高二数学(人教版选修)教案:《四种命题间的相互关系》

合集下载

高二数学 (人教a版)选修1-1教案:1.1.2四种命题间的相互关系

高二数学    (人教a版)选修1-1教案:1.1.2四种命题间的相互关系

§1.1.2 四种命题间的相互关系五.体验与运用例1:设原命题是“当c>0时,若a>b,则ac>bc”,写出它的逆命题、否命题与逆否命题,并分别判断它们的真假解:逆命题“当时,若,则”.否命题“当时,若,则”.否命题为真.逆否命题“当时,若,则”.逆否命题为真.课堂练习写出命题:“若xy = 6则x = 3且y = 2”的逆命题否命题逆否命题,并判断它们的真假例2:证明:若022=+yx,则0==yx。

练习:已知a,b两直线是异面直线,且点A与B,C与D分别是直线a,b 上的相异点求证:直线AC与BD必异面通过“正难则反”培养自己的逆向思维能力.这也是反证明法证明问题的理论依据六、小结与反思课堂小结1.写一个命题的逆命题、否命题、逆否命题的关键是分清楚原命题的条件和结论,一般大前提不变.2.在命题真假性的判断中,要借助原命题与逆否命题同真同假,逆命题与否命题同真同假,学会利用互为逆否命题的等价性,通过“正难则反”培养自己的逆向思维能力.这也是反证明法证明问题的理论依据.通过学生自己的小结,将新知识系统化、重点化。

通过学生的反思,使学生意识重点和难点,提高学习效率。

课后练习1.如果一个命题的否命题是真命题,那么这个命题的逆命题是()A.真命题,B.假命题,C.不一定是真命题,D.不一定是假命题。

2.一个命题与它的逆命题、否命题、逆否命题这四个命题中()A.真命题的个数一定是奇数B.真命题的个数一定是偶数C.真命题的个数可能是奇数也可能是偶数D.上述判断都不正确3.已知原命题“菱形的对角线互相垂直”,则它的逆命题、否命题、逆否命题的真假判断正确的是( )A.逆命题、否命题、逆否命题都为真B.逆命题为真,否命题、逆否命题为假C .逆命题为假,否命题、逆否命题为真D .逆命题、否命题为假,逆否命题为真 4.有下列四个命题:①“若1,xy =则,x y 互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题③“若0b ≤,则关于若x 的方程若2220x bx b b -++=有实根”的逆否命题 ④“A B B =U ,则A B ⊇”的逆否命题其中,真命题的个数是( )A . 0B . 1C . 2D .35.用反证法证明命题“a 、b ∈N *,ab 可被5整除,那么a ,b 中至少有一个能被5整除”,那么假设内容是( )A .a 、b 都能被5整除B .a 、b 都不能被5整除C .a 不能被5整除D .a 、b 有一个不能被5整除 6.下列4个命题是真命题的是( )①“若022=+y x 则x 、y 均为零”的逆命题 ②“相似三角形的面积相等”的否命题 ③“若B A I A =则B A ⊆”的逆否命题④“末位数字不是零的数可被3整除”的逆否命题A. ①②B. ②③C. ①③D. ③④7、命题“若a >b ,则ac 2>bc 2(a 、b ∈R )”与它的逆命题、否命题中,真命题的个数为( )A.3B.2C.1D.0 8.“在整数范围内,a ,b 是偶数,则b a +是偶数”的逆否命题是 。

高二数学1.1.2四种命题及其相互关系学案新人教A版选修1-1

高二数学1.1.2四种命题及其相互关系学案新人教A版选修1-1

a, b 全不为 0,则 a2+b2≠ 0”
D.一个命题的否命题为真,则它的逆命题一定为真
解析: 否命题和逆命题是互为逆否命题,有着一致的真假性.
3.已知原命题“若两个三角形全等,则这两个三角形面积相等”,那么它的逆命题、否命
题、逆否命题中,真命题的个数是 ( B)
A. 0 个 B . 1 个 C.2 个 D . 3 个
高中数学 1.1.2 四种命题及其相互关系学案
?基础梳理
1.四种命题的概念.
(1) 一般地,对于两个命题,如果一个命题的
条件和结论
分别是另一个命题的 结论和条件 ,那么我们把这样的两个命题叫做互逆命题.其中一个命题
叫做原命题,另一个叫做原命题的 逆命题 .
(2) 如果一个命题的 条件和结论 恰好是另一个命题的 条件的否定和结论的否定 ,我们把这样 、 y 互为相反数”的逆命题; ②“若 a>b,则 a2>b2”的逆否命题;③“若 x≤- 3,则 x 2+ x-6>0”的否命题;④“若 ab
是无理数,则 a、 b 是无理数”的逆命题.
其中真命题的个数是 ( B)
由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:
(1) 两个命题互为逆否命题,它们有 相同 的真假性.
(2) 两个命题为互逆命题或互否命题,它们的真假性
没有关系 . , ?自测自评
1.命题“若函数 f ( x) = log ax( a>0,a≠ 1) 在其定义域内是减函数,则 log a2<0”的逆否命题
C.若 x, y ∈ R 且 x , y 全为 1,则 ( x - 1) 2+ ( y- 1) 2= 0 D.若 x, y ∈ R 且 xy≠1,则 ( x -1) 2+ ( y- 1) 2= 0 2.下列命题中,不是真命题的是 ( D) A.“若 b2- 4ac>0,则二次方程 ax2+ bx+ c= 0 有实根”的逆否命题 B.“四边相等的四边形是正方形”的逆命题 C.“ x 2= 9,则 x=3”的否命题 D.“内错角相等”的逆命题 3.命题“ a, b 是实数,若 | a- 1| + | b- 1| = 0,则 a= b= 1”,用反证法证明时反设为:

