2020年湖北省天门市中考数学模拟试卷(5月份)解析版

合集下载

2020年湖北省天门市中考数学试卷

2020年湖北省天门市中考数学试卷

2020年湖北省天门市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.(3分)如果向北走6步记作+6,那么向南走8步记作()A. +8 步B. -8步C. +14 步D. -2 步2.(3分)北京时间5月27日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表小为()A. 65X 102B. 6.5X102C, 6.5X103D. 6.5X1043.(3分)如图,已知AB// CD// EF, FC平分/ AFE / C=25°,则/A的度数是A. 25B. 350C. 450D. 50°4.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有弘”字一面的相对面上的字是()A.传B.统C.文D.化5.(3分)下列运算正确的是()A. (l 3)0=1B.代=±3C. 2 1=-2D. (-a2)3=a66.(3分)关于一组数据:1, 5, 6, 3, 5,下列说法错误的是()A.平均数是4B.众数是5C.中位数是6D.方差是3.27.(3分)一个扇形的弧长是10冗cm面积是60冗cm,则此扇形的圆心角的度数是()A. 300B. 150℃. 120° D. 75°8.(3分)若a、B为方程2x2 —5x—1=0的两个实数根,则2a2+3a+5B的值为()A. - 13B. 12C. 14D. 159.(3分)如图,P (m, m)是反比例函数y」在第一象限内的图象上一点,以P为顶点作等边△ PAB,使AB落在x轴上,则4 POB的面积为()A「B. 3 ; C D 一二2 4 210.(3分)如图,矩形ABCD中,A已BD于点E, CF平分/ BCD,交EA的延长线于点F,且BC=4 CD=2,给出下列2论:①/ BAE=Z CAD;②/ DBC=30;③ AE=p5;④AF=2^,其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题:本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡对应的横线上.11.(3 分)已知2a— 3b=7,贝U 8+6b - 4a= ___12.(3分)六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需元.13.(3分)飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是s=60t-4t2,则飞机着陆后滑行的最长时间为秒.2 ------14.(3分)为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD已知迎水坡面AB=12米,背水坡面CD=1需米,/ B=60°,加固后拦水坝的横断面为梯形ABED tanE=^/3,则CE的长为15.(3分)有5张看上去无差别的卡片,正面分别写着1, 2, 3, 4, 5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是.16.(3分)如图,在平面直角坐标系中,△ ABC的顶点坐标分别为A ( - 1, 1), B (0, - 2), C (1, 0),点P (0, 2)绕点A旋转180得到点R ,点P1绕点B 旋转180°得到点P2,点P2绕点C旋车专180°得到点P3,点P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2020的坐标为.三、解答题:本大题共9小题,共72分.17.(6分)化简:等吟-伊方.a2-b2a2-b25x+l >3(iT)18.(6分)解不等式组,1 7 3 ,并把它的解集在数轴上表示出来.।।। ______ I ।_______ ।।)-5 -4 -3 -2 -1 0 1 2 3 4 519.(6分)如图,下列4X4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.圉1 图220.(6分)近几年,随着电子商务的快速发展,电商包裹件”占快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:(1)请选择适当的统计图,描述2014-2020年电商包裹件”占当年快递件”总量的百分比(精确到1%);(2)若2018年快递件”总量将达到675亿件,请估计其中电商包裹件”约为多少亿件?21.(8分)如图,AB为。

2020年湖北省天门市中考数学试卷(含解析)

2020年湖北省天门市中考数学试卷(含解析)

2020年湖北省天门市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(本大题共10个小题,每小题3分,满分30分)1.下列各数中,比﹣2小的数是()A.0 B.﹣3 C.﹣1 D.|﹣0.6|2.如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.3.我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×1054.将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为16.下列运算正确的是()A.=±2 B.()﹣1=﹣2 C.a+2a2=3a3D.(﹣a2)3=﹣a67.对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<48.一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm9.关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1 B.﹣4 C.﹣4或1 D.﹣1或410.如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,满分18分)11.已知正n边形的一个内角为135°,则n的值是.12.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了场.13.如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为海里.14.有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.15.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.16.如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.18.(6分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.3 6乙36.4 a丙36.5 20丁36.6 4请根据以上信息,解答下列问题:(1)频数分布表中a=,该班学生体温的众数是,中位数是;(2)扇形统计图中m=,丁组对应的扇形的圆心角是度;(3)求该班学生的平均体温(结果保留小数点后一位).20.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.22.(9分)如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段PA与PB之差最大时,求点P的坐标.23.(10分)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.24.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t (分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是米/分钟,妈妈在家装载货物所用时间是分钟,点M的坐标是.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.参考答案与试题解析一、选择题1.【解答】解:∵|﹣0.6|=0.6,∴﹣3<﹣2<﹣1<0<|﹣0.6|.故选:B.2.【解答】解:俯视图就是从上面看到的图形,因此选项C的图形符合题意,故选:C.3.【解答】解:3000000=3×106,故选:C.4.【解答】解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.5.【解答】解:为了解人造卫星的设备零件的质量情况,应选择全面调查,即普查,不宜选择抽样调查,因此选项A不符合题意;方差是刻画数据波动程度的量,反映数据的离散程度,因此选项B符合题意;购买一张体育彩票中奖,是可能的,只是可能性较小,是可能事件,因此选项C不符合题意;掷一枚质地均匀的硬币,正面朝上的概率为,因此选项D不符合题意;故选:B.6.【解答】解:A.因为=2,所以A选项错误;B.因为()﹣1=2,所以B选项错误;C.因为a与2a2不是同类项,不能合并,所以C选项错误;D.因为(﹣a2)3=﹣a6,所以D选项正确.故选:D.7.【解答】解:∵一次函数y=x+2,∴当x=1时,y=3,∴图象经过点(1,3),故选项A正确;令y=0,解得x=﹣2,∴图象与x轴交于点(﹣2,0),故选项B正确;∵k=1>0,b=2>0,∴不经过第四象限,故选项C正确;∵k=1>0,∴函数值y随x的增大而增大,当x=2时,y=4,∴当x>2时,y>4,故选项D不正确,故选:D.8.【解答】解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,由弧长公式得,=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.9.【解答】解:∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.10.【解答】解:如图,作AM⊥BD于M,AN⊥EC于N.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴FA平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,显然与条件矛盾,故③错误,故选:C.二、填空题11.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,∴n=360°÷45°=8.故答案为:8.12.【解答】解:设该队胜了x场,负了y场,依题意有,解得.故该队胜了9场.故答案为:9.13.【解答】解:如图,过点A作AC⊥BD于点C,根据题意可知:∠BAC=∠ABC=45°,∠ADC=30°,AB=20,在Rt△ABC中,AC=BC=AB•sin45°=20×=10,在Rt△ACD中,∠ADC=30°,∴AD=2AC=20(海里).答:此时轮船与小岛的距离AD为20海里.故答案为:20.14.【解答】解:画树状图得:∵共有9种等可能的结果,两次取出的数字之和是奇数的有4种结果,∴两次取出的数字之和是奇数的概率为,故答案为:.15.【解答】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.16.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=﹣x上,∴1=﹣x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=2,∴P2020的横坐标为2=21010,故答案为:21010.三、解答题17.【解答】解:(1)原式=•=,当a=﹣1时,原式==2;(2),∵解不等式①得:x>﹣2,解不等式②得:x≤4,∴不等式组的解集是:﹣2<x≤4,在数轴上表示为:.18.【解答】解:(1)如图1,F点就是所求作的点:(2)如图2,点N就是所求作的点:19.【解答】解:(1)20÷50%=40(人),a=40×25%=10;36.5出现了20次,次数最多,所以众数是36.5;40个数据按从小到大的顺序排列,其中第20、21个数据都是36.5,所以中位数是(36.5+36.5)÷2=36.5.故答案为:10,36.5,36.5;(2)m%=×100%=15%,m=15;360°×=36°.故答案为:15,36;(3)该班学生的平均体温为:=36.455≈36.5(℃).20.【解答】解:(1)∵y=x2+2x+3=(x+1)2+2,∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x﹣3)2﹣3,∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.(2)动点P(a,﹣6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴函数的最小值为﹣3,∵﹣6<﹣3,∵动点P(a,﹣6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,∴y1>y2.21.【解答】解:(1)连接OD,AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴∠BAC=2∠BAD,∵∠BAC=2∠BDE,∴∠BDE=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∵∠ADO+∠ODB=90°,∴∠BDE+∠ODB=90°,∴∠ODE=90°,即DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.(2)∵AB=AC,AD⊥BC,∴BD=CD,∵BO=AO,∴OD∥AC,∴△EOD∽△EAF,∴,设OD=x,∵CF=2,BE=3,∴OA=OB=x,AF=AC﹣CF=2x﹣2,∴EO=x+3,EA=2x+3,∴=,解得x=6,经检验,x=6是分式方程的解,∴AF=2x﹣2=10.22.【解答】解:(1)解:(1)将点A坐标(6,1)代入反比例函数解析式y=,得k=1×6=6,则y=,故答案为:y=;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),∴mn=6,∴BE=DE﹣BD=6﹣m,AE=CE﹣AC=n﹣1,∴S△ABE==,∵A、B两点均在反比例函数y=(x>0)的图象上,∴S△BOD=S△AOC==3,∴S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE=6n﹣3﹣3﹣=3n﹣m,∵△AOB的面积为8,∴3n﹣m=8,∴m=6n﹣16,∵mn=6,∴3n2﹣8n﹣3=0,解得:n=3或﹣(舍),∴m=2,∴B(2,3),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+4;(3)如图,根据“三角形两这边之差小于第三边可知:当点P为直线AB与y轴的交点时,PA﹣PB有最大值是AB,把x=0代入y=﹣x+4中,得:y=4,∴P(0,4).23.【解答】解:(1)∵ABCD是矩形,∴∠A=∠ADC=90°,∵将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,∴AD=AD′,AE=A′E,∠ADE=∠A′DE=45°,∴∵AB∥CD,∴∠AED=∠A′DE=∠ADE,∴AD=AD′,∴AD=AE=A′E=A′D,∴四边形AEA′D是菱形,∵∠A=90°,∴四边形AEA′D是正方形.故答案为:正方形;(2)MC′=ME.证明:如图1,连接C′E,由(1)知,AD=AE,∵四边形ABCD是矩形,∴AD=BC,∠EAC′=∠B=90°,由折叠知,B′C′=BC,∠B=∠B′,∴AE=B′C′,∠EAC′=∠B′,又EC′=C′E,∴Rt△EC′A≌Rt△CEB′(HL),∴∠C′EA=∠EC′B′,∴MC′=ME;(3)∵Rt△EC′A≌Rt△CEB′,∴AC′=B′E,由折叠知,B′E=BD,∴AC′=BE,∵AC′=2cm,DC′=4cm,∴AB=CD=2+4+2=8(cm),设DF=xcm,则FC′=FC=(8﹣x)cm,∵DC′2+DF2=FC′2,∴42+x2=(8﹣x)2,解得,x=3,即DF=3cm,如图2,延长BA、FC′交于点G,则∠AC′G=∠DC′F,∴tan∠AC′G=tan∠DC′F=,∴,∴,∵DF∥EG,∴△DNF∽△ENG,∴.24.【解答】解:(1)妈妈骑车的速度为120米/分钟,妈妈在家装载货物时间为5分钟,点M的坐标为(20,1200).(2),其图象如图所示,(3)由题意可知:小华速度为60米/分钟,妈妈速度为120米/分钟,①相遇前,依题意有60t+120t+360=1800,解得t=8分钟,②相遇后,依题意有,60t+120t﹣360=1800,解得t=12分钟.③依题意,当t=20分钟时,妈妈从家里出发开始追赶小华,此时小华距商店为1800﹣20×60=600米,只需10分钟,即t=30分钟,小华到达商店.而此时妈妈距离商店为1800﹣10×120=600米>360米,∴120(t﹣5)+360=1800×2,解得t=32分钟,∴t=8,12或32分钟时,两人相距360米。

