∠BMG=40°,∴∠BMP=80°,∵PQ∥AB,∴∠MPQ=∠BMP=80°,∵ND平分∠GNP,∴∠DNP=∠GND=α,∵AB∥CD,∴PQ∥CD,∴∠QPN=∠DNP=α,∴∠MGN=40°+α,∠MPN=80°﹣α,∴∠MGN+∠MPN=40°+α+80°﹣α=120°;(3)如图3,过G作GK∥AB,过E作ET∥AB,设∠AMF=x,∠GND=y,∵AB,FG交于M,MF平分∠AME,∴∠FME=∠FMA=∠BMG=x,∴∠AME=2x,∵GK∥AB,∴∠MGK=∠BMG=x,∵ET∥AB,∴∠TEM=∠EMA=2x,∵CD∥AB∥KG,∴GK∥CD,∴∠KGN=∠GND=y,∴∠MGN=x+y,∵∠CND=180°,NE平分∠CNG,∴∠CNG=180°﹣y,∠CNE=∠CNG=90°﹣y,∵ET∥AB∥CD,∴ET∥CD,∴∠TEN=∠CNE=90°﹣y,∴∠MEN=∠TEN﹣∠TEM=90°﹣y﹣2x,∠MGN=x+y,∵2∠MEN+∠G=102°,∴2(90°﹣y﹣2x)+x+y=102°,∴x=26°,∴∠AME=2x=52°.2.解:(1)∠C=∠1+∠2.理由:如图,过C作CD∥PQ,∵PQ∥MN,∴PQ∥CD∥MN,∴∠1=∠ACD,∠2=∠BCD,∴∠ACB=∠ACD+∠BCD=∠1+∠2.(2)∵∠AEN=∠A=30°,∴∠MEC=30°,由(1)可得,∠C=∠MEC+∠PDC=90°,∴∠PDC=90°﹣∠MEC=60°,∴∠BDF=∠PDC=60°;(3)设∠CEG=∠CEM=x,则∠GEN=180°﹣2x,由(1)可得,∠C=∠CEM+∠CDP,∴∠CDP=90°﹣∠CEM=90°﹣x,∴∠BDF=90°﹣x,∴==2.3.解:(1)作EF∥AB,如图1,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=25°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=∠ABE=25°,∠FED=∠EDC=40°,∴∠BED=25°+40°=65°;(2)作EF∥AB,如图2,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC=60°,∠EDC=∠ADC=40°,∵AB∥CD,∴EF∥CD,∵∠BEF=180°﹣∠ABE=120°,∠FED=∠EDC=40°,∴∠BED=120°+40°=160°.4.解:(1)∵BC∥ED,∠B=44°,∴∠DAB=∠B=44°,∵∠BAC=180°﹣∠DAB﹣∠EAC∴∠BAC=180°﹣44°﹣57°=79°.(2)过点A作MN∥BG,∴∠ACG=∠MAC,∠ABC=∠MAB而∠MAC=∠MAB+∠BAC∴∠ACG=∠MAB+∠BAC=∠ABC+∠BAC.(3)如图,设AC与FH交于点P∵FH平分∠AFE,CH平分∠ACG∴∠AFH=∠EFH=∠AFE,∠ACH=∠HCG=∠ACG ∵BC∥ED∴∠AFE=∠B∴∠AFH=∠B∵∠A+∠B=∠ACG∴∠ACH=∠ACG=∠A+∠B在△APF和△CPH中∵∠APF=∠CPH∴∠A+∠B=∠A+∠B+∠FHC∴∠FHC=∠A∵∠FCH=2∠A﹣60°∴∠A=2∠A﹣60°∴∠A=40°.5.解:(1)过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠ABP+∠CEP=∠BPQ+∠EPQ=∠BPE,∠ABF+∠CEF=∠BFH+∠EFH=∠BFE,∵BF⊥AE,∴∠ABF+∠CEF=∠BFE=90°,∵BP平分∠ABF,EP平分∠AEC,∴∠ABP+∠CEP=(∠ABF+∠CEF)=45°,∴∠BPE=45°;(2)①当点F在EA的延长线上时,∠BPE=∠AFB,理由如下:如备用图1,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠CEP﹣∠ABP=∠EPQ﹣∠BPQ=∠BPE,∠CEF﹣∠ABF=∠EFH﹣∠BFH=∠BFE,∵BP平分∠ABF,EP平分∠AEC,∴∠CEP﹣∠ABP=(∠CEF﹣∠ABF)=∠BFE=∠AFB,∴∠BPE=∠AFB;②当点F在线段AE上(不与A点重合)时,∠BPE=90°﹣∠AFB;理由如下:如备用图2,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,∠ABF=∠BFH,∠CEF=∠EFH,∴∠ABP+∠CEP=∠BPQ+∠EPQ=∠BPE,∠ABF+∠CEF=∠BFH+∠EFH=∠BFE,∵BP平分∠ABF,EP平分∠AEC,∴∠ABP+∠CEP=(∠ABF+∠CEF),∴∠BPE=∠BFE∴∠BFE=180°﹣∠AFB,∴∠BPE=90°﹣∠AFB;③当点F在AE的延长线上时,∠BPE=90°﹣∠AFB,理由如下:如备用图3,过点P作PQ∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥CD∥PQ∥FH,∴∠ABP=∠BPQ,∠CEP=∠EPQ,180°﹣∠ABF=∠BFH,∠AEC=∠EFH,∴∠CEP+∠ABP=∠EPQ+∠BPQ=∠BPE,∠BFH﹣∠EFH=180°﹣∠ABF﹣∠AEC=∠AFB,∵BP平分∠ABF,EP平分∠AEC,∴∠CEP+∠ABP=(∠AEC+∠ABF)=(180°﹣∠AFB),∴∠BPE=90°﹣∠AFB;综上,当E点在A点上方时,∠BPE=∠AFB,当E点在A点下方时,∠BPE=90°﹣∠AFB.6.解:(1)如图1,过点B作BF∥MN,则∠BAM=∠ABF=30°,∵MN∥PQ,∴PQ∥BF,∴∠CBF=∠QCB=20°,∴∠ABC=∠ABF+∠CBF=50°;(2)①设∠MAE=x°,∠DCP=y°,当n=2时,∠BAM=2x°,∠BCP=2y°,∴∠BCQ=180°﹣2y°,由(1)知,∠ABC=∠BAM+∠BCQ,∴2x+180﹣2y=90,整理,得:x﹣y=﹣45,如图2,延长DA交PQ于点G,∵MN∥PQ,∴∠MAE=∠DGC=x°,则∠CDA=∠DCP﹣∠DGC=y°﹣x°=﹣(x﹣y)°=45°;②n∠CDA+∠ABC=180°,设∠MAE=x°,∠DCP=y°,则∠BAM=n∠MAE=nx°,∠BCP=n∠DCP=ny°,∴∠BCQ=180°﹣ny°,由(1)知,∠ABC=nx°+180°﹣ny°,∴y°﹣x°=,∵MN∥PQ,∴∠MAE=∠DGP=x°,则∠CDA=∠DCP﹣∠DGC=y°﹣x°=,即n∠CDA+∠ABC=180°.7.解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.8.解:(1)∵AM∥BN,∴∠A+∠ABN=180°,又∵∠A=60°,∴∠ABN=180°﹣∠A=120°.∵BC,BD分别平分∠ABP和∠PBN,∴∠CBP=∠ABP,∠DBP=∠PBN,∴∠CBD=∠CBP+∠DBP=∠ABP+∠PBN=∠ABN=60°,∴∠CBD=∠A.(2)∵BC,BD分别平分∠ABP和∠PBN,∴∠CBP=∠ABP,∠DBP=∠PBN,∴∠CBD=∠CBP+∠DBP=∠ABP+∠PBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠ABN=180°﹣∠A,∴∠CBD=.(3)∠APB=2∠ADB理由如下:∵BD分别平分∠PBN,∴∠PBN=2∠NBD,∵AM∥BN,∴∠PBN=∠APB,∠NBD=∠ADB,∴∠APB=2∠ADB.(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC,BD分别平分∠ABP和∠PBN,∴2∠ABC=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴2∠ABC+∠A=(∠A+∠ABN)=×180°=90°.9.解:(1)同位角:∠1与∠2,∠3与∠4,∠5与∠6(写两对即可);内错角:∠5与∠7;同旁内角:∠6与∠8;∠1与∠3;∠2与∠4(写一对即可);(2)∠2=∠1=64°,∠3=180°﹣∠1=116°,∠6=∠5=∠7=42°,∠8=180°﹣∠6=138°.10.(1)证明:方法一:∵∠1=∠2,∠2=∠BFG,∴∠1=∠BFG,∴AC∥DG,∴∠ABF=∠BFG,∵∠ABF的角平分线BE交直线DG于点E,∠BFG的角平分线FC交直线AC于点C,∴∠EBF=∠ABF,BFG,∴∠EBF=∠CFB,∴BE∥CF;方法二:∵∠1=∠2,∠1=∠ABF,∠2=∠BFG,∴∠ABF=∠BFG,∵∠ABF的平分线是BE,∠BFG的平分线是FC,∴∠EBF=∠ABF,BFG,∴∠EBF=∠CFB,∴BE∥CF;(2)解:∵AC∥DG,BE∥CF,∠C=35°,∴∠C=∠CFG=35°,∴∠CFG=∠BEG=35°,∴∠BED=180°﹣∠BEG=145°.。
七年级数学下册期末试卷(含答案)