人教版高中数学四种命题间的相互关系教案

人教版高中数学四种命题间的相互关系教案

D. 不一定是假命题.
课堂练习
判断正误:
(1)四种命题中真命题的个数一定是偶数;

× (2) 若一个命题的逆命题是真命题,则它的否命题不一定是真命题;
(3)逆命题与否命题之间是互为逆否关系;

× (4) 若一个命题的逆否命题是假命题,则它的逆命题与否命题都是假命题.
课堂练习
下列命题:
①“等边三角形的三内角均为60o”的逆命题;
课堂练习
B (2010天津高考,理3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )
A.若f(x)是偶函数,则f(-x)是偶函数 B.若f(x)不是奇函数,则f(-x)不是奇函数 C.若f(-x)是奇函数,则f(x)是奇函数 D.若f(-x)不是奇函数,则f(x)不是奇函数。
小结
(3)原命题:若x 2 3x 2 0,则x 2 (4)原命题:若a b,则ac bc 2.请5~8组同学自行编写命题,分别写出原命题的逆命题、否命题及逆否命题,并判断四种命 题的真假。
新知探究
(1)原命题:若a b,则a c b c

逆命题:若a c b c,则a b


逆命题:若x 2,则x 2

逆否命题:若x 2,则x2 3x 2 0

新知探究
(4)原命题:若a b,则ac bc

逆命题:若ac bc,则a b

否命题:若a b,则ac bc

逆否命题:若ac bc,则a b
预习反馈
四种命题的相互关系:
原命题 若p,则q
互逆
互 否
否命题 若¬ p,则¬ q
互逆
逆命题 若q,则p
互 否

高考高中数学四种命题的相互关系

高考高中数学四种命题的相互关系

原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互四种命题的相互关系教学目标:1.熟练四种命题之间的关系,及四种命题的真假性之间的关系,并能利用四种命题真假性之间的内在联系进行推理论证2.培养学生简单推理的思维能力.教学重点:四种命题之间的相互关系即真假性之间的联系教学难点:利用真假性之间的内在联系进行推理论证.授课类型:新授课教具准备:多媒体课件.教学过程:一.复习引入:1.二.新课教授1.四种命题间的相互关系以下四个命题中,〔1〕假设f (x) 是正弦函数,那么f (x) 是周期函数;〔2〕假设f (x) 是周期函数,那么f (x) 是正弦函数;〔3〕假设f (x) 不是正弦函数,那么f (x) 不是周期函数;〔4〕假设f (x) 不是周期函数,那么f (x) 不是正弦函数;命题〔1〕与命题〔2〕〔3〕〔4〕之间的关系我们已经了解,那么任意两个命题间的关系是: 〔老师引导—学生答复〕归纳:原命题、逆命题、否命题 和逆否命题之间的关系:2.四种命题真假性之间的关系〔1〕讨论:①例1中三个命题的真假与它们的逆命题、否命题、逆否命题的真假间关系: 〔学生答复〕:原命题〔1〕为真其逆命题〔2〕为假其否命题〔3〕为假其逆否命题〔4〕为真发现有以下规律:②〔探究中〕以“假设x2-3x +2=0,那么x =2”为原命题,写出其逆命题,否命题及逆否命题,并判断真假性。

〔学生答复〕:原命题为:假设x2-3x +2=0,那么x =2,为假其逆命题为:假设x =2,那么x2-3x +2=0,为真其否命题为:假设x2-3x +2≠0,那么x ≠2,为真其逆否命题为:假设x ≠2,那么x2-3x +2≠0,为假发现有另外的规律,③再举其它例子:写出“同位角相等,两直线平行〞的逆命题,否命题及逆否命题,并判断真假性。

〔学生答复〕: 原命题为:同位角相等,两直线平行,为真其逆命题为:两直线平行,同位角相等,为真其否命题为:同位角不相等,两直线不平行,为真其逆否命题为:两直线不平行,同位角不相等,为真发现还存在以下规律:④把以上命题改成:同位角不相等,两直线平行,写出其逆命题,否命题及逆否命题,并判断真假性。