湖北省2020年中考数学模拟试题(含答案)【精品】

湖北省2020年中考数学模拟试题(含答案)【精品】

湖北省2020年中考数学模拟试题含答案考生注意:1.本试卷分试题卷(共4页)和答题卷;全卷24小题,满分120分;考试时间120分钟.2.考生答题前,请将自己的学校、姓名、考号填写在试题卷和答题卷指定的位置,同时认真阅读答题卷上的注意事项.考生答题时,请按题号顺序在答题卷上各题目的答题区域内作答,写在试题卷上无效.试 题 卷一、精心选一选(本大题共8小题,每小题3分,满分24分.每小题给出的4个选项中只有一个符合题意,请在答题卷上将正确答案的代号涂黑) 1.计算1-(-2)的正确结果是【 ▲ 】A .-2B .-1C .1D .32.钓鱼岛是中国的固有领土,面积约4400000平方米,数据4400000用科学记数法表示应为【 ▲ 】A. 44×105B. 0.44×107C. 4.4×106D. 4.4×1053.下列式子中,属于最简二次根式的是【 ▲ 】.A .7B . 9C .20D .134.下列运算正确的是【 ▲ 】A. (a 2)3= a 5B. a 3·a = a 4C. (3ab )2= 6a 2b 2D. a 6÷a 3= a 25.下列说法中,正确的是【 ▲ 】A.“打开电视,正在播放新闻联播节目”是必然事件B. 某种彩票中奖概率为10%是指买10张一定有一张中奖C. 了解某种节能灯的使用寿命应采用全面检查D. 一组数据3,5,4,6,7的中位数是5,方差是26.如图,直线AB ,CD 相交于点O ,射线OM 平分∠AOC ,ON ⊥OM .若∠AOC =70°,则∠CON 的度数为【 ▲ 】A .65°B .55°C .45°D .35°BOANM CD(第6题)7.如图是某几何体的三视图,这个几何体的侧面积是【 ▲ 】A .6πB .210 πC .10 πD .3π8.如图,直线l :y =33x ,过点A (0,1)作y 轴的垂线交 直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…按此作法继续下去,则点A 2015的坐标为【 ▲ 】A .(0,42015) B .(0,42014)C .(0,32015) D .(0,32014)二、细心填一填(本大题共8小题,每小题3分,满分24分.请将答案填写在答题卷相应题号的横线上)9.分解因式ax 2-9ay 2的结果为 ▲ .10.如图,在△ABC 中,按以下步骤作图:①分别以点B ,C 为圆心,以大于12BC 的长为半径作弧,两弧交于M ,N 两点;②作直线MN 交AB 于点D ,连接CD .如果已知CD =AC ,∠B =25°,则∠ACB 的度数为 ▲ .11.已知关于x 的方程kx 2+(k +2) x +k4=0有两个不相等 的实数根,则k 的取值范围是 ▲ .12.如图,在△ABC 中,AB =AC =5,BC =6,将△ABC 绕点C 顺时针方向旋转一定角度后得到△A ′B ′C ,若点A ′恰好落在BC 的延长线上,则点B ′到BA ′的距离为 ▲ . 13.一辆汽车开往距离出发地180km 的目的地,出发后第一小时按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,结果比原计划提前40min 到达目的地.原计划的行驶速度是 ▲ km/h.14.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC =30°,弦EF ∥AB ,则EF 的长度为 ▲ . ABCMN(第10题)D OAA 1A 2y x BB 1l主视图俯视图 左视图(第7题)23 23 ABCB ′ D(第15题)E(第14题)O DE F AC (第12题)B ′A ′15.如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把△ABE 沿AE 折叠,使点B 落在点B ′处.当△CEB ′为直角三角形时,BE 的长为 ▲ . 16.对于二次函数y = x 2-2mx -3,有下列结论:①它的图象与x 轴有两个交点;②如果当x ≤-1时,y 随x 的增大而减小,则m =-1; ③如果将它的图象向左平移3个单位后过原点,则m =1; ④如果当x = 2时的函数值与x = 8时的函数值相等,则m =5.其中一定正确的结论是 ▲ .(把你认为正确结论的序号都填上)三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤.请把解题过程写在答题卷相应题号的位置) 17.(本题满分8分)(1)计算:4sin60°-︱3-12 ︱+( 12 )-2;(2)解方程x 2- 3 x -14 = 0.18.(本题满分7分)如图,点B (3,3)在双曲线y = kx(x >0)上,点D 在双曲线y =-4x(x <0)上, 点A 和点C 分别在x 轴、y 轴的正半轴上,且点A ,B ,C ,D 构成的四边形为正方形. (1)求k 的值;(2)求点A 的坐标. 19. (本题满分8分)如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E , 使CE =12 BC ,连接DE ,CF .(1)求证:DE =CF ;(2)若AB =4,AD =6,∠B =60°,求DE 的长. 20. (本题满分8分)某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A .足球 B .乒乓球C .羽毛球 D .篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 人,在扇形统计图中“D ”对应的圆心角的度数为 ; (2)请你将条形统计图补充完整; (3)在平时的乒乓球项目训练中, 甲、乙、丙、丁四人表现优秀,现B(第18题)C xO A Dy 36° AD BC2040 8060 100 人数(人) ABCD (第20题)(第19题)AEDF决定从这四名同学中任选两名参加 市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答). 21. (本题满分9分)如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线.(2)如果⊙O 的半径为5,sin ∠ADE = 45 ,求BF 的长. 22. (本题满分10分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍.设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 与x 的关系式;②该商店购进A 型、B 型各多少台,才能使销售利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,且限定商店最多购进A 型电脑70台.若商店保持两种电脑的售价不变,请你根据以上信息及(2)中的条件,设计出使这100台电脑销售总利润最大的进货方案. 23.(本题满分10分)阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.... 如图1,在等腰△ABC 中,AB =AC , AC 边上的高为h ,点M 为底边BC 上的任意一点,点M 到腰AB 、AC 的距离分别为h 1、h 2,连接AM ,利用S△ABC=S △ABM +S △ACM ,可以得出结论:h = h 1+h 2.类比探究:在图1中,当点M 在BC 的延长线上时, 猜想h 、h 1、h 2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中, 有两条直线l 1:y = 34x +3,l 2:y =-3x +3,AD(第21题)CE(第23题图2) O B AC x y l 1l 2(第23题图1) E FAh D M h 1h 2若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.24. (本题满分12分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点A(-3,4)、B(-3,0)、C(-1,0) .以D为顶点的抛物线y = ax2+bx+c过点B. 动点P从点D出发,沿DC边向点C 运动,同时动点Q从点B出发,沿BA边向点A运动,点P、Q运动的速度均为每秒1个单位,运动的时间为t秒. 过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G.(1)求抛物线的解析式;(2)当t为何值时,四边形BDGQ的面积最大?最大值为多少?(3)动点P、Q运动过程中,在矩形ABCD内(包括其边界)是否存在点H,使以B,Q,E,H为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.(第24题)OBA DC xyPQEFG参考答案及评分说明说明:1.如果考生的解答正确,思路与本参考答案不同,可参照本评分说明制定相应的评分细则评分.2.每题都要评阅完毕,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这道题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,解答题的解题步骤写得较为详细,但允许考生在解答过程中,合理地省略非关键性的步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 5.每题评分时只给整数分数.一、精心选一选(每小题3分,满分24分)题 号 1 2 3 4 5 6 7 8 答 案DCABDBCA二、9. a (x +3y ) (x -3y );10. 105°;11. k >-1且k ≠0;12. 245 ;13. 60;14. 2 3 ;15. 32 或3; 16. ①③④(多填、少填或错填均不给分).三、专心解一解(共8小题,满分72分)17. 解:(1)原式=23-23+3+4(3分) = 7(4分)(2)方法一:移项,得x 2- 3 x = 14,配方,得(x -32)2= 1. (6分)由此可得x -32=±1, x 1=1+32 ,x 2=-1+32. (8分) 方法二:a =1,b =-3,c =-14.△=b 2-4ac =(-3)2-4×1×(-14 ) =4>0. (6分)方程有两个不等的实数根x = -b ±b 2-4ac 2a = 3±42×1 = 32±1,x 1=1+32 ,x 2=-1+32. (8分)18. 解:(1)∵点B (3,3)在双曲线y = kx(x >0)上,∴k =3×3=9.(2分)(2)过D 作DM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,∵四边形ABCD 是正方形,∴∠DAB =90°,AD =AB . ∴∠MDA +∠DAM =90°,∠DAM +∠BAN =90°,∴∠ADM =∠BAN .在Rt △ADM 和Rt △BAN 中,∠DMA =∠ANB =90°, ∴△ADM ≌△BAN (AAS ). (5分)∴AM =BN , AN =MD ,∵B 点坐标为(3,3),∴BN =ON =3. ∴AM = ON =3,即OM = AN = MD .设OM = MD =a ,∵点D 在双曲线y =-4x(x <0)上,∴-a 2=-4,∴a =2, ∴OA = AM -OM =3-2=1, 即点A 的坐标是(1,0).(7分)19. 解:(1)证明:∵四边形ABCD 是平行四边形,∴AD = BC ,AD ∥BC .又∵F 是AD 的中点,∴FD = 12 AD .∵CE = 12BC ,∴FD = CE .(第19题)BAEDFG方法一:又∵FD ∥CE ,∴四边形CEDF 是平行四边形. ∴DE =CF .(4分)方法二:∵FD ∥CE ,∴∠CDF =∠DCE .又CD = DC ,∴△DCE ≌△CDF (SAS ). ∴DE =CF .(4分)(2)过D 作DG ⊥CE 于点G .∵四边形ABCD 是平行四边形, ∴AB ∥CD ,CD = AB =4,BC =AD = 6.∴∠DCE =∠B =60°.在Rt △CDG 中,∠DGC =90°, ∴∠CDG =30°,∴CG = 12 CD =2.由勾股定理,得DG = CD 2-CG 2=2 3 . (6分)∵CE = 12 BC =3,∴GE = 1.在Rt △DEG 中,∠DGE =90°, ∴DE = DG 2+GE 2=13 .(8分)20. 解:(1) 300 , 72° ;(2分)(2)完整条形统计图(如右图所示); (4分) (3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的的结果有2种.20408060100人数(人) ABCD (第20题)甲乙 丙 丁 乙甲 丙 丁 丙甲 乙 丁 丁甲 乙 丙∴P (恰好选中甲、乙两位同学)= 212 = 16(8分)21. 解:(1)证明:∵连接OD ,∵AB 是⊙O 的直径. ∴AD ⊥BC .∵AB =AC ,∴BD =DC ,∠CAD =∠BAD .又OA =OB ,∴ OD ∥AC . ∵DE ⊥AC ,∴OD ⊥DE . ∵点D 在⊙O 上,∴EF 是⊙O 的切线. (4分) (2)∵∠CAD =∠BAD ,∠AED =∠ADB =90°.∴∠ADE =∠ABD . ∴sin ∠ABD = sin ∠ADE = 45∵AB =10,∴AD =8,AE = 325.∵OD ∥AC ,∴△ODF ∽△AEF .∴OD AE =OF AF ,即5 325= 5+BF 10+BF.解得BF = 907.(9分)22. 解:(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,则有 解得即每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元.(4分)(2)①根据题意得y =100x +150(100-x ),即y =-50x +15000.(5分) ②根据题意得100-x ≤2x ,解得x ≥3313, ∵y =-50x +15000,-50<0,∴y 随x 的增大而减小.∵x 为正整数,∴当x =34最小时,y 取最大值,此时100-x =66.即商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大.(7分)(3)根据题意得y =(100+m )x +150(100-x ),(第21题)10a +20b =4000, 20a +10b =3500. a =100,b =150.即y =(m -50)x +15000. (3313≤x ≤70). ①当0<m <50时,m -50<0,y 随x 的增大而减小. ∴当x =34时,y 取得最大值.即商店购进34台A 型电脑和66台B 型电脑时,才能获得最大利润; (8分) ②当m =50时,m -50=0,y =15000.即商店购进A 型电脑数最满足3313≤x ≤70的整数时, 均获得最大利润;(9分)③当50<m <100时,m -50>0,y 随x 的增大而增大.∴x =70时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑时,才能获得最大利润.(10分)23. 解:(1)h = h 1-h 2.(1分) 证明:连接OA ,∵S △ABC = 12 AC ·BD = 12 AC ·h ,S △ABM = 12 AB ·ME = 12AB ·h 1,S △ACM = 12 AC ·MF = 12AC ·h 2,.又∵S △ABC =S △ABM -S △ACM ,∴12 AC ·h = 12 AB ·h 1-12 AC ·h 2. ∵AB =AC ,∴h = h 1-h 2.(4分)(2)在y = 34x +3中,令x =0得y =3;令y =0得x =-4,则:A (-4,0),B (0,3) , 同理求得C (1,), OA =4,OB =3, AC =5, AB =OA 2+OB 2=5,所以AB =AC ,即△ABC 为等腰三角形. (6分) 设点M 的坐标为(x ,y ),(第23题图1)E FA Bh C D M h 1h 2 (第23题图2)O B AC xy l 1l 2①当点M 在BC 边上时,由h 1+h 2=h 得:OB = 1+y ,y =3-1=2,把它代入y =-3x +3中求得:x = 13,∴M (13 ,2); (8分)②当点M 在CB 延长线上时,由h 1-h 2=h 得:OB = y -1,y =3+1=4,把它代入y =-3x +3中求得:x =-13,∴M (-13,4).综上所述点M 的坐标为(13 ,2)或(-13,4). (10分)24. 解:(1) 由题意得,顶点D 点的坐标为(-1,4). (1分)设抛物线的解析式为y =a (x +1) 2+4(a ≠0), ∵抛物线经过点B (-3,0),代入y =a (x +1) 2+4 可求得a =-1∴抛物线的解析式为y =- (x +1) 2+4 即y =-x 2-2x +3. (4分)(2)由题意知,DP =BQ = t ,∵PE ∥BC ,∴△DPE ∽△DBC .∴DP PE =DC BC =2,∴PE =12 DP = 12t . ∴点E 的横坐标为-1-12 t ,AF =2-12t .将x =-1-12 t 代入y =- (x +1) 2+4,得y =-14 t 2+4.∴点G 的纵坐标为-14 t 2+4,∴GE =-14 t 2+4-(4-t )=-14 t 2+t .连接BG ,S 四边形BDGQ = S △BQG +S △BEG +S △DEG , 即S 四边形BDGQ =12 BQ ·AF +12EG ·(AF +DF )= 12 t (2-12 t )-14 t 2+t . =-12 t 2+2t =-12(t -2)2+2.∴当t =2时,四边形BDGQ 的面积最大,最大值为2. (8分)(第24题)O BADCxyPQ EF G(3)存在,菱形BQEH 的周长为8013 或80-32 5 .(12分)(说明:写出一个给2分)。