七年级数学下册期末试卷(含答案)七年级数学下册期末试卷(含答案)一、选择题(每小题2分,共40分)1.已知正整数a,b,c满足a+b+c=12,且a≥3,b≥4,c≥5,则a+b+c的可能取值是A. 1B. 2C. 3D. 4答案:C2.小超一共有20枚硬币,其中10枚是1元硬币,10枚是5角硬币,那么他们加起来的面值共是A. 7元B. 8元C. 9元D. 10元答案:B3.已知直角边分别是3cm和4cm,那么其斜边长是A. 6cmB. 7cmC. 8cmD. 9cm答案:C4.现有一张正方形纸片,纸片上的一点P在纸片的中心,如图所示,若将纸片折叠两次,纸片叠在一起时,点P叠到的位置是A. 顶点B. 中点C. 两边的中点D. 不能确定答案:B5.已知正方形的边长为3cm,那么它的面积是A. 3cm²B. 6cm²C. 9cm²D. 12cm²答案:C......二、填空题(每小题3分,共30分)1.在数轴上,点A的坐标是________,点B的坐标是________。
答案:A:-3 B:52.将10锭银行卡发给9人,每人多少锭?答案:1⅙锭3.在△ABC中,∠A=45°,BC=6cm,AB=________。
答案:6√2cm4.一个整数,奇数位上的数是9,各位上的数比奇数位上的数多2,且这个整数与100的差是900,那么这个整数是________。
答案:8795.如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,BD=________。
答案:8cm......三、解答题(每小题10分,共40分)1.某公交车厂2008年的货车销售量为300辆,每年递增20%,问2008年到2020年,货车销售量递增了多少辆?答案:设2020年的货车销售量为x辆。
根据题意,有:300 ×(1 + 20%)^12 = x求得x ≈ 1531.19所以,2008年到2020年,货车销售量递增了约1531.19 - 300 ≈ 1231.19辆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学期末综合练习卷
学校 班别 姓名 学号
一、选择题(每题3分,共30分)
⒈下列方程中是一元一次方程的是( )
A B x2=1 C 2x+y=1 D x-3=
2.对于方程组 由②-①,得( )
A x=4 B x=-4 C 5x=4 D 5x=-4
3.已知 ,是方程2x-ay=3的一个解,那么a的值是( )
A 1 B 3 C -3 D -1
⒋若二元一方程组 和2x-my=-1有公共解,则m的取值为( )
A -2 B -1 C 3 D 4
⒌为搞活经济,某商场将一种商品A按标价的9折出售,仍获利润10%,若商品A标价为33元,那么商品
进货价为( )
A 31元 B 30.2元 C 29.7元 D 27元
6.不等式组 的解集为( )
A 2
7.如果等腰三角形的一个底角为α,那么( )
A 0°<α<90° B α不小于45° C 90°<α<180° D α不大于90°
8.有下列命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两条直线平行;③相等的角是对顶角;
④同位角相等。其中错误的有( )
A 1个 B 2个 C 3个 B 4个
⒏如图,CE平分∠ACB,且CE⊥DB,∠DAB=∠DBA,又知AC=18,△CDB的周长为28,那么BD的长为
( )
A 7 B 8 C 9 D 10
10已知等腰三角形的一边长为3,另一边长为8,则它的周长为( )
A 14 B 19 C 11 D 14或19
二、填空题(每题4分,共20分)
11.a,b满足 ,a+b=
12.从某鱼塘捕鱼200条做好标记后放回,隔一段时间再捕鱼30条,发现其中带标记的有4条,鱼塘中约有
鱼 条
13.三角形中有两边长为5和8,第三边长为x,则x的取值范围是
14.如图, △ABC中,∠A=∠ACB,CD是∠ACB的平分线,∠ADC=120°,则∠ABC的度数为
15.为了了解初一(1)班44名学生的数学成绩,从中抽取了9名学生的数学成绩,总体是 ,样本是
三、解答题(16、17题每题3分,18~20题每题4分,21~24题每题8分,共50分)
16.已知关于x、y的方程组 的一组解是 ,求a,b的值
17.解不等式组
18.如图,在直角坐标系中,A(-3,4)、B(-1,-2),O为原点,求三角形ABO的面积。
19.已知等腰三角形的两边长分别为3和7,求这个三角形的周长。
20.如图,AF、AD分别是△ABC的高和角平分线,且∠B=36°, ∠C=76°,求∠DAF的度数。
21.新民场镇地处城郊,镇政府为进一步改善场镇人居环境,准备在街道两边种植行道树,行道树的树种选择
取决于居民的喜爱情况。为此,新民初中社会调查小组在场镇随机调查了部分居民,并将结果绘制成如图所示
的扇形统计图,其中∠AOB=126°。
请根据扇形统计图,完成下列问题:
(1)本次调查了多少名居民?其中喜爱柳树的居民有多少人?