人教版高中数学优质教案4-1.1.3 四种命题间的相互关系 教学设计

人教版高中数学优质教案4-1.1.3  四种命题间的相互关系 教学设计

1.1.3 四种命题间的相互关系一、学习内容、要求及建议二、预习指导1.预习目标(1)了解命题的逆命题、否命题与逆否命题的意义;会分析四种命题的相互关系.(2)感悟四种命题真假性的判断方法:直接判断、利用等价性判断.2.典型例题(1)如何判断一个命题的真假?例1 判断下列语句是不是命题?若是,判断其真假,若不是,请说明理由.①x2-5x+6=0;②当x=4时,2x<0;③垂直于同一条直线的两条直线必平行吗?④一个数不是合数就是质数;⑤求证:若x∈R,方程x2+x+1=0无实根.(2)如何写出四种命题,它们的真假关系如何?例2 已知命题:有一组对边平行,而另一组对边相等的四边形是平行四边形.请判断这个命题和它的否命题的真假.例3 原命题“若xy=1,则x,y互为倒数”,请写出它的逆命题、否命题和逆否命题,并判断真假.3.自我检测1.命题“如果x≥a2+b2,那么x≥2ab”的等价命题是()A.如果x<a2+b2,那么x<2abB.如果x≥2ab,那么x≥a2+b2C.如果x<2ab,那么x<a2+b2D.如果x≥a2+b2,那么x<2ab2.若命题p的等价命题是q,q的逆命题是r,则p与r是()A.互逆命题B.互否命题C.互逆否命题D.不确定3.在命题“若函数f(x)是偶函数,则f(x)的图象关于y轴对称”的逆命题,否命题,逆否命题中结论成立的是()A.都真B.都假C.否命题假,逆命题真D.逆否命题假4.关于命题:“设a,b为实数,若ab=0,则a,b至少有一个为0.”有下列说法: ①原命题为真命题;②逆命题为真命题;③否命题为“设a,b为实数,若ab≠0,则a,b不都为0”;④逆否命题为“设a,b为实数,若a,b都不为0,则ab≠0”.其中,说法不正确的个数是()A.0B.1C.2D.35.关于原命题“在△ABC中,若cos A=2sin B sin C,则△ABC是钝角三角形”的叙述:①原命题是假命题;②逆命题为假命题;③否命题是假命题;④逆否命题为真命题.其中,正确的个数是()A.1B.2C.3D.4三、拓展视野我们规定真命题赋值为1,假命题赋值为0,“1”或“0”均称作命题的“真值”.命题A:“在同一个直角坐标系中,曲线y = a x(a > 0)的图象与y = x的图象至多有一个交点.”那么,命题A的真值是_______.——★参考答案★——例1 【分析】可以判断真假的语句叫做命题,命题非真即假,二者必居其一.对于不含逻辑联结词的简单命题,可直接判断其真假.[答案]解:①不是命题,因为语句中含有变量x,在不给定变量的值之前,我们无法确定该语句的真假(这种含有变量的语句叫“开语句”);②是命题,它是能作出真假判断的语句,它是一个假命题;③不是命题,因为没有对垂直于同一条直线的两条直线是否平行作出判断,疑问句不是命题;④是命题,假命题,因为数1既不是质数也不是合数;⑤不是命题,它是祈使句,没有作出判断.【点评】开语句、疑问句、祈使句、感叹句都不是命题.例2 【分析】我们先要把命题写成为“若p则q”的形式,然后写出命题的逆命题、否命题与逆否命题.[答案]解:等腰梯形的一组对边平行,另一组对边相等,但等腰梯形不是平行四边形,故原命题是假命题.又平行四边形的一组对边平行,另一组对边相等,即逆命题是真命题,据逆命题和否命题的等价性知,否命题是真命题.【点评】直接举反例可知原命题为假命题.而否命题的真假难判定,则通过判定其等价命题--逆命题的真假来推得结论.原命题与逆否命题、逆命题与否命题是等价命题,它们同真或同假.例3 【分析】因为互为逆否命题的两个命题同真或同假,所以要判断四种命题的真假,只需判断其中两个的真假,然后利用等价性得到另两个命题的真假.[答案]解:原命题“若xy=1,则x,y互为倒数”是真命题,逆否命题:“若x,y不互为倒数,则xy≠1”,因为原命题与逆否命题是等价命题,它们同真或同假,所以逆否命题是真命题;逆命题:“若x,y互为倒数,则xy=1”,是真命题,否命题:“若xy≠1,则x,y不互为倒数”,因为逆命题与否命题是等价命题,它们同真或同假,所以否命题是真命题.因此原命题、逆命题、否命题、逆否命题都是真命题.【点评】本题是利用四种命题的关系判断四种命题的真假.自我检测1.[答案]C[解析]等价命题即为原命题的逆否命题,故选C.2.[答案]B[解析]因为p与q的条件与结论既互换又否定,且q与r的条件与结论互换,所以p与r的条件与结论是相互否定的,故p与r是互否命题.3.[答案]A[解析]因为f(x)是偶函数,与f(x)的图象关于y轴对称是等价的,故四种命题均为真命题.4.[答案]B[解析]①原命题为真命题;②逆命题为“设a,b为实数,若a,b至少有一个为0,则ab=0”,真命题;③否命题为“设a,b为实数,若ab≠0,则a,b都不为0”,故③不正确;④正确.5.[答案]C[解析]在△ABC中,若cos A=2sin B sin C,则-cos(B+C)=2sin B sin C,得cos B cos C+sin B sin C=0,得cos(B-C)=0,故B-C=90°或B-C=-90°,即B=C+90°或C=B+90°,故△ABC是钝角三角形,原命题与逆否命题为真命题.逆命题和否命题互为逆否命题,是假命题,如在钝角△ABC中,A=15°,B=15°,C=150°,cos A=cos15°=4,sin B=sin15°=4,sin C=sin150°=12,2sin B sin C=4≠cos A.三、拓展视野[答案]解:当a =1和0 <a < 1时,y = a x与y = x的图象有且仅有一个交点;而当a > 1时,若取a =2,则x =1时,y = a x= 2>1,(1,2)在直线y =x的上方;当x =2时,y = a x =2,(2,2)是两曲线的一个交点,当x = 3时,y = a x= 22< 3,(3,22)在直线y = x 的下方;当x = 4时,y = a x= 4,(4 ,4)是两曲线的另一个交点;当x> 4时,(2)x>x,两曲线再无交点.所以,当a = 2时,y = a x的图象与y =x的图象有两个交点,故命题A是假命题,其真值为0.【点评】题中当0 < a ≤1时两曲线只有一个公共点,但当a> 1且a比较接近1时,如解中的a =2,或a = 1.1等,两曲线有两个公共点.而当a较大时,如a =2,a =3等时,两曲线无公共点.判断一个命题为假,只需找出一个反例.故A是假命题.。