湖北省天门市六校2024届中考数学全真模拟试题含解析

湖北省天门市六校2024届中考数学全真模拟试题含解析

湖北省天门市六校2024届中考数学全真模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y+-B .22y xC .3223y xD .222()y x y - 2.一次函数y=2x+1的图像不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限3.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为( )A .36B .12C .6D .34.若抛物线y =x 2-(m -3)x -m 能与x 轴交,则两交点间的距离最值是( ) A .最大值2, B .最小值2C .最大值22D .最小值225.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )A .B .C .D .6.计算1+2+22+23+…+22010的结果是( ) A .22011–1 B .22011+1C .()20111212- D .()201112+127.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ) A .0.7×10﹣8B .7×10﹣8C .7×10﹣9D .7×10﹣108.二次函数y=﹣12(x+2)2﹣1的图象的对称轴是( ) A .直线x=1B .直线x=﹣1C .直线x=2D .直线x=﹣29.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )A .3步B .5步C .6步D .8步10.在正方体的表面上画有如图1中所示的粗线,图2是其展开图的示意图,但只在A 面上画有粗线,那么将图1中剩余两个面中的粗线画入图2中,画法正确的是( )A .B .C .D .二、填空题(共7小题,每小题3分,满分21分)11.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________12.因式分解2242x x -+=______.13.若⊙O 所在平面内一点P 到⊙O 的最大距离为6,最小距离为2,则⊙O 的半径为_____. 1438-|﹣2|+(13)﹣1=_____. 15.关于x 的一元二次方程x 2﹣2x+m ﹣1=0有两个实数根,则m 的取值范围是_____. 16.有一组数据:3,5,5,6,7,这组数据的众数为_____. 172-114+-3-2014-4+6⨯()()=________ 三、解答题(共7小题,满分69分)18.(10分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)19.(5分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC 交于点B 、C ,测得∠ABC =45°,∠ACB =30°,且BC =20米.(1)请用圆规和直尺画出路灯A 到地面BC 的距离AD ;(不要求写出画法,但要保留作图痕迹) (2)求出路灯A 离地面的高度AD .(精确到0.1米)(参考数据:2≈1.414,3≈1.732).20.(8分)如图,在△ABC 中,AB=AC ,CD 是∠ACB 的平分线,DE ∥BC ,交AC 于点 E .求证:DE=CE . 若∠CDE=35°,求∠A 的度数.21.(10分)先化简再求值:2()(2)x y y y x -++,其中2x =,3y =22.(10分)甲、乙、丙3名学生各自随机选择到A 、B 2个书店购书. (1)求甲、乙2名学生在不同书店购书的概率; (2)求甲、乙、丙3名学生在同一书店购书的概率.23.(12分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点.在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段11A B (点A ,B 的对应点分别为11A B 、).画出线段11A B ;将线段11A B 绕点1B 逆时针旋转90°得到线段21A B .画出线段21A B ;以112A A B A 、、、为顶点的四边形112AA B A 的面积是 个平方单位.24.(14分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋,投放,其中A 类指废电池,过期药品等有毒垃圾,B 类指剩余食品等厨余垃圾,C 类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、D 【解题分析】根据分式的基本性质,x ,y 的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案. 【题目详解】根据分式的基本性质,可知若x ,y 的值均扩大为原来的3倍, A 、23233x xx y x y ++≠--,错误;B 、22629y yx x ≠,错误; C 、3322542273y y x x ≠,错误;D 、()()22221829y y x y x y --=,正确;故选D . 【题目点拨】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心. 2、D 【解题分析】根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答. 【题目详解】 ∵k=2>0,b=1>0,∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限. 故选D. 【题目点拨】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k 、b 的正负. 3、D 【解题分析】设△OAC 和△BAD 的直角边长分别为a 、b ,结合等腰直角三角形的性质及图象可得出点B 的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B 的坐标即可得出结论. 解:设△OAC 和△BAD 的直角边长分别为a 、b , 则点B 的坐标为(a +b ,a ﹣b ). ∵点B 在反比例函数6y x=的第一象限图象上, ∴(a +b )×(a ﹣b )=a 2﹣b 2=1. ∴S △OAC ﹣S △BAD =12a 2﹣12b 2=12(a 2﹣b 2)=12×1=2. 故选D .点睛:本题主要考查了反比例函数系数k 的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a 2﹣b 2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键. 4、D 【解题分析】设抛物线与x 轴的两交点间的横坐标分别为:x 1,x 2, 由韦达定理得: x 1+x 2=m-3,x 1•x 2=-m ,则两交点间的距离d=|x 1-x 2|=2221212()4(3)429x x x x m m m m +-=-+=-+=2(1)8m -+ ,∴m=1时,d min =22. 故选D. 5、C 【解题分析】 试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C .考点:二次函数图象与几何变换. 6、A 【解题分析】可设其和为S ,则2S=2+22+23+24+…+22010+22011,两式相减可得答案. 【题目详解】设S=1+2+22+23+…+22010① 则2S=2+22+23+…+22010+22011② ②-①得S=22011-1. 故选A. 【题目点拨】本题考查了因式分解的应用;设出和为S ,并求出2S 进行做差求解是解题关键. 7、C 【解题分析】本题根据科学记数法进行计算. 【题目详解】因为科学记数法的标准形式为a×10n (1≤|a|≤10且n 为整数),因此0.000000007用科学记数法法可表示为7×910﹣, 故选C. 【题目点拨】本题主要考察了科学记数法,熟练掌握科学记数法是本题解题的关键. 8、D【解题分析】根据二次函数顶点式的性质解答即可. 【题目详解】 ∵y=﹣12(x+2)2﹣1是顶点式, ∴对称轴是:x=-2, 故选D. 【题目点拨】本题考查二次函数顶点式y=a(x-h)2+k 的性质,对称轴为x=h ,顶点坐标为(h ,k )熟练掌握顶点式的性质是解题关键. 9、C 【解题分析】17=, 则该直角三角形能容纳的圆形(内切圆)半径8151732r +-== (步),即直径为6步, 故选C 10、A 【解题分析】解:可把A 、B 、C 、D 选项折叠,能够复原(1)图的只有A . 故选A .二、填空题(共7小题,每小题3分,满分21分)11、222()2a b a ab b +=++【解题分析】由图形可得:()2222a b a ab b +=++12、22(1)x -.【解题分析】解:2242x x -+=22(21)x x -+=22(1)x -,故答案为:22(1)x -.13、2或1 【解题分析】点P 可能在圆内.也可能在圆外,因而分两种情况进行讨论. 【题目详解】解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2;当点在圆内时,则这个圆的半径是(6+2)÷2=1.故答案为2或1.【题目点拨】此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.14、﹣1【解题分析】根据立方根、绝对值及负整数指数幂等知识点解答即可.【题目详解】原式= -2 -2+3= -1【题目点拨】本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.15、m≤1【解题分析】根据一元二次方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.【题目详解】解:由题意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案为:m≤1.【题目点拨】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.16、1【解题分析】根据众数的概念进行求解即可得.【题目详解】在数据3,1,1,6,7中1出现次数最多,所以这组数据的众数为1,故答案为:1.【题目点拨】本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键.17、13 【解题分析】20-114+-3-2014-4+6()()=2+9-4+6 =13.故答案是:13.三、解答题(共7小题,满分69分) 18、 (1)21米(2)见解析 【解题分析】试题分析:(1)根据题意易发现,直角三角形ABC 中,已知AC 的长度,又知道了∠ACB 的度数,那么AB 的长就不难求出了.(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的. 解:(1)在Rt △BAC 中,∠ACB=68°, ∴AB=AC•tan68°≈100×2.1=21(米) 答:所测之处江的宽度约为21米.(2)①延长BA 至C ,测得AC 做记录;②从C 沿平行于河岸的方向走到D ,测得CD ,做记录;③测AE ,做记录.根据△BAE ∽△BCD ,得到比例线段,从而解答 19、(1)见解析;(2)是7.3米 【解题分析】(1)图1,先以A 为圆心,大于A 到BC 的距离为半径画弧交BC 与EF 两点,然后分别以E 、F 为圆心画弧,交点为G ,连接AG ,与BC 交点点D ,则AD ⊥BC ;图2,分别以B 、C 为圆心,BA 为半径画弧,交于点G ,连接AG ,与BC 交点点D ,则AD ⊥BC ;(2)在△ABD 中,DB=AD ;在△ACD 中,3,BC=BD+CD ,由此可以建立关于AD 的方程,解方程求解. 【题目详解】 解:(1)如下图,图1,先以A 为圆心,大于A 到BC 的距离为半径画弧交BC 与EF 两点,然后分别以E 、F 为圆心画弧,交点为G ,连接AG ,与BC 交点点D ,则AD ⊥BC ;图2,分别以B 、C 为圆心,BA 为半径画弧,交于点G ,连接AG ,与BC 交点点D ,则AD ⊥BC ;(2)设AD =x ,在Rt △ABD 中,∠ABD =45°, ∴BD =AD =x , ∴CD =20﹣x .∵tan ∠ACD =ADDC , 即tan30°=20xx-,∴x =20tan 301tan 3031︒︒=++=103﹣1)≈7.3(米).答:路灯A 离地面的高度AD 约是7.3米. 【题目点拨】解此题关键是把实际问题转化为数学问题,把实际问题抽象到解直角三角形中,利用三角函数解答即可. 20、 (1)见解析;(2) 40°. 【解题分析】(1)根据角平分线的性质可得出∠BCD =∠ECD ,由DE ∥BC 可得出∠EDC =∠BCD ,进而可得出∠EDC =∠ECD ,再利用等角对等边即可证出DE =CE ;(2)由(1)可得出∠ECD =∠EDC =35°,进而可得出∠ACB =2∠ECD =70°,再根据等腰三角形的性质结合三角形内角和定理即可求出∠A 的度数. 【题目详解】(1)∵CD 是∠ACB 的平分线,∴∠BCD =∠ECD .∵DE ∥BC ,∴∠EDC =∠BCD ,∴∠EDC =∠ECD ,∴DE =CE . (2)∵∠ECD =∠EDC =35°,∴∠ACB =2∠ECD =70°.∵AB =AC ,∴∠ABC =∠ACB =70°,∴∠A =180°﹣70°﹣70°=40°. 【题目点拨】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线.解题的关键是:(1)根据平行线的性质结合角平分线的性质找出∠EDC =∠ECD ;(2)利用角平分线的性质结合等腰三角形的性质求出∠ACB =∠ABC =70°. 21、8【解题分析】原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,合并得到最简结果,将x 与y 的值代入计算即可求出值.【题目详解】原式=22222x xy y y xy -+++=222x y +, 当2x =,3y =时,原式=22(2)2(3)2238.+⨯=+⨯=【题目点拨】 本题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式、单项式乘以多项式、去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键.22、(1)P=12;(2)P=14. 【解题分析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.试题解析:(1)甲、乙两名学生到A 、B 两个书店购书的所有可能结果有:从树状图可以看出,这两名学生到不同书店购书的可能结果有AB 、BA 共2种,所以甲乙两名学生在不同书店购书的概率P (甲、乙2名学生在不同书店购书)=41=82; (2)甲、乙、丙三名学生AB 两个书店购书的所有可能结果有:从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=21 = 84.点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)画图见解析;(2)画图见解析;(3)20【解题分析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【题目详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=224225+=,所以四边形AA1 B1 A2的面积为:()225=20,故答案为20.【题目点拨】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.24、(1)13(2)23.【解题分析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【题目详解】解:(1)甲投放的垃圾恰好是A类的概率是13.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)122 183 ==.即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23.。