(2)请将扇形统计图改成条形统计图;
22.女子国际象棋比赛中规定,胜方得1分,负方得0分,和棋各得0.5分,在1993年女子国际象棋比赛中,
我国女子国际象棋大师谢军在卫冕第11盘结束后,积分遥遥领先,从而卫冕成功,获得冠军,其积分比俄罗
斯的谢莉阿妮的积分的3倍还多1分,求两人的积分各是多少?
23.从甲地到乙地,公共汽车需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5小时
即可到达。试就以上情境提出问题并解答。
24.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其金价和销售价如下表:
商品类别 A B
进价(元/件) 1200 1000
售价(元/件) 1380 1200
(注:获利=售价-进价)
(1)该商场购进A、B两种商品各多少件?(2)商场第二次以原价购进A、B两种商品。购进 B种商品的件
数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售。若两种商品
销售完毕,要使第二次经营获利不少于81600元,B种商品最低售价为每件多少元?
答案
一、选择1.D 2.A 3.A 4.C 5.B 6.A 7.A 8.B 9.D 10.A
二、填空11.2 12.1500 13.3
16. 把 代入 ,得 ,解得
17.解:①2x+5≤3x+6
2x-3x≤6-5
-x≤1
x≥-1
②x- x<1
x<1
x<3
∴不等式组的解集为-1≤x<3
18.设底为7,腰为3
∵3×2<7
∴7不能做底
设底为3,腰为7
∵7+7>3
∴周长为7+7+13=17
答:这个三角形的周长是17。
19.解:在△ABC中
∵∠BAC+∠B+∠C=180°(三角形的内角和等于180°)
∵∠B=36°, ∠C=76°(已知)
∴∠BAC=68°
∵AD平分∠BAC(已知)
∴∠BAD= ∠BAC=34°(角平分线的定义)
在△BAF中
∵AF是高(已知)
∴AF⊥BC(高的定义)
∴∠BFA=90°(垂直定义)
∴∠B+∠BAF=90°(直角三角形锐角互余)
∵∠B=36°
∴∠BAF=54°
∴∠DAF=∠BAF-∠BAD=20°
20.解:过A作AC‖x轴,交y轴于D,则AC=3,BD=1
S△ABO= SACDB- S△ACO- S△BDO
= ×(3+1)×6- ×3×4- ×1×2
=12-6-1
=5
21.(1)调查了的居民数:280÷ =180(名)
喜爱柳树的居民数:800×(1- -10%-40%-10%=5%)=40(人)
(2)
22.解:设谢军的积分为x分,谢莉阿妮的积分为y分。
,解得
答:谢军的积分为8.5分,谢莉阿妮的积分为2.5分
23.略
24.解:(1)设该商场购进A商品x件,B商品y件。
化简得
③×2:12x+10y=3600⑤
⑤-④:3x=600
x=200
把x=200代入③:6×200+5y=1800
1200+5y=1800
5y=600
y=120
∴ 是原方程组的解
(2)设B种商品最低售价为每件a元。
(1380-1200)×2×200+(a-1000)×120≥81600
180×400+120a-120000≥81600
72000+120a-120000≥81600
120a-48000≥81600
120a≥129600
a≥1080
∴B种商品最低售价为每件1080元。
答:(1)该商场购进A商品200件,B商品120件。(2)B种商品最低售价为每件1080元。