高中数学第1章1.11.1.2四种命题1.1.3四种命题间的相互关系教师用书教案新人教A版选修1

高中数学第1章1.11.1.2四种命题1.1.3四种命题间的相互关系教师用书教案新人教A版选修1

1.1.2 四种命题1.1.3四种命题间的相互关系学习目标核心素养1.了解命题的四种形式,能写出一个命题的逆命题、否命题和逆否命题.(重点)2.理解并掌握四种命题之间的关系及其真假性之间的关系.(易混点)3.能够利用命题的等价性解决有关问题.(难点)借助命题的等价性解题培养数学抽象、逻辑推理素养.1.四种命题的概念及结构(1)四种命题的概念对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么把这样的两个命题叫做互逆命题,如果恰好是另一个命题的条件的否定和结论的否定,那么把这样的两个命题叫做互否命题,如果恰好是另一个命题结论的否定和条件的否定,那么把这样的两个命题叫做互为逆否命题,把第一个叫做原命题时,另三个可分别称为原命题的逆命题、否命题、逆否命题.(2)四种命题结构2.四种命题间的相互关系(1)四种命题之间的关系(2)四种命题间的真假关系原命题逆命题否命题逆否命题真真真真真 假 假 真 假 真 真 假 假假假假①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系. 思考:(1)“a =b =c =0”的否定是什么?(2)在原命题、逆命题、否命题和逆否命题四个命题中,真命题的个数会是奇数吗? [提示] (1)“a =b =c =0”的否定是“a ,b ,c 至少有一个不等于0”. (2)真命题的个数只能是0,2,4,不会是奇数.1.命题“若m =10,则m 2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是( )A .原命题、否命题B .原命题、逆命题C .原命题、逆否命题D .逆命题、否命题C [原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C .] 2.给出以下命题:①若一个四边形的四条边不相等,则它不是正方形; ②若一个四边形的对角互补,则它内接于圆; ③正方形的四条边相等; ④圆内接四边形的对角互补; ⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________;互为否命题的有______;互为逆否命题的有________. ③和⑥,②和④ ①和⑥,②和⑤ ①和③,④和⑤ [互为逆命题有③和⑥,②和④;互为否命题有①和⑥,②和⑤;互为逆否命题有①和③,④和⑤.]3.已知命题p :若x =π3,则cos x =12,则命题p 的逆命题为________;命题p 的否命题为________;命题p 的逆否命题为________.[答案] 若cos x =12,则x =π3 若x ≠π3,则cos x ≠12若cos x ≠12,则x ≠π3写出原命题的其他三种命题(1)若sin α=12,则tan α=3;(2)若a +b 是偶数,则a ,b 都是偶数; (3)等底等高的两个三角形是全等三角形; (4)当1<x <2时,x 2-3x +2<0; (5)若ab =0,则a =0或b =0.[解] (1)逆命题:若tan α=3,则sin α=12.否命题:若sin α≠12,则tan α≠ 3.逆否命题:若tan α≠3,则sin α≠12.(2)逆命题:若a ,b 都是偶数,则a +b 是偶数. 否命题:若a +b 不是偶数,则a ,b 不都是偶数. 逆否命题:若a ,b 不都是偶数,则a +b 不是偶数. (3)逆命题:若两个三角形全等,则这两个三角形等底等高. 否命题:若两个三角形不等底或不等高,则这两个三角形不全等. 逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高. (4)逆命题:若x 2-3x +2<0,则1<x <2. 否命题:若x ≤1或x ≥2,则x 2-3x +2≥0. 逆否命题:若x 2-3x +2≥0,则x ≤1或x ≥2. (5)逆命题:若a =0或b =0,则ab =0. 否命题:若ab ≠0,则a ≠0且b ≠0. 逆否命题:若a ≠0且b ≠0,则ab ≠0.1.写出一个命题的逆命题、否命题、逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:原词语等于(=)大于(>)小于(<)是都是至多有一个否定词语不等于(≠)不大于(≤)不小于(≥)不是不都是至少有两个原词语至少有一个至多有n个任意的任意两个所有的能否定词语一个也没有至少有(n+1)个某一个(确定的)某两个某些不能[跟进训练]1.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假.(1)正数a的立方根不等于0;(2)在同一平面内,平行于同一条直线的两条直线平行.[解](1)原命题:若a是正数,则a的立方根不等于0,是真命题.逆命题:若a的立方根不等于0,则a是正数,是假命题.否命题:若a不是正数,则a的立方根等于0,是假命题.逆否命题:若a的立方根等于0,则a不是正数,是真命题.(2)原命题:在同一平面内,若两条直线平行于同一条直线,则这两条直线平行,是真命题.逆命题:在同一平面内,若两条直线平行,则这两条直线平行于同一条直线,是真命题.否命题:在同一平面内,若两条直线不平行于同一条直线,则这两条直线不平行,是真命题.