2020-2021学年湖北省中考数学模拟试卷(5月份)及答案解析

2020-2021学年湖北省中考数学模拟试卷(5月份)及答案解析

湖北省中考数学模拟试卷(5月份)一、选择题(共10小题,每小题3分,共30分)本题共10小题,每小题均给出A,B,C,D四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卷上.1.实数的值在()A.0与1之间B.1与2之间C.2与3之间D.3与4之间2.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x<﹣2 C.x>﹣2 D.x≠﹣23.运用乘法公式计算(a+3)2的结果是()A.a2+3a+6 B.a2+6a+9 C.a2+9 D.a2+3a+94.下列事件属于必然事件的是()A.姚明罚球线上投篮,投进篮筐B.某种彩票的中奖率为,购买100张彩票一定中奖C.掷一次骰子,向上一面的点数是6D.367人中至少有两人的生日在同一天5.下列式子正确的是()A.x﹣(y﹣z)=x﹣y﹣z B.﹣(x﹣y+z)=﹣x﹣y﹣zC.x+2y﹣2z=x﹣2(z+y)D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d)6.在平面直角坐标系中,把△ABC经过平移得到△A′B′C′,若A(1,m),B(4,2),点A的对应点A′(3,m+2),则点B对应点B′的标为()A.(6,5) B.(6,4) C.(5,m)D.(6,m)7.如图是由5个大小相同的正方体摆成的立方体图形,它的左视图是()A.B.C.D.8.某校校园足球训练队队员的年龄有13、14、15、16四种年龄,统计结果如表:年龄(岁)13141516人数(个)14151617根据表中信息可以判断该足球训练队队员年龄的众数为()A.14 B.15 C.16 D.179.若m1,m2,…m2016是从0,1,2这三个数中取值的一列数,且m1+m2+…+m2016=1546,(m1﹣1)2+(m2﹣1)2+…+(m2016﹣1)2=1510,则在m1,m2,…m2016中,取值为2的个数为()A.505 B.510 C.520 D.55010.如图,AB为⊙O的直径,AB=4,点C为半圆AB上一动点,以BC为边向⊙O 外作正△BCD(点D在直线AB的上方),连接OD,则线段OD的长()A.随点C的运动而变化,最大值为4B.随点C的运动而变化,最大值为4C.随点C的运动而变化,最小值为2D.随点C的运动而变化,但无最值二、填空题(共6小题,每小题3分,共18分)11.计算9+(﹣5)的结果为.12.2016年4月10日,武汉马拉松吸引了来自世界各地36个国家和地区的2万名专业和业余选手同场竞技.最终肯尼亚选手麦约和埃塞俄比亚选手雷加萨分别摘得男女全程组冠军.马拉松全程约为42000米,则42000用科学记数法可表示为.13.掷一枚质地均匀的正方体骰子,前两次抛掷朝上一面点数都是3,那么第三次抛掷朝上一面的点数为3的概率是.14.在▱ABCD中,已知∠A=25°,将△BDA沿BD翻折至△BDA′,连接CA′,∠DA′C=55°,则∠ABD= .15.如图,四边形ABCD中,两对角线相交于E,且E为对角线BD的中点,∠DAE=30°,∠BCE=120°.若CE=1,BC=2,则AC的长为.16.已知A,B的坐标分别为(2,0),(3,0),若二次函数y=x2+(a﹣1)x+1的图象与线段AB只有一个交点,则a的取值范围是.三、解答题(共8小题,共72分)17.解方程2x+1=3(x﹣1).18.如图,在Rt△ABC中,∠ACB=90°,AC=BC,过C点作直线l,点D,E在直线l 上,连接AD,BE,∠ADC=∠CEB=90°.求证:△ADC≌△CEB.19.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?20.如图,已知等边△ABO在平面直角坐标系中,点A(4,0),函数y=(x>0,k为常数)的图象经过AB的中点D,交OB于E.(1)求k的值;(2)若第一象限的双曲线y=与△BDE没有交点,请直接写出m的取值范围.21.如图,△ABC内接于⊙O,AB是⊙O的直径,I是△ABC内一点,AI的延长线交BC于点D,交⊙O于E,连接BE,BI.若IB平分∠ABC,EB=EI.(1)求证:AE平分∠BAC;(2)若BA=,OI⊥AD于I,求CD的长.22.某公司经过市场调查发现,该公司生产的某商品在第x天的销售单价为(x+20)元/件(1≤x≤50),且该商品每天的销量满足关系式y=200﹣4x.已知该商品第10天的售价按8折出售,仍然可以获得20%的利润.(1)求公司生产该商品每件的成本为多少元?(2)问销售该商品第几天时,每天的利润最大?最大利润是多少?(3)该公司每天还需要支付人工、水电和房租等其它费用共计a元,若公司要求每天的最大利润不低于2200元,且保证至少有46天盈利,则a的取值范围是(直接写出结果).23.△ABC中,AB=AC=5.(1)如图1,若sin∠BAC=,求S△ABC;(2)若BC=AC,延长BC到D,使CD=BC,点M为BC上一点,连接AM并延长到P,使∠APD=∠B,延长AC交PD于N,连接MN.①如图2,求证:AM=MN;②如图3,当PC⊥BC时,则CN的长为(直接写结果).24.已知直线l:y=kx(k<0),将直线y=kx沿y轴向下平移m(m>0)个单位得到直线y=kx﹣m,平移后的直线与抛物线y=ax2相交于A(x1,y1),B(x2,y2)两点,抛物线y=ax2经过点P(6,﹣9).(1)求a的值;(2)如图1,当∠AOB<90°时,求m的取值范围;(3)如图2,将抛物线y=ax2向右平移一个单位,再向上平移n个单位(n>0).若第一象限的抛物线上存在点M,N两点,且M,N两点关于直线y=x轴对称,求n的取值范围.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)本题共10小题,每小题均给出A,B,C,D四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卷上.1.实数的值在()A.0与1之间B.1与2之间C.2与3之间D.3与4之间【考点】估算无理数的大小.【分析】根据2<<3,即可解答.【解答】解:∵2<<3,∴在2和3之间.故选:C.2.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x<﹣2 C.x>﹣2 D.x≠﹣2【考点】分式有意义的条件.【分析】根据分母不为零分式有意义,可得答案.【解答】解:由分式有意义,得x+2≠0,解得x≠﹣2,故选:D.3.运用乘法公式计算(a+3)2的结果是()A.a2+3a+6 B.a2+6a+9 C.a2+9 D.a2+3a+9【考点】完全平方公式.【分析】原式利用完全平方公式化简得到结果,即可作出判断.【解答】解:原式=a2+6a+9,故选B4.下列事件属于必然事件的是()A.姚明罚球线上投篮,投进篮筐B.某种彩票的中奖率为,购买100张彩票一定中奖C.掷一次骰子,向上一面的点数是6D.367人中至少有两人的生日在同一天【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念和事件发生的可能性大小判断即可.【解答】解:姚明罚球线上投篮,投进篮筐是随机事件,A错误;某种彩票的中奖率为,购买100张彩票一定中奖是随机事件,B错误;掷一次骰子,向上一面的点数是6是随机事件,C错误;367人中至少有两人的生日在同一天是必然事件,D正确,故选:D.5.下列式子正确的是()A.x﹣(y﹣z)=x﹣y﹣z B.﹣(x﹣y+z)=﹣x﹣y﹣zC.x+2y﹣2z=x﹣2(z+y)D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d)【考点】去括号与添括号.【分析】根据去括号和添括号法则选择.【解答】解:A、x﹣(y﹣z)=x﹣y+z,错误;B、﹣(x﹣y+z)=﹣x+y﹣z,括号前是“﹣”,去括号后,括号里的各项都改变符号,错误;C、x+2y﹣2z=x﹣2(z﹣y),添括号后,括号前是“﹣”,括号里的各项都改变符号,错误;D、正确.故选D.6.在平面直角坐标系中,把△ABC经过平移得到△A′B′C′,若A(1,m),B(4,2),点A的对应点A′(3,m+2),则点B对应点B′的标为()A.(6,5) B.(6,4) C.(5,m)D.(6,m)【考点】坐标与图形变化﹣平移.【分析】先根据点A与点A′的坐标确定平移规律,再根据规律写出点B的对应点B′的坐标即可.【解答】解:∵把△ABC经过平移得到△A′B′C′,点A(1,m)的对应点为A′(3,m+2),∴平移规律是:先向右平移2个单位,再向上平移2个单位,∵点B的坐标为(4,2),∴点B对应点B′的坐标为(6,4).故选B.7.如图是由5个大小相同的正方体摆成的立方体图形,它的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】得到从左往右看组合几何体得到的平面图形中包含的2列正方形的个数即可.【解答】解:从左往右看,得到从左往右2列正方形的个数依次为2,1,故选C.8.某校校园足球训练队队员的年龄有13、14、15、16四种年龄,统计结果如表:年龄(岁)13141516人数(个)14151617根据表中信息可以判断该足球训练队队员年龄的众数为()A.14 B.15 C.16 D.17【考点】众数.【分析】根据众数是出现次数最多的数就可以求解.【解答】解:在这一组数据中16是出现次数最多的,故众数是16.故选C.9.若m1,m2,…m2016是从0,1,2这三个数中取值的一列数,且m1+m2+…+m2016=1546,(m1﹣1)2+(m2﹣1)2+…+(m2016﹣1)2=1510,则在m1,m2,…m2016中,取值为2的个数为()A.505 B.510 C.520 D.550【考点】规律型:数字的变化类.【分析】解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可【解答】解:设0有a个,1有b个,2有c个,由题意得,列出方程组解得,故取值为2的个数为520个,故选C.10.如图,AB为⊙O的直径,AB=4,点C为半圆AB上一动点,以BC为边向⊙O 外作正△BCD(点D在直线AB的上方),连接OD,则线段OD的长()A.随点C的运动而变化,最大值为4B.随点C的运动而变化,最大值为4C.随点C的运动而变化,最小值为2D.随点C的运动而变化,但无最值【考点】圆的综合题.【分析】方法一、先利用SSS判断出△OCD≌△OBD,进而得出点C在运动过程中,∠BDO始终是30°,再构造出直角三角形ODF,即可判断出点F和点B重合时,OF 最大,即可得出OD的最大值.方法二、先判断出△COH是等边三角形,得出HC=OC,∠OCH=60°,进而判断出△OCD≌△HCB,即可得出OD=BH,由圆中最大的弦是直径即可得出结论.【解答】解:如图,连接OC,∵△BCD是等边三角形,∴∠BDC=60°,CD=BD,在△OCD和△OBD中,,∴△OCD≌△OBD(SSS),∴∠BDO=∠CDO=∠BDC=30°,过点O作OF⊥BD于F,在Rt△ODF中,∠BDO=30°,∴OD=2OF,当点C在运动的过程中,OD要最大,即OF最大,而OF最大=OB,∴OD最大=2OF最大=2OB=AB=4.故选B.方法二、如图2,连接OC,将△OCD绕点C顺时针旋转60°,则点D落在点B处,OD和⊙O相交于H,连接OH,CH,同方法一,得出∠ODC=30°,∴∠CBH=30°,∴∠COH=60°,∴△COH是等边三角形,∴HC=OC,∠OCH=60°,∵△BCD是等边三角形,∴CD=BC,∠BCD=60°,∴∠OCD=∠HCB,在△OCD和△HCB中,,∴△OCD≌△HCB(SAS),∴OD=BH,∵BH是⊙O的弦,∴BH最大=AB=4,即:OD最大=4,故选B.二、填空题(共6小题,每小题3分,共18分)11.计算9+(﹣5)的结果为 4 .【考点】有理数的加法.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=+(9﹣5)=4,故答案为:412.2016年4月10日,武汉马拉松吸引了来自世界各地36个国家和地区的2万名专业和业余选手同场竞技.最终肯尼亚选手麦约和埃塞俄比亚选手雷加萨分别摘得男女全程组冠军.马拉松全程约为42000米,则42000用科学记数法可表示为 4.2×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42000=4.2×104,故答案为:4.2×104.13.掷一枚质地均匀的正方体骰子,前两次抛掷朝上一面点数都是3,那么第三次抛掷朝上一面的点数为3的概率是.【考点】概率公式.【分析】弄清骰子六个面上分别刻的点数,再根据概率公式解答就可求出点数是6的概率.【解答】解:根据概率公式P(向上一面点数是3)=1÷6=.故答案为:.14.在▱ABCD中,已知∠A=25°,将△BDA沿BD翻折至△BDA′,连接CA′,∠DA′C=55°,则∠ABD= 30°.【考点】平行四边形的性质;四点共圆.【分析】首先证明A′、D、B、C四点共圆,得∠CA′B=∠BDC=30°,由此即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠BCD=25°,CD∥AB,∴∠CDB=∠ABD,∵△A′DB是由△ABD翻折,∴∠BA′D=∠A=25°,∴∠DA′B=∠BCD,∴A′、D、B、C四点共圆,∴∠CA′B=∠BDC=30°∴∠ABD=∠BDC=30°,故答案为30°.15.如图,四边形ABCD中,两对角线相交于E,且E为对角线BD的中点,∠DAE=30°,∠BCE=120°.若CE=1,BC=2,则AC的长为 6 .【考点】相似三角形的判定与性质;平行四边形的判定与性质.【分析】如图,延长BC交AD的延长线于F,在AE上取一点K,使得EK=CE,连接DK、BK.由四边形CDKB是平行四边形,推出DK=BC=2,DK∥BF,由∠ACB=120°,推出∠FCA=180°﹣120°=60°,由∠DAC=30°,推出∠F=90°,∠ADK=∠F=90°,由∠DAK=30°,推出AK=2DK=4,由此即可解决问题.【解答】解:如图,延长BC交AD的延长线于F,在AE上取一点K,使得EK=CE,连接DK、BK.∵DE=BE,EK=CE,∴四边形CDKB是平行四边形,∴DK=BC=2,DK∥BF,∵∠ACB=120°,∴∠FCA=180°﹣120°=60°,∵∠DAC=30°,∴∠F=90°,∵DK∥BF,∴∠ADK=∠F=90°,∵∠DAK=30°,∴AK=2DK=4,∴AC=AK+EK+CE=4+1+1=6,故答案为6.16.已知A,B的坐标分别为(2,0),(3,0),若二次函数y=x2+(a﹣1)x+1的图象与线段AB只有一个交点,则a的取值范围是.【考点】二次函数图象上点的坐标特征.【分析】根据题意,当二次函数顶点在x轴下方或当二次函数的顶点在x轴上时,分情况讨论问题.借助于根的判别式即可解答.【解答】解:(1)顶点在x轴上:,无解(2)顶点在x轴下方时,因为抛物线过点点(0,1),①,无解②,解得:所以,三、解答题(共8小题,共72分)17.解方程2x+1=3(x﹣1).【考点】解一元一次方程.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:2x+1=3x﹣3,移项合并得:﹣x=﹣4,解得:x=4.18.如图,在Rt△ABC中,∠ACB=90°,AC=BC,过C点作直线l,点D,E在直线l 上,连接AD,BE,∠ADC=∠CEB=90°.求证:△ADC≌△CEB.【考点】全等三角形的判定.【分析】先证明∠DAC=∠ECB,根据AAS证△ADC≌△CEB.【解答】证明:∵∠DAC+∠DCA=∠ECB+∠DCA=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS).19.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000 名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.20.如图,已知等边△ABO在平面直角坐标系中,点A(4,0),函数y=(x>0,k为常数)的图象经过AB的中点D,交OB于E.(1)求k的值;(2)若第一象限的双曲线y=与△BDE没有交点,请直接写出m的取值范围.【考点】反比例函数的性质.【分析】(1)过点B作BM⊥OA于点M,由等边三角形的性质结合点A的坐标找出点B的坐标,再利用中点坐标公式即可求出点D的坐标,最后利用待定系数法即可得出结论;(2)设过点B的反比例函数的解析式为y=,由点B的坐标利用待定系数法求出n的值,根据反比例函数的性质即可得出m的取值范围.【解答】解:(1)过点B作BM⊥OA于点M,如图所示.∵点A(4,0),∴OA=4,又∵△ABO为等边三角形,∴OM=OA=2,BM=OA=6.∴点B的坐标为(2,6).∵点D为线段AB的中点,∴点D的坐标为(,)=(3,3).∵点D为函数y=(x>0,k为常数)的图象上一点,∴有3=,解得:k=9.(2)设过点B的反比例函数的解析式为y=,∵点B的坐标为(2,6),∴有6=,解得:n=12.若要第一象限的双曲线y=与△BDE没有交点,只需m<k或m>n即可,∴m<9或m>12.答:若第一象限的双曲线y=与△BDE没有交点,m的取值范围为m<9或m>12.21.如图,△ABC内接于⊙O,AB是⊙O的直径,I是△ABC内一点,AI的延长线交BC于点D,交⊙O于E,连接BE,BI.若IB平分∠ABC,EB=EI.(1)求证:AE平分∠BAC;(2)若BA=,OI⊥AD于I,求CD的长.【考点】三角形的外接圆与外心;勾股定理;垂径定理.【分析】(1)由角平分线的定义及等腰三角形的性质,结合外角的性质可求得∠EBD=∠BAI,再利用同弧所对的圆周角相等可求得∠EBD=∠CAD,从而可证明∠BAI=∠CAD,即AE平分∠BAC;(2)可先证明△BDI≌△BOI,可求得AB、AD、BD的长,分别在Rt△ABC和Rt△ACD 中,可得到关于AC、CD的方程组,可求得CD的长.【解答】(1)证明:∵EB=EI,∴∠EBI=∠EIB,∵IB平分∠ABC,∴∠ABI=∠DBI,又∠EBI=∠EBD+∠DBI,∠EIB=∠ABI+∠BAI,∴∠EBD=∠BAI,又∠EBD=∠CAD,∴∠BAI=∠CAD,即AE平分∠BAC;(2)解:∵OI⊥AD,AB为圆O直径,∴∠OIA=∠E=90°,∴OI∥BE,∴∠OIB=∠EBI∵EB=EI,∴∠EBI=∠EIB,∴∠OIB=∠DIB,∵IB平分∠ABC,∴∠ABI=∠DBI,在△BDI和△BOI中∴△BDI≌△BOI(ASA),∴AO=BO=BD=,∴AB=2AO=2又AI=EI=EB,∴在Rt△ABE中,由勾股定理可得AB2=BE2+AE2,即(2)2=(2AI)2+AI2,解得AI=2,∴OI=ID=BE=AI=1,∴AD=AI+DI=2+1=3,在Rt△ACD中,由勾股定理可得AC2=AD2﹣CD2,在Rt△ABC中,由勾股定理可得AC2=AB2﹣BC2,即,解得CD=.22.某公司经过市场调查发现,该公司生产的某商品在第x天的销售单价为(x+20)元/件(1≤x≤50),且该商品每天的销量满足关系式y=200﹣4x.已知该商品第10天的售价按8折出售,仍然可以获得20%的利润.(1)求公司生产该商品每件的成本为多少元?(2)问销售该商品第几天时,每天的利润最大?最大利润是多少?(3)该公司每天还需要支付人工、水电和房租等其它费用共计a元,若公司要求每天的最大利润不低于2200元,且保证至少有46天盈利,则a的取值范围是0<a ≤300 (直接写出结果).【考点】二次函数的应用.【分析】(1)设该公司生产每件商品的成本为a元,根据:实际售价﹣成本=利润,列出方程,解方程可得;(2)根据:每天利润=单件利润×每天销售量列出函数关系式,配方成顶点式可得函数的最值情况;(3)根据(2)中每天利润减去每天开支a元列出函数关系式P=﹣4(x﹣25)2+2500﹣a,根据每天的最大利润不低于2200元可得关于a的不等式,解不等式可得a的取值范围,再由至少有46天盈利可知﹣4x2+200x﹣a=0的两根x1、x2间距离x1﹣x2≥46,根据韦达定理可得关于a的不等式,求得a的范围,综合上述情况确定a的范围..【解答】解:(1)设该公司生产每件商品的成本为a元,根据题意,得:0.8×(10+20)﹣a=0.2a,解得:a=20,故该公司生产每件商品的成本为20元;(2)设第x天的销售利润为W,则:W=(x+20﹣20)(﹣4x+200)=﹣4x2+200x=﹣4(x﹣25)2+2500,∴当x=25时,W取得最大值,最大值为2500元,故问销售该商品第25天时,每天的利润最大,最大利润是2500元;(3)记公司每天控制人工、水电和房租支出共计a元后利润为P,则P=﹣4(x﹣25)2+2500﹣a,根据题意:2500﹣a≥2200,解得:a≤300,又∵至少有46天的盈利,∴﹣4x2+200x﹣a=0的两根x1、x2间距离x1﹣x2≥46,∴(x1﹣x2)2≥462,即(x1+x2)2﹣4x1x2≥462,∵x1+x2=50,x1x2=,∴502﹣4×≥462,解得:a≤384,综上,0<a≤300,故答案为:0<a≤300.23.△ABC中,AB=AC=5.(1)如图1,若sin∠BAC=,求S△ABC;(2)若BC=AC,延长BC到D,使CD=BC,点M为BC上一点,连接AM并延长到P,使∠APD=∠B,延长AC交PD于N,连接MN.①如图2,求证:AM=MN;②如图3,当PC⊥BC时,则CN的长为5﹣5 (直接写结果).【考点】三角形综合题.【分析】(1)作AB边上的高CD,根据三角函数可求得CD,则可求得△ABC的面积;(2)①过N作NH⊥MD于H点,可证明△ABM≌△DCN,再结合△ABC为等边三角形及直角三角形的性质可求得△MND为等腰三角形,可证得结论;②作辅助线构建直角三角形,在30°的直角△CNH中设CH=x,表示出DH、GM,并利用平行线,得出比例式,求出PC的长,再利用同角三角函数值列等式,求出x的值,则CN=2x=5﹣5.【解答】解:(1)如图1,作高CD,由AB=AC=5,sin∠BAC=,得高CD=4,所以S△ABC=×5×4=10;(2)①如图2,过N作NH⊥MD于H点,∵AB=AC,BC=AC,BC=CD,∴AB=CD,△ABC为等边三角形,∴∠B=∠ACB=60°,∵∠ACB=∠NCD,∴∠NCD=∠B=60°,∵∠AND=∠APD+∠PAN,∠AMB=∠ACB+∠PAN,又∵∠APD=∠B=∠ACB,∴∠CND=∠AMB,∴△ABM≌△DCN,则BM=CN,AM=DN,在Rt△CNH中,∠CNH=90°﹣60°=30°,∴CH=CN,又CD=BD,CD﹣CH=(BD﹣CN)═(BD﹣BM),即DH=DM,所以MN=DN=AM;②如图3,过A作AG⊥BD,过N作NH⊥BD,垂足分别为G、H,则BG=,AG=,设CH=x,则CN=2x,BM=2x,DH=5﹣x,NH=x,∵NH∥PC,∴,∴,PC=,∵tan∠AMB==,tan∠PMC==,∴=,∴2x2+10x﹣25=0,x1=,x2=(舍去),∴CN=2x=5﹣5.故答案为:5﹣5.24.已知直线l:y=kx(k<0),将直线y=kx沿y轴向下平移m(m>0)个单位得到直线y=kx﹣m,平移后的直线与抛物线y=ax2相交于A(x1,y1),B(x2,y2)两点,抛物线y=ax2经过点P(6,﹣9).(1)求a的值;(2)如图1,当∠AOB<90°时,求m的取值范围;(3)如图2,将抛物线y=ax2向右平移一个单位,再向上平移n个单位(n>0).若第一象限的抛物线上存在点M,N两点,且M,N两点关于直线y=x轴对称,求n的取值范围.【考点】二次函数综合题.【分析】(1)将点P(6,﹣9)的坐标代入y=ax2,即可求出a的值;(2)将y=kx﹣m代入y=﹣x2,得x2+kx﹣m=0,根据二次函数图象上点的坐标特征以及根与系数的关系得出y1=﹣x12,y2=﹣x22,x1•x2=﹣4m,那么y1•y2=m2.当∠AOB=90°时,如图1,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.证明△AOM∽△OBN,根据相似三角形对应边成比例得出y1•y2=﹣x1•x2,依此列出关于m的方程,求出m的值,进而得出当∠AOB<90°时,m的取值范围;(3)根据轴对称的性质得出直线y=x是线段MN的垂直平分线,如图2,设直线MN 的解析式为y=﹣x+b,与平移后的抛物线y=﹣(x﹣1)2+n交于M、N两点,交x 轴于E点,分别过M,N作y轴、x轴垂线,垂足分别为G、H,设M(m1,n1),N (m2,n2).利用AAS证明△OMG≌△ONH,得出MG=HN,即MG=HE.将y=﹣(x ﹣1)2+n代入y=﹣x+b得:x2﹣x++b﹣n=0,由根与系数的关系得m1+m2=6,则b=6,那么x2﹣x+﹣n=0,再根据△>0以及M,N在第一象限分别列出不等式,进而求出n的取值范围.【解答】解:(1)∵抛物线y=ax2经过点P(6,﹣9),∴36a=﹣9,解得a=﹣;(2)将y=kx﹣m代入y=﹣x2,得x2+kx﹣m=0,∵y=kx﹣m与抛物线y=﹣x2相交于A(x1,y1),B(x2,y2)两点,∴y1=﹣x12,y2=﹣x22,x1•x2=﹣4m,∴y1•y2=(﹣x12)•(﹣x22)=•(﹣4m)2=m2.当∠AOB=90°时,如图1,过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N.在△AOM与△OBN中,,∴△AOM∽△OBN,∴=,即=,∴y1•y2=﹣x1•x2,∴m2=4m,∵m>0,∴m=4,∴当∠AOB<90°时,m>4;(3)∵M,N两点关于直线y=x轴对称,∴直线y=x是线段MN的垂直平分线,∴直线MN的斜率为﹣1,OM=ON,∴∠MOP=∠NOP,∵∠GOP=∠HOP=45°,∴∠GOM=∠HON.如图2,设直线MN的解析式为y=﹣x+b,与平移后的抛物线y=﹣(x﹣1)2+n交于M、N两点,交x轴于E点.分别过M,N作y轴、x轴垂线,垂足分别为G、H,设M(m1,n1),N(m2,n2),直线MN与直线y=x交于点P.在△OMG与△ONH中,,∴△OMG≌△ONH,∴MG=HN,即MG=HE.将y=﹣(x﹣1)2+n代入y=﹣x+b得:x2﹣x++b﹣n=0,由根与系数的关系得m1+m2=6,∵OE=HE+OH=MG+OH=m1+m2=6,∴b=6.即x2﹣x+﹣n=0,∵△>0,∴(﹣)2﹣4××(﹣n)>0,解得n>4.又M,N在第一象限,∴m1•m2=4(﹣n)>0,解得n<,∴n的取值范围是4<n<.。