逆否命题:在同一平面内,若两条直线不平行,则这两条直线不平行于同一条直线,真命题.四种命题的关系及真假判断否命题、逆否命题,在这4个命题中,真命题的个数为( )A .0个B .1个C .2个D .4个(2)判断命题“若a ≥0,则x 2+x -a =0有实根”的逆否命题的真假. [思路点拨] (1)只需判断原命题和逆命题的真假即可. (2)思路一写出原命题的逆否命题→判断其真假思路二原命题与逆否命题同真同假(即等价关系)→判断原命题的真假→得到逆否命题的真假(1)C [当c =0时,ac 2>bc 2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac 2>bc 2,则a >b ”是真命题,从而否命题也是真命题,故选C .](2)[解] 法一:原命题的逆否命题:若x 2+x -a =0无实根,则a <0. ∵x 2+x -a =0无实根,∴Δ=1+4a <0,解得a <-14<0,∴原命题的逆否命题为真命题.法二:∵a ≥0,∴4a ≥0,∴对于方程x 2+x -a =0,根的判别式Δ=1+4a >0,∴方程x 2+x -a =0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.判断命题真假的方法(1)解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证.(2)原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可.[跟进训练]2.判断下列四个命题的真假,并说明理由. (1)“若x +y =0,则x ,y 互为相反数”的否命题; (2)“若x >y ,则x 2>y 2”的逆否命题; (3)“若x ≤3,则x 2-x -6>0”的否命题;(4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.等价命题的应用1.命题“若x≠1,则x2-2x-3≠0”的等价命题是什么,其命题真假如何?提示:等价命题为“若x2-2x-3=0,则x=1”,其为假命题.2.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?提示:一个命题与其逆否命题等价,我们可研究其逆否命题.【例3】证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.[思路点拨]证明其逆否命题成立⇒原命题成立.[证明]原命题的逆否命题为“已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若a +b<0,则f(a)+f(b)<f(-a)+f(-b)”.若a+b<0,则a<-b,b<-a.∵f(x)在(-∞,+∞)上是增函数,∴f(a)<f(-b),f(b)<f(-a),∴f(a)+f(b)<f(-a)+f(-b).即原命题的逆否命题为真命题.∴原命题为真命题.1.若一个命题的条件或结论含有否定词时,直接判断命题的真假较为困难,这时可以转化为判断它的逆否命题.2.当证明一个命题有困难时,可尝试证明其逆否命题成立.[跟进训练]3.判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集是空集,则a<2”的真假.[解]原命题的逆否命题为“已知a,x为实数,若a≥2,则关于x的不等式x2+(2a+1)x +a2+2≤0的解集不是空集”.判断真假如下:抛物线y=x2+(2a+1)x+a2+2的开口向上,根的判别式Δ=(2a+1)2-4(a2+2)=4a-7,因为a≥2,所以4a-7>0,即抛物线与x轴有交点,所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,故原命题的逆否命题为真,从而原命题为真.1.写四种命题时,可以按下列步骤进行:(1)找出命题的条件p和结论q;(2)写出条件p的否定¬p和结论q的否定¬q;(3)按照四种命题的结构写出所求命题.2.每一个命题都由条件和结论组成,要分清条件和结论.3.判断命题的真假可以根据互为逆否的命题真假性相同来判断,这也是反证法的理论基础.1.判断正误(1)命题“若p,则q”的否命题为“若¬p,则¬q”.( )(2)同时否定原命题的条件和结论,所得的命题是否命题.()(3)命题“若A∩B=A,则A∪B=B”的逆否命题是“若A∪B≠B,则A∩B≠A”.[答案](1)×(2)√(3)√2.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.1B.2C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.]3.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]4.写出下列命题的逆命题、否命题、逆否命题,并判断真假.(1)若a>b,则ac2>bc2;(2)在二次函数y=ax2+bx+c中,若b2-4ac<0,则该函数的图象与x轴无交点.[解](1)逆命题:若ac2>bc2,则a>b,真命题.否命题:若a≤b,则ac2≤bc2,真命题.逆否命题:若ac2≤bc2,则a≤b,假命题.(2)逆命题:在二次函数y=ax2+bx+c中,若图象与x轴无交点,则b2-4ac<0,真命题.否命题:在二次函数y=ax2+bx+c中,若b2-4ac≥0,则图象与x轴有交点,真命题.逆否命题:在二次函数y=ax2+bx+c中,若图象与x轴有交点,则b2-4ac≥0,真命题.。