2020届湖北省潜江市、天门市、仙桃市中考数学模拟试卷(有答案)(已纠错)

2020届湖北省潜江市、天门市、仙桃市中考数学模拟试卷(有答案)(已纠错)

湖北省潜江市、天门市、仙桃市、江汉油田中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分)1.下列各数中,最小的数是()A.0 B.C.﹣3 D.﹣22.下面几个几何体,主视图是圆的是()A.B.C.D.3.第31届夏季奥运会将于2016年8月5日﹣21日在巴西举行,为纪念此次体育盛事发行的奥运会纪念币,在中国发行450000套,450000这个数用科学记数法表示为()A.45×104B.4.5×105C.0.45×106 D.4.5×1064.如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b上,如果∠2=50°,那么∠1的度数为()A.10°B.20°C.30°D.40°5.在下列事件中,必然事件是()A.在足球赛中,弱队战胜强队B.任意画一个三角形,其内角和是360°C.抛掷一枚硬币,落地后反面朝上D.通常温度降到0℃以下,纯净的水结冰6.不等式组的解集在数轴上表示为()A.B.C.D.7.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.198.在平面直角坐标系中,点P(﹣4,2)向右平移7个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是()A.(﹣2,3)B.(﹣3,2)C.(2,﹣3)D.(3,﹣2)9.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线10.在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以akm/h,bkm/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图,观察图象,下列说法:①出发mh内小明的速度比小刚快;②a=26;③小刚追上小明时离起点43km;④此次越野赛的全程为90km,其中正确的说法有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,满分18分)11.分解因式:x3﹣9x=.12.某班为奖励在校运动会上取得好成绩的同学,花了200元钱购买甲、乙两种奖品共30件,其中甲种奖品每件8元,乙种奖品每件6元,则购买了甲种奖品件.13.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R 应控制的范围是.14.如图,校园内有一颗与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高米.(结果保留根号)15.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为.16.如图,在平面直角坐标系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等边三角形,且点A1,A3,A5,A7,A9的坐标分别为A1(3,0),A3(1,0),A5(4,0),A7(0,0),A9(5,0),依据图形所反映的规律,则A100的坐标为.三、解答题(本大题共9个小题,满分72分)17.计算:﹣|﹣5|+()﹣1.18.解方程:.19.如图,在△ABC中,AB=AC,AD是角平分线,点E在AD上,请写出图中两对全等三角形,并选择其中的一对加以证明.20.八(1)班同学分成甲、乙两组,开展“社会主义核心价值观”知识竞赛,满分5分,得分均为整数,小马虎根据竞赛成绩,绘制了分组成绩条形统计图和全班成绩扇形统计图,经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)甲组同学成绩的平均数是,中位数是,众数是;(2)指出条形统计图中存在的错误,并求出正确值.21.某宾馆有客房50间,当每间客房每天的定价为220元时,客房会全部住满;当每间客房每天的定价增加10元时,就会有一间客房空闲,设每间客房每天的定价增加x元时,客房入住数为y间.(1)求y与x的函数关系式(不要求写出x的取值范围);(2)如果每间客房入住后每天的各种支出为40元,不考虑其他因素,则该宾馆每间客房每天的定价为多少时利润最大?22.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15°,将沿弦CE翻折,交CD于点F,求图中阴影部分的面积.23.如图,在平面直角坐标系中,已知抛物线C1:y=的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线l:y=kx+b经过M,N两点.(1)结合图象,直接写出不等式x2+6x+2<kx+b的解集;(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,求3﹣4q的最大值.24.如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN 分别相交于C,D两点.(1)请直接写出∠COD的度数;(2)求AC•BD的值;(3)如图②,连接OP并延长交AM于点Q,连接DQ,试判断△PQD能否与△ACO相似?若能相似,请求AC:BD的值;若不能相似,请说明理由.25.如图,矩形OABC的两边OA,OC分别在x轴和y轴的正半轴上,点B的坐标为(4,4),点D 在CB上,且CD:DB=2:1,OB交AD于点E.平行于x轴的直线l从原点O出发,以每秒1个单位长度的速度沿y轴向上平移,到C点时停止;l与线段OB,AD分别相交与M,N两点,以MN为边作等边△MNP(点P在线段MN的下方).设直线l的运动时间为t(秒),△MNP与△OAB重叠部分的面积为S(平分单位).(1)直接写出点E的坐标;(2)求S与t的函数关系式;(3)是否存在某一时刻t,使得S=S成立?若存在,请求出此时t的值;若不存在,请说明理由.△ABD湖北省潜江市、天门市、仙桃市、江汉油田中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分)1.下列各数中,最小的数是()A.0 B.C.﹣3 D.﹣2【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,两个负数相比较,绝对值大的反而小,可得答案.【解答】解:﹣3<﹣2<0<,故﹣3最小,故选C.2.下面几个几何体,主视图是圆的是()A.B.C.D.【考点】简单几何体的三视图.【分析】分别判断A,B,C,D的主视图,即可解答.【解答】解:A、主视图为正方形,故错误;B、主视图为圆,正确;C、主视图为三角形,故错误;D、主视图为长方形,故错误;故选:B.3.第31届夏季奥运会将于2016年8月5日﹣21日在巴西举行,为纪念此次体育盛事发行的奥运会纪念币,在中国发行450000套,450000这个数用科学记数法表示为()A.45×104B.4.5×105C.0.45×106 D.4.5×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将450000用科学记数法表示为:4.5×105.故选:B.4.如图,将一块含有60°角的直角三角板的两个顶点放在两条平行的直线a,b上,如果∠2=50°,那么∠1的度数为()A.10°B.20°C.30°D.40°【考点】平行线的性质.【分析】根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥直线a,则EF∥直线b,∴∠3=∠1,∠4=∠2,∴∠1=60°﹣∠2=10°,故选A.5.在下列事件中,必然事件是()A.在足球赛中,弱队战胜强队B.任意画一个三角形,其内角和是360°C.抛掷一枚硬币,落地后反面朝上D.通常温度降到0℃以下,纯净的水结冰【考点】随机事件.【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【解答】解:A、在足球赛中,弱队战胜强队,是随机事件;B、任意画一个三角形,其内角和是360°,是不可能事件;C、抛掷一枚硬币,落地后反面朝上,是随机事件;D、通常温度降到0℃以下,纯净的水结冰,是必然事件.故选:D.6.不等式组的解集在数轴上表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得,x≥﹣2,由②得,x<2,故不等式组的解集为:﹣2≤x<2,在数轴上表示为:.故选B.7.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.19【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出△ABD的周长为AB+BC,代入求出即可.【解答】解:∵AC的垂直平分线分别交AC、BC于E,D两点,∴AD=DC,AE=CE=4,即AC=8,∵△ABC的周长为23,∴AB+BC+AC=23,∴AB+BC=23﹣8=15,∴△ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B.8.在平面直角坐标系中,点P(﹣4,2)向右平移7个单位长度得到点P1,点P1绕原点逆时针旋转90°得到点P2,则点P2的坐标是()A.(﹣2,3)B.(﹣3,2)C.(2,﹣3)D.(3,﹣2)【考点】坐标与图形变化-旋转;坐标与图形变化-平移.【分析】根据题意画出图形,利用平移与旋转性质确定出所求点坐标即可.【解答】解:如图所示:根据图形得:P1(3,2),P2(﹣2,3),故选A9.在下列条件中,能够判定一个四边形是平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边相等,一组对角相等C.一组对边平行,一条对角线平分另一条对角线D.一组对边相等,一条对角线平分另一条对角线【考点】平行四边形的判定.【分析】根据平行四边形的判定方法以及全等三角形的判定方法一一判断即可.【解答】解:A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.10.在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以akm/h,bkm/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图,观察图象,下列说法:①出发mh内小明的速度比小刚快;②a=26;③小刚追上小明时离起点43km;④此次越野赛的全程为90km,其中正确的说法有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】①根据函数图象可以判断出发mh内小明的速度比小刚快是否正确;②根据图象可以得到关于a、b、m的三元一次方程组,从而可以求得a、b、m的值,从而可以解答本题;③根据②中的b、m的值可以求得小刚追上小明时离起点的路程,本题得以解决;④根据②中的数据可以求得此次越野赛的全程.【解答】解:由图象可知,出发mh内小明的速度比小刚快,故①正确;由图象可得,,解得,,故②正确;小刚追上小明走过的路程是:36×(0.5+0.7)=36×1.2=43.2km>43km,故③错误;此次越野赛的全程是:36×(0.5+2)=36×2.5=90km,故④正确;故选C.二、填空题(本大题共6个小题,每小题3分,满分18分)11.分解因式:x3﹣9x=x(x+3)(x﹣3).【考点】提公因式法与公式法的综合运用.【分析】根据提取公因式、平方差公式,可分解因式.【解答】解:原式=x(x2﹣9)=x(x+3)(x﹣3),故答案为:x(x+3)(x﹣3).12.某班为奖励在校运动会上取得好成绩的同学,花了200元钱购买甲、乙两种奖品共30件,其中甲种奖品每件8元,乙种奖品每件6元,则购买了甲种奖品10件.【考点】二元一次方程组的应用.【分析】设购买甲种奖品x件,乙种奖品y件,根据甲,乙两种奖品共30件和花了200元钱购买甲,乙两种奖品,甲种奖品每件8元,乙种奖品每件6元,列出方程组,再进行求解即可.【解答】解:设购买甲种奖品x件,乙种奖品y件,由题意得,解得,答:购买了甲种奖品10件.故答案为:10.13.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,如果以此蓄电池为电源的用电器,其限制电流不能超过10A,那么用电器可变电阻R 应控制的范围是R≥3.6.【考点】反比例函数的应用.【分析】根据图象中的点的坐标先求反比例函数关系式,再由电流不能超过10A列不等式,求出结论,并结合图象.【解答】解:设反比例函数关系式为:I=,把(9,4)代入得:k=4×9=36,∴反比例函数关系式为:I=,当I≤10时,则≤10,R≥3.6,故答案为:R≥3.6.14.如图,校园内有一颗与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高4米.(结果保留根号)【考点】平行投影.【分析】设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.【解答】解:如图,在RtABC中,tan∠ACB=,∴BC==,同理:BD=,∵两次测量的影长相差8米,∴﹣=8,∴x=4故答案为4.15.有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为.【考点】列表法与树状图法.【分析】画树状图展示所有16种等可能的结果数,再找出小红第二次取出的数字能够整除第一次取出的数字的结果数,然后根据概率公式求解. 【解答】解:画树状图为:共有16种等可能的结果数,其中小红第二次取出的数字能够整除第一次取出的数字的结果数为7, 所以小红第二次取出的数字能够整除第一次取出的数字的概率=.故答案为.16.如图,在平面直角坐标系中,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,△A 7A 8A 9,…,都是等边三角形,且点A 1,A 3,A 5,A 7,A 9的坐标分别为A 1(3,0),A 3(1,0),A 5(4,0),A 7(0,0),A 9(5,0),依据图形所反映的规律,则A 100的坐标为 (,﹣) .【考点】规律型:点的坐标.【分析】根据等边三角形的性质可得出A 2(2,),A 4(,﹣),A 6(2,2),A 8(,﹣),…,根据点的变化找出变化规律“A 4n +2(2, n +),A 4n +4(,﹣)(n 为自然数)”,依此规律即可得出点A 100的坐标.【解答】解:观察,发现规律:A 2(2,),A 4(,﹣),A 6(2,2),A 8(,﹣),…,∴A 4n +2(2,n +),A 4n +4(,﹣)(n 为自然数),∵100=4×24+4, ∴A 100的坐标为(,﹣).故答案为:(,﹣).三、解答题(本大题共9个小题,满分72分) 17.计算:﹣|﹣5|+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=9﹣1﹣5+2=5.18.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:当x=2时,(x+1)(x﹣1)≠0,∴原分式方程的解是x=2.19.如图,在△ABC中,AB=AC,AD是角平分线,点E在AD上,请写出图中两对全等三角形,并选择其中的一对加以证明.【考点】等腰三角形的性质;全等三角形的判定.【分析】由AB=AC,AD是角平分线,即可利用(SAS)证出△ABD≌△ACD,同理可得出△ABE≌△ACE,△EBD≌△ECD.【解答】解:△ABE≌△ACE,△EBD≌△ECD,△ABD≌△ACD.以△ABE≌△ACE为例,证明如下:∵AD平分∠BAC,∴∠BAE=∠CAE.在△ABE和△ACE中,,∴△ABE≌△ACE(SAS).20.八(1)班同学分成甲、乙两组,开展“社会主义核心价值观”知识竞赛,满分5分,得分均为整数,小马虎根据竞赛成绩,绘制了分组成绩条形统计图和全班成绩扇形统计图,经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)甲组同学成绩的平均数是 3.55分,中位数是 3.5分,众数是3分;(2)指出条形统计图中存在的错误,并求出正确值.【考点】条形统计图;扇形统计图;加权平均数;中位数;众数.【分析】(1)利用加权平均数求法以及中位数的定义和众数的定义分别分析得出答案;(2)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组.【解答】解:(1)甲组同学成绩的平均数是:(3×2+3×7+6×4+5×4)÷20=3.55(分),中位数是:(3+4)÷2=3.5(分),众数是3分;故答案为:3.55分,3.5分,3分;(2)乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,2÷5%=40,(3+2)÷12.5%=40,(7+5)÷30%=40,(6+8)÷35%=40,(4+4)÷17.5%≠40,故乙组得5分的人数统计有误, 正确人数应为:40×17.5%﹣4=3.21.某宾馆有客房50间,当每间客房每天的定价为220元时,客房会全部住满;当每间客房每天的定价增加10元时,就会有一间客房空闲,设每间客房每天的定价增加x 元时,客房入住数为y 间. (1)求y 与x 的函数关系式(不要求写出x 的取值范围);(2)如果每间客房入住后每天的各种支出为40元,不考虑其他因素,则该宾馆每间客房每天的定价为多少时利润最大?【考点】二次函数的应用. 【分析】(1)客房入住数为=50﹣每间增加x 元后空出的房间数,以此等量关系求解即可; (2)宾馆每天的利润=每天客房的入住数×(每间客房的定价﹣每天的各种支出). 【解答】解:(1)由题意可得, y=50﹣=,即y 与x 的函数关系式是:y=﹣x +50;(2)当每间客房每天的定价增加x 元时,设宾馆的利润为w 元, 则w=(﹣x +50)=﹣,当x=﹣=160时,w 有最大值,故这一天宾馆每间客房的定价为:220+160=380(元), 即当宾馆每间客房的定价为380元时,宾馆利润最大.22.如图,CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8. (1)求⊙O 的半径;(2)点E 为圆上一点,∠ECD=15°,将沿弦CE 翻折,交CD 于点F ,求图中阴影部分的面积.【考点】垂径定理;扇形面积的计算;翻折变换(折叠问题). 【分析】(1)根据AB ⊥CD ,垂足为G ,OG :OC=3:5,AB=8,可以求得⊙O 的半径;(2)要求阴影部分的面积只要做出合适的辅助线,然后利用锐角三角函数、扇形的面积和三角形的面积即可解答本题. 【解答】解:(1)连接AO ,如右图1所示, ∵CD 为⊙O 的直径,AB ⊥CD ,AB=8, ∴AG==4,∵OG :OC=3:5,AB ⊥CD ,垂足为G , ∴设⊙O 的半径为5k ,则OG=3k , ∴(3k )2+42=(5k )2, 解得,k=1或k=﹣1(舍去), ∴5k=5,即⊙O 的半径是5;(2)如图2所示,将阴影部分沿CE 翻折,点F 的对应点为M , ∵∠ECD=15°,由对称性可知,∠DCM=30°,S 阴影=S 弓形CBM , 连接OM ,则∠MOD=60°,∴∠MOC=120°,过点M 作MN ⊥CD 于点N , ∴MN=MO •sin60°=5×,∴S 阴影=S 扇形OMC ﹣S △OMC ==,即图中阴影部分的面积是:.23.如图,在平面直角坐标系中,已知抛物线C 1:y=的顶点为M ,与y 轴相交于点N ,先将抛物线C 1沿x 轴翻折,再向右平移p 个单位长度后得到抛物线C 2:直线l :y=kx +b 经过M ,N 两点.(1)结合图象,直接写出不等式x 2+6x +2<kx +b 的解集;(2)若抛物线C 2的顶点与点M 关于原点对称,求p 的值及抛物线C 2的解析式;(3)若直线l 沿y 轴向下平移q 个单位长度后,与(2)中的抛物线C 2存在公共点,求3﹣4q 的最大值.【考点】二次函数综合题. 【分析】(1)令抛物线C 1的解析式中x=0,求出y 值即可得出点N 的坐标,再利用配方法将抛物线C 1的解析式配方,即可得出顶点M 的坐标,结合函数图象的上下位置关系,即可得出不等式的解集;(2)找出点M 关于x 轴对称的对称点的坐标,找出点M 关于原点对称的对称点的坐标,二者横坐标做差即可得出p 的值,根据抛物线的开口大小没变,开口方向改变,再结合平移后的抛物线的顶点坐标即可得出抛物线C 2的解析式;(3)由点M 、N 的坐标利用待定系数法即可求出直线l 的解析式,根据直线l 沿y 轴向下平移q 个单位长度后与抛物线C 2存在公共点,即可得出方程﹣x 2+6x ﹣2=3x +2﹣q 有实数根,利用根的判别式△≥0,即可求出q 的取值范围,再根据一次函数的性质即可得出当q=时,3﹣4q 取最大值,代入数据求出最值即可.【解答】解:(1)令y=+6x+2中x=0,则y=2,∴N(0,2);∵y=+6x+2=(x+2)2﹣4,∴M(﹣2,﹣4).观察函数图象,发现:当﹣2<x<0时,抛物线C1在直线l的下方,∴不等式x2+6x+2<kx+b的解集为﹣2<x<0.(2)∵抛物线C1:y=的顶点为M(﹣2,﹣4),沿x轴翻折后的对称点坐标为(﹣2,4).∵抛物线C2的顶点与点M关于原点对称,∴抛物线C2的顶点坐标为(2,4),∴p=2﹣(﹣2)=4.∵抛物线C2与C1开口大小相同,开口方向相反,∴抛物线C2的解析式为y=﹣(x﹣2)2+4=﹣x2+6x﹣2.(3)将M(﹣2,﹣4)、N(0,2)代入y=kx+b中,得:,解得:,∴直线l的解析式为y=3x+2.∵若直线l沿y轴向下平移q个单位长度后与抛物线C2存在公共点,∴方程﹣x2+6x﹣2=3x+2﹣q有实数根,即3x2﹣6x+8﹣2q有实数根,∴△=(﹣6)2﹣4×3×(8﹣2q)≥0,解得:q≥.∵﹣4<0,∴当q=时,3﹣4q取最大值,最大值为﹣7.24.如图①,半圆O的直径AB=6,AM和BN是它的两条切线,CP与半圆O相切于点P,并于AM,BN 分别相交于C,D两点.(1)请直接写出∠COD的度数;(2)求AC•BD的值;(3)如图②,连接OP并延长交AM于点Q,连接DQ,试判断△PQD能否与△ACO相似?若能相似,请求AC:BD的值;若不能相似,请说明理由.【考点】圆的综合题.【分析】(1)结论:∠COD=90°,只要证明∠OCD+∠ODC=90°即可解决问题.(2)由RT△AOC∽RT△BDO,得=,由此即可解决问题.(3)分两种情形①如图②中,当△PQD∽△ACO时,②如图②中,当△PQD∽△AOC时,分别计算即可.【解答】解:(1)∠COD=90°.理由:如图①中,∵AB是直径,AM、BN是切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∵CA、CP是切线,∴∠ACO=∠OCP,同理∠ODP=∠ODB,∵∠ACD+∠BDC=180°,∴2∠OCD+2∠ODC=180°,∴∠OCD+∠ODC=90°,∴∠COD=90°.(2)如图①中,∵AB是直径,AM、BN是切线,∴∠A=∠B=90°,∴∠ACO+∠AOC=90°,∵∠COD=90°,∴∠BOD+∠AOC=90°,∴∠ACO=∠BOD,∴RT△AOC∽RT△BDO,∴=,即AC•BD=AO•BO,∵AB=6,∴AO=BO=3,∴AC•BD=9.(3)△PQD能与△ACQ相似.∵CA、CP是⊙O切线,∴AC=CP,∠1=∠2,∵DB、DP是⊙O切线,∴DB=DP,∠B=∠OPD=90°,OD=OD,∴RT△ODB≌RT△ODP,∴∠3=∠4,①如图②中,当△PQD∽△ACO时,∠5=∠1,∵∠ACO=∠BOD,即∠1=∠3,∴∠5=∠4,∴DQ=DO,∴∠PDO=∠PDQ,∴△DCQ≌△DCO,∴∠DCQ=∠2,∵∠1+∠2+∠DCQ=180°,∴∠1=60°=∠3,在RT△ACO,RT△BDO中,分别求得AC=,BD=3,∴AC:BD=1:3.②如图②中,当△PQD∽△AOC时,∠6=∠1,∵∠2=∠1,∴∠6=∠2,∴CO∥QD,∴∠1=∠CQD,∴∠6=∠CQD,∴CQ=CD,=•CD•PQ=•CQ•AB,∵S△CDQ∴PQ=AB=6,∵CO∥QD,∴=,即=,∴AC:BD=1:225.如图,矩形OABC的两边OA,OC分别在x轴和y轴的正半轴上,点B的坐标为(4,4),点D 在CB上,且CD:DB=2:1,OB交AD于点E.平行于x轴的直线l从原点O出发,以每秒1个单位长度的速度沿y轴向上平移,到C点时停止;l与线段OB,AD分别相交与M,N两点,以MN为边作等边△MNP(点P在线段MN的下方).设直线l的运动时间为t(秒),△MNP与△OAB重叠部分的面积为S(平分单位).(1)直接写出点E的坐标;(2)求S与t的函数关系式;(3)是否存在某一时刻t,使得S=S成立?若存在,请求出此时t的值;若不存在,请说明理由.△ABD【考点】四边形综合题. 【分析】(1)作辅助线,利用平行相似,得△BDE ∽△OAE ,根据相似三角形对应高的比等于相似比列式求出EH 的长,即点E 的纵坐标;再根据勾股定理和30°角求OH ,即点E 的横坐标,则E (3,3); (2)先计算点P 在x 轴上时t=2,直线过点E 时,t=3;分三种情况讨论:①当0≤t <2时,如图3,△MNP 与△OAB 重叠部分的面积为梯形的面积; ②当2≤t ≤3时,如图4,△MNP 与△OAB 重叠部分的面积为△PMN 的面积;③当3<t ≤4时,如图5,△MNP 与△OAB 重叠部分的面积为△PMN 的面积的一半; (3)存在,因为S △ABD =,根据(2)计算的S 的值代入到S=S △ABD 分别列方程,解出即可.【解答】解(1)如图1,过E 作GH ⊥OA ,交BC 于G ,交OA 于H ,则GH ⊥BC , ∵四边形OABC 是矩形, ∴BC ∥OA ,BC=OA , ∵B (4,4),∴OA=4,AB=GH=4, 由勾股定理得:OB==8,∴∠EOA=30°, ∵BC ∥OA ,∴△BDE ∽△OAE , ∴,∵CD :DB=2:1, ∴=,∴EH=3,∴OE=2EH=6,∴OH==3,∴E (3,3);(2)如图1,在矩形OABC 中, ∵点B 的坐标为(4,4),且CD :DB=2:1, ∴A (4,0),D (,4),可得直线OB 的解析式为:y 1=x ,直线AD 的解析式为:y 2=﹣x +12,当y 1=y 2=t 时,可得点M 、N 的横坐标分别为: x M =t ,x N =4﹣t , 则MN=|x M ﹣x N |=|4﹣t |,当点P 运动到x 轴时,如图2, ∵△MNP 是等边三角形, ∴MN •sin60°=t ,解得t=2;当t=3时,M、N、P三点重合,S=0;讨论:①当0≤t<2时,如图3,设PM、PN分别交x轴于点F、G,则△PFG的高为MN•sin60°﹣t=6﹣3t,∴△PFG的边长为=4﹣2t,∵MN=x N﹣x M=4﹣t,∴S=S,梯形FGNM=t(4﹣2t+4﹣t),=﹣t2+4t,②当2≤t≤3时,如图4,此时等边△MNP整体落在△OAB内,则△PMN的高为MN•sin60°=6﹣2t,∵MN=x N﹣x M=4﹣t,∴S=S△MNP=(6﹣2t)(4﹣t)=﹣8t+12,③当3<t≤4时,如图5,在Rt△OAB中,∠AOB=30°,∴∠NME=30°,∴等边△NMP关于直线OB对称,∵MN=|x N﹣x M|=t﹣4,∴S=S△MNP=×(6﹣2t)(﹣4+t)=﹣+4t﹣6,综上所述:①当0≤t<2时,S=﹣t2+4t,②当2≤t≤3时,S=﹣8t+12,③当3<t≤4时,S=﹣+4t﹣6,④当t=3时,S=0;(3)存在t的值,使S=S成立,△ABD=,若S=S△ABD成立,则:∵S△ABD①当0≤t<2时,由﹣+4t=,解得:t1=2(舍去),t2=,②当2≤t≤3时,由﹣8t+12=,解得:t1=2,t2=4(舍去),/③当3<t≤4时,由﹣+4t﹣6=,△<0,无实数解,∴符合条件的t有:2或.。