人教课标版高中数学选修2-1《四种命题间的相互关系》参考学案

1.1.3 四种命题间的相互关系学习目标:进一步理解四种命题相互关系,理解用互为逆否命题的真假来证明命题,即反证法。

学习重点:四种命题真假关系学习难点:反证法的简单应用。

讲学过程:一、复习准备:写出它的逆命题、否命题、逆否命题、命题的否定,并分别判断它们的真假:1)若a>1,则a-1>0; 2) 若q<1,则方程 022=++q x x 有实根 逆命题: 逆命题:否命题: 否命题:逆否命题: 逆否命题:3) 若x 2-3x+2=0,则x=2; 4)若ab ,0≠则a 、b 中至少有一个为0。

逆命题: 逆命题:否命题: 否命题:逆否命题: 逆否命题:二、新课:1、四种命题的相互关系:结论一:原命题与它的逆否命题 ;结论二:两个命题为 命题或 命题,它们的真假性没有关系.2、四种命题的真假关系:原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p 逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互3、当堂检测---写出它的逆命题、否命题、逆否命题、命题的否定,并分别判断它们的真假:1)若a>-3,则a>-6 2)若(x-7)(x-3)=0,则x=33)若a b >,则a c b c +>+; 4)若x > y, 则x 2 > y 24、反证法概念求证:若x 2+y 2=0,则x=y=0反证法步骤----5、跟踪练习---用反证法证明:1、证明:若222p q +=,则2p q +≤2、证明1,034222≠-≠--+-b a b a b a 则三、小结:掌握一些词语的否定,如。

四种命题的相互关系教案

四种命题的相互关系教案
一、教学目标
1.能够认识四种命题的概念;
2.能够掌握四种命题的相互关系;
3.能够掌握判断命题真假的技巧。

二、教学内容
本课的内容主要讲解四种命题的相互关系,具体包括:
1.说明真命题、假命题、可能真命题和可能假命题的概念;
2.讨论四种命题的相互关系,例如:真命题的充要条件,假命题的充要条件,可能真命题和可能假命题的充分条件,以及四种命题的定义;
3.教学如何通过实例进行判断命题真假,例如:当有充分条件时,可以判断出可能真命题,当有充要条件时,可以判断出可能假命题,以及当有必要条件时,可以判断出真命题或者假命题。

三、教学方法
1.讲解法:让学生充分认识四种命题的概念,以及它们之间的关联和互斥;
2.实际操作法:通过实例题目,让学生实际动起来,判断出这些命题的真假,并且归纳掌握问题解决的技巧;
3.讨论法:让学生以小组形式讨论,分享解题技巧,帮助每个人掌握不同的方法。

四、教学步骤
1.让学生先通过讲解,了解四种命题的概念,以及它们的差别;
2.给出实际的题目,让学生实际动起来,判断出它们的真假;
3.让学生讨论,分享。

高中数学《四种命题间的相互关系》教案

高中数学《四种命题间的相互关系》教案一、教学目标1. 了解四种命题(命题、肯定命题、否定命题、疑问命题)的定义及其相互关系。

2. 掌握使用逆否命题、转化命题、等价命题的方法,判断命题的真假并进行推理。

3. 能够通过推理得出含有复合命题的命题的真假。

二、教学重点1. 掌握四种命题的定义及其相互关系。

2. 掌握逆否命题、转化命题、等价命题的方法,判断命题的真假并进行推理。

三、教学难点1. 掌握含有复合命题的命题的真假推理方法。

2. 能够根据实际问题判断、转化、等价、逆否命题。

四、教学方法运用讲授、举例、实践等方法。

五、教学过程Step 1 引入新知教师将以下命题逐个呈现给学生:A:上学期数学我没有及格。

B:你不是数学系的学生。

C:你可以给我一些做题的建议吗?D:今天下雨了。

请学生分别判断这些命题的类型,并解释其判断依据。

Step 2 讲解四种命题的相互关系1. 命题:有明确意义的陈述语句,有真假之分。

2. 肯定命题:断言事件一定会发生的命题,其真假值为真。

3. 否定命题:断言事件一定不会发生的命题,其真假值为假。

4. 疑问命题:询问事件是否会发生的命题,无法判断其真假值。

5. 说明四种命题的关系:命题 +肯定命题否定命题疑问命题Step 3 运用逆否命题、转化命题、等价命题进行推理1. 逆否命题:在肯定命题的基础上,将主语和谓语都进行否定得到的命题。

例如:肯定命题“如果A成立,则B成立”的逆否命题是“如果B不成立,则A不成立”。

2. 转化命题:将两个命题的主语或谓语交换位置得到的命题,其真假值与原命题相同。

例如:命题“如果A成立,则B成立”转化为“如果B不成立,则A不成立”。

3. 等价命题:在不改变命题真假性的前提下,将一些命题组合成一个命题表示。

例如:命题“如果A成立,则B成立”和命题“如果B不成立,则A不成立”是等价命题。

Step 4 操练应用请学生以具体的实例来判断、转化、等价、逆否一些命题,提高学生的综合能力。

四种命题间的相互关系说课稿

《四种命题间的相互关系》说课稿我说课的课题是新课标人教版选修1-1第一章第3节《四种命题间的相互关系》。

其主要内容是:研究四种命题——原命题、逆命题、否命题、逆否命题它们之间的关系,并运用四种命题的关系判断命题的真假。

新课标指出,学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系。

我将尝试运用新课标的理念指导本节课的教学。

从教材分析,教学目标分析,教法学法分析,教学过程分析和教学评价这几个方面加以说明。

一、教材分析1.教材的地位与作用命题及其逆命题,否命题,逆否命题之间的关系是本章重点内容之一,也是全面分析与理解命题内涵的重要工具,在近年来的高考中时有涉及。

有时为叙述考题的工具,有时考查命题结构的变化,更多的时候是利用其等价关系(原命题与逆否命题,逆命题与否命题)判断命题真假或进行证明。

在前面的学习中,学生已经学习了原命题、逆命题、否命题、逆否命题的初步知识,掌握了简单的推理方法,并能判断一些简单命题的真假。

因为下一节是“充分、必要条件”,所以从结构上看,本节起着承上启下的作用。

从内容上来看,数学知识大多以命题的形式呈现,也是学生继续学习的必备知识,在教学中要给予足够的重视。

2.教学目标通过本节的学习,了解命题的四种形式及其关系,利用原命题与逆否命题,逆命题与否命题之间的等价性解决有关问题,渗透由特殊到一般的化归数学思想。

二、教学目标分析1.教学目标(1)让学生会分析四种命题之间的关系以及真假性之间的关系,会利用命题的等价性解决问题(2)通过案例分析及类比方法进行探索研究,引导学生理解归纳本节的主要内容,培养学生归纳类比知识的能力。

2.教学重点与难点重点:分析四种命题之间的关系以及真假性之间的联系,利用命题的等价性解决问题。

难点:分析四种命题之间相互的关系并判断命题的真假。

三、教法学法分析1.教法分析教学过程是教师和学生共同参与的过程,是师生多向合作的过程,鼓励学生自主学习,充分调动学生的积极性、主动性,以学生发展为本;有效地渗透数学思想方法,提高学生素质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1.2 四种命题间的相互关系
【学情分析】:
四种命题的关系是命题这一节的核心内容,由原命题写出其他三种形式且引导学生探究四种命题相互间的内在的联系,从而引导学生探究出互为逆否命题的真假性一致.利用互为逆否命题的等价性,通过“正难则反”培养自己的逆向思维能力.这也是反证明法证明问题的理论依据.
【教学目标】:
(1)知识目标:
理解四种命题之间的相互关系,能由原命题写出其他三种形式;理解一个命题的真假与其他三个命题真假间的关系;初步掌握反证法的概念及反证法证题的基本步骤。

(2)过程与方法目标:
让学生初步学会运用逻辑知识整理客观素材,合理进行思维的方法,初步形成运用逻辑知识准确地表述数学问题的数学意识。

(3)情感与能力目标:
通过对四种命题之间关系的学习,培养学生逻辑推理能力。

【教学重点】:
四种命题之间的关系;
【教学难点】:
利用互为逆否命题的等价性,通过“正难则反”培养自己的逆向思维能力。

四、知识
建构结论:两个命题互为逆否命题,它们有相同的真假性.
(2)两个命题为互逆或互否命题,它们的真假性没有
关系.
在命题真假性的判断中,要借
助原命题与逆否命题同真同假,
逆命题与否命题同真同假,学
会利用互为逆否命题的等价
性,通过“正难则反”培养自己
的逆向思维能力.
五.体验与
运用例1:设原命题是“当c>0时,若a>b,则ac>bc”,写
出它的逆命题、否命题与逆否命题,并分别判断它们
的真假
解:逆命题“当时,若,则”.
否命题“当时,若,则”.否
命题为真.
逆否命题“当时,若,则”.逆
否命题为真.
课堂练习
写出命题:“若xy = 6则x = 3且y = 2”的逆命题否
命题逆否命题,并判断它们的真假
例2:证明:若0
2
2=
+y
x,则0
=
=y
x。

练习:已知a,b两直线是异面直线,且点A与B,C与
D分别是直线a,b 上的相异点求证:直线AC
与BD必异面
通过“正难则反”培养自己的
逆向思维能力.这也是反证明
法证明问题的理论依据
六、小结与
反思课堂小结
1.写一个命题的逆命题、否命题、逆否命题的
关键是分清楚原命题的条件和结论,一般大前提不
变.
2.在命题真假性的判断中,要借助原命题与逆否
命题同真同假,逆命题与否命题同真同假,学会利用
互为逆否命题的等价性,通过“正难则反”培养自己
的逆向思维能力.这也是反证明法证明问题的理论依
据.
通过学生自己的小结,将新知
识系统化、重点化。

通过学生
的反思,使学生意识重点和难
点,提高学习效率。

课后练习
1.如果一个命题的否命题是真命题,那么这个命题的逆命题是()A.真命题,B.假命题,
C.不一定是真命题,D.不一定是假命题。

2.一个命题与它的逆命题、否命题、逆否命题这四个命题中()
A .真命题的个数一定是奇数
B .真命题的个数一定是偶数
C .真命题的个数可能是奇数也可能是偶数
D .上述判断都不正确 3.已知原命题“菱形的对角线互相垂直”,则它的逆命题、否命题、逆否命题的真假判断正
确的是( )
A .逆命题、否命题、逆否命题都为真
B .逆命题为真,否命题、逆否命题为假
C .逆命题为假,否命题、逆否命题为真
D .逆命题、否命题为假,逆否命题为真 4.有下列四个命题:
①“若1,xy =则,x y 互为倒数”的逆命题; ②“相似三角形的周长相等”的否命题
③“若0b ≤,则关于若x 的方程若2220x bx b b -++=有实根”的逆否命题
④“A B B =U ,则A B ⊇”的逆否命题 其中,真命题的个数是( )
A . 0
B . 1
C . 2
D .3
5.用反证法证明命题“a 、b ∈N *
,ab 可被5整除,那么a ,b 中至少有一个能被5整除”,那么假设内容是( )
A .a 、b 都能被5整除
B .a 、b 都不能被5整除
C .a 不能被5整除
D .a 、b 有一个不能被5整除 6.下列4个命题是真命题的是( )
①“若
022=+y x 则x 、y 均为零”的逆命题 ②“相似三角形的面积相等”的否命题 ③“若B A I A =则B A ⊆”的逆否命题
④“末位数字不是零的数可被3整除”的逆否命题
A. ①②
B. ②③
C. ①③
D. ③④ 7、命题“若a >b ,则ac 2>bc 2(a 、b ∈R )”与它的逆命题、否命题中,真命题的个数为( )
A.3
B.2
C.1
D.0 8.“在整数范围内,a ,b 是偶数,则b a +是偶数”的逆否命题是 。

9.用反证法证明命题“5个连续自然数的平方和不可能是一个完全平方数”时,反设成: .反设若用式子表示,则为: . 10. 判断下列命题“若在二次函数 中 ,则该二次函数图像与
轴有公共点”.的真假,并写出它的逆命题,否命题,逆否命题.同时,也判断这些命题的真假.
11.反证法证明:若 ,则 、 、中至少有一个不等于0.
12.若a ,b ,c 均为实数,且a=x 2
-2y+2π,b=y 2
-2z+3π,c=z-2x+6
π,求证:a ,b ,c 中至少有一个大于0.
参考答案:
1. C 2.B 3.D 4.C 5.B 6. C 7,B 8.在整数范围内,若b a +不是偶数则b a ,不都是偶数。

9.“假设5个连续自然数的平方和是一个完全平方数”.用式子表示,则为“假设
是一个完全平方数(

10.该命题为假. 逆命题:若二次函数 的图像与 轴有公共点,则
.为假.
否命题:若二次函数 中,
,则该二次函数图象与 轴没有
公共点.为假.
逆否命题:若二次函数 的图像与 轴没有公共点,则
.为
假.
11.证明:假设 、 、 都等于0,则

矛盾,所以 、 、
中至少有一个不等于0.
常见错误及分析:往往把 、 、 中至少有一个不等于零的否定错认为是 、 、
中最多有一个不等于零,或错认为是


中最多有一个等于零
12、假设a 、b 、c 都不大于0,
即:a ≤0,b ≤0,c ≤0,则a+b+c ≤0
但a+b+c=(x 2
-2y+
2π)+(y 2-2z+3π)+(z 2
-2x+6
π) =(x-1)2
+(y-1)2
+(z-1)2
+(π-3) ∵π>3,且 (x-1)2+(y-1)2+(z-1)2
≥0. 对一切x ,y ,z ∈R 恒成立.
∴必有a+b+c >0,这与假设a+b+c ≤0矛盾. ∴a ,b ,c 中至少有一个大于0.。

相关文档
最新文档