2020年湖北省天门市中考数学一模试卷 (含答案解析)

2020年湖北省天门市中考数学一模试卷一、选择题(本大题共9小题,共27.0分)1.下列大小关系正确的是()A. |−2|>|−3|B. −1>−2C. 0<−1D. |−1|<−|−3|2.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.C.D.3.我国自主研发的“天宫二号”对接成功,标志着我国航天事业又上了一个新台阶,“天宫二号”火箭的飞行速度约为每秒8千米,也就是28800千米/时,“28800”用科学记数法表示为()A. 2.88×102B. 28.8×103C. 2.88×104D. 0.288×1054.如图,AB//CD,AD与BC交于点O,如果∠B=40°,∠AOB=65°,则∠D的度数等于()A. 60°B. 65°C. 70°D. 75°5.下列说法错误的是()A. “打开电视,正在播放新闻节目”是随机事件;B. 为了解某种节能灯的使命寿命,选择抽样调查;C. 甲组数据的方差s甲2=0.24,乙组数据的方差s乙2=0.03,则乙组数据比甲组数据稳定;D. 抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为1.36.下列计算正确的是()A. 2−2=−4B. √4=2C. 2a3+3a2=5a5D. (a5)2=a77.关于函数y=−x−2的图象,有如下说法:①图象过点(0,−2);②图象与x轴的交点是(−2,0);③从图象知y随x的增大而增大;④图象不经过第一象限;⑤图象是与y=−x平行的直线,其中正确的说法有()A. 2个B. 3个C. 4个D. 5个8.一个圆锥的底面半径是5cm,其侧面展开图是圆心角是150°的扇形,则圆锥的母线长为()A. 9cmB. 12cmC. 15cmD. 18cm9.如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD、DE、BE,则下列结论:①∠ECA=165°,②BE=BC;③AD=BE;④CD=BD.其中正确的是()A. ①②③B. ①②④C. ①③④D.①②③④二、填空题(本大题共6小题,共18.0分)10.正n边形的一个内角为135°,则n=__________________.11.一足球邀请赛,勇士队在第一轮比赛中共赛了9场,得17分,比赛规定胜一场得3分,平一场得1分,负一场得0分,勇士队在这一轮中只输了2场,那么这个队胜了_______场,平了_______场.12.16.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)13.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是______.14.一件工艺品进价为100元,标价135元销售,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价_______元.15.如图,直线l为y=√3x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为(______).三、解答题(本大题共8小题,共72.0分)16.解不等式组:{3x+4>5x−2x≥13x−43,并把它的解集表示在数轴上.17.如图,AB是⊙O的直径,平行四边形ACDE的一边在直径AB上,E在⊙O上.(1)如图1,当D在⊙O上时,请你只用无刻度的直尺作DP⊥AB于P;(2)如图2,当D在⊙O内时,请你只用无刻度的直尺作EQ⊥AB于Q.18.某市为了解中学生的视力情况,对某校三个年级的学生视力进行了抽样调查,得到不完整的统计表与扇形统计图如下,根据上面提供的信息,回答下列问题:分组视力情况频数频率A 4.0≤x<4.3______ ______B 4.3≤x<4.640______C 4.6≤x<4.9______ 0.4D x≥4.950______(1)此次共调查了______人;(2)请将表格补充完整;(3)这组数据的中位数落在______组内;(4)扇形统计图中“A组”的扇形所对的圆心角的度数是______.19.已知抛物线y=−12x2+bx+c经过点(1,0),(0,32).(1)求该抛物线的函数表达式;x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移(2)将抛物线y=−12后的函数表达式.20.如图,在△ABC中,AB=AC,以AB为直径作⊙O交于BC于D,DE⊥AC于E(1)求证:DE是⊙O的切线;(2)若AB=13,BC=10,求△DEC的面积.21.如图,反比例函数y=kx 的图像与一次函数y=14x的图像交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图像上的动点,且在直线AB的上方.⑴若点P的坐标是(1,4),直接写出k的值和△PAB的面积;⑴设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;⑴设点Q是反比例函数图像上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.22.如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:BG=DG;(2)求C′G的长;(3)如图2,再折叠一次,使点D与A重合,折痕EN交AD于M,求EM的长.23.某天早晨,张强从家跑步去体育场锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走)。

2020年湖北省中考数学模拟试卷5解析版

2020年湖北省中考数学模拟试卷5解析版一.选择题(共10小题,满分30分,每小题3分)1.下列图形中,是轴对称图形但不是中心对称图形的是()A .等边三角形B .正六边形C .正方形D .圆2.下列事件中,是随机事件的是()A .任意画一个三角形,其内角和是360°B .任意抛一枚图钉,钉尖着地C .通常加热到100℃时,水沸腾D .太阳从东方升起3.一元二次方程﹣x 2+2x =﹣1的两个实数根为α,β,则α+β+α?β的值为()A .1B .﹣3C .3D .﹣14.已知点P (﹣4,3)关于原点的对称点坐标为()A .(4,3)B .(﹣4,﹣3)C .(﹣4,3)D .(4,﹣3)5.抛物线y =(x ﹣1)2+2的顶点坐标是()A .(1,2)B .(﹣1,2)C .(1,﹣2)D .(﹣1,﹣2)6.如图,点O 是边长为4的等边△ABC 的内心,将△OBC 绕点O 逆时针旋转30°得到△OB 1C 1,B 1C 1交BC 于点D ,B 1C 1交AC 于点E ,则DE =()A .2B .4C .2D .6﹣27.如图,为估算学校的旗杆的高度,身高 1.6米的小红同学沿着旗杆在地面的影子AB 由A 向B 走去,当她走到点C 处时,她的影子的顶端正好与旗杆的影子的顶端重合,此时测得AC =2m ,BC=8m ,则旗杆的高度是()A.6.4m B.7m C.8m D.9m8.如图,在平面直角坐标系中,∠α的一边与x轴正半轴重合,顶点为坐标原点,另一边过点A(1,2),那么sinα的值为()A.B.C.2D.9.如图,在直角坐标系中,等边△OAB的边OB在x轴的正半轴上,点A(3,m)(m>0),点M,N分别从B、O出发,以相同的速度,沿BO,OA向O、A运动,连接AM、BN交于点E,点P是y轴上一点,则当EP最小时,点P的坐标是()A.(0,)B.(0,2)C.(0,3)D.(0,)10.如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点,作BM⊥AE于点M,作KN⊥AE于点N,连结MO、NO,以下四个结论:①△OMN是等腰三角形;②tan∠OMN=;③BP=4PK;④PM?PA=3PD2,其中正确的是()A.①②③B.①②④C.①③④D.②③④二.填空题(共6小题,满分18分,每小题3分)11.若tanA=,则∠A=.12.计算=.13.某药品经过两次降价,每盒零售价由105元降到88元,已知再次降价的百分率相同,设每次降价的百分率为x,根据题意可列方程为.14.如图所示,在△ABC中,D、E、F分别在AB、AC、BC上,DE∥BC,DF∥AC,若AD=1,DB=2,△ABC的面积为9,则四边形DFCE的面积是.15.如图,在直线l上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1,S2,S3,若S1+S3=20,则S1=,S2=.16.函数y=﹣x2+1,当﹣1≤x≤2时,函数y的最小值是.三.解答题(共8小题,满分72分)17.(8分)解方程x2﹣1=4x.18.(8分)如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证:(1)△ACP∽△PDB,(2)CD2=AC?BD.19.(8分)已知一个不透明的袋子中装有7个只有颜色不同的球,其中2个白球,5个红球.(1)求从袋中随机摸出一个球是红球的概率.(2)从袋中随机摸出一个球,记录颜色后放回,摇匀,再随机摸出一个球,求两次摸出的球恰好颜色不同的概率.(3)若从袋中取出若干个红球,换成相同数量的黄球.搅拌均匀后,使得随机从袋中摸出两个球,颜色是一白一黄的概率为,求袋中有几个红球被换成了黄球.20.(8分)如图,已知A(m,2),B(2,n)是一次函数y=﹣x+1的图象与反比例函数y=(k ≠0)图象的两个交点.(1)求反比例函数的解析式;(2)根据图象,请直接写出关于x的不等式﹣x+1<的解集.21.(8分)如图,在直角坐标系中,半径为1的⊙A圆心与原点O重合,直线l分别交x轴、y轴于点B、C,点B的坐标为(6,0),∠ABC=60°.(1)若点P是⊙A上的动点,则P到直线BC的最小距离是.(2)若点A从原点O出发,以1个单位/秒的速度沿着线路OB→BC→CO运动,回到点O停止运动,⊙A随着点A的运动而移动.设点A运动的时间为t.①求⊙A在整个运动过程中与坐标轴相切时t的取值;②求⊙A在整个运动过程中所扫过的图形的面积.22.(10分)如图,点E,F,G,H分别在菱形ABCD的四边上,BE=BF=DG=DH,连接EF,FG,GH,HE得到四边形EFGH,∠A=60°,AB=a.(1)设BE=x,求HE的长度;(用含a,x的代数式表示)(2)求矩形EFGH面积的最大值.23.(10分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD =80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,∠EAF=75°且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:≈1.41,≈1.73)24.(12分)在平面直角坐标系中,二次函数y=ax2+bx﹣8的图象与x轴交于A、B两点,与y轴交于点C,直线y=kx+(k≠0)经过点A,与抛物线交于另一点R,已知OC=2OA,OB=3OA.(1)求抛物线与直线的解析式;(2)如图1,若点P是x轴下方抛物线上一点,过点P做PH⊥AR于点H,过点P做PQ∥x轴交抛物线于点Q,过点P做PH′⊥x轴于点H′,K为直线PH′上一点,且PK=2PQ,点I 为第四象限内一点,且在直线PQ上方,连接IP、IQ、IK,记l=PQ,m=IP+IQ+IK,当l取得最大值时,求出点P的坐标,并求出此时m的最小值.(3)如图2,将点A沿直线AR方向平移13个长度单位到点M,过点M做MN⊥x轴,交抛物线于点N,动点D为x轴上一点,连接MD、DN,再将△MDN沿直线MD翻折为△MDN′(点M、N、D、N′在同一平面内),连接AN、AN′、NN′,当△ANN′为等腰三角形时,请直接写出点D的坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据中心对称图形与轴对称图形的概念判断即可.【解答】解:等边三角形是轴对称图形但不是中心对称图形,A正确;正六边形是轴对称图形,也是中心对称图形,B错误;正方形是轴对称图形,也是中心对称图形,C错误;圆是轴对称图形,也是中心对称图形,D错误;故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:A、任意画一个三角形,其内角和是360°是不可能事件,故本选项错误;B、任意抛一枚图钉,钉尖着地是随机事件,故本选项正确;C、通常加热到100℃时,水沸腾是必然事件,故本选项错误;D、太阳从东方升起是必然事件,故本选项错误;故选:B.【点评】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【分析】根据根与系数的关系求得α+β=2,α?β=﹣1,然后将其代入代数式进行求值.【解答】解:∵一元二次方程﹣x2+2x+1=0的两个实数根为α,β,∴α+β=2、αβ=﹣1,则α+β+α?β=2﹣1=1,故选:A.【点评】本题考查了一元二次方程根与系数的关系,方程ax2+bx+c=0的两根为x1,x2,则x1+x2=﹣,x1?x2=,此题难度不大.4.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解答】解:P(﹣4,3)关于原点的对称点坐标为(4,﹣3),故选:D.【点评】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.5.【分析】由抛物线解析式即可求得答案.【解答】解:∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.6.【分析】令OB1与BC的交点为F,OC1与AC的交点为M,过点F作FN⊥OB于点N,根据等边三角形的性质以及内心的性质找出△FOB为等腰三角形,并且△BFO∽△B1FD,根据相似三角形的性质找出B1D的长度,再通过找全等三角形以及解直角三角形求出C1E的长度,由此即可得出DE的长度.【解答】解:令OB1与BC的交点为F,OC1与AC的交点为M,过点F作FN⊥OB于点N,如图所示.∵将△OBC绕点O逆时针旋转30°得到△OB1C1∴∠BOF=30°,∵点O是边长为4的等边△ABC的内心,∴∠OBF=30°,OB=4,∴△FOB为等腰三角形,BN=OB=2,∴BF===OF.∵∠OBF=∠OB1D,∠BFO=∠B1FD,∴△BFO∽△B1FD,∴.∵B1F=OB1﹣OF=4﹣,∴,∴B1D=4﹣4.在△BFO和△CMO中,有,∴△BFO≌△CMO(ASA),∴OM=BF=,C1M=4﹣,在△C1ME中,∠C1ME=∠MOC+∠MCO=60°,∠C1=30°,∴∠C1EM=90°,∴C1E=C1M?sin∠C1ME=(4﹣)×=2﹣2.∴DE=B1C1﹣B1D﹣C1E=4﹣(4﹣4)﹣(2﹣2)=6﹣2.故选:D.【点评】本题考查了等边三角形的性质、三角形内心的性质、相似三角形的判定及性质、全等三角形的判定及性质以及解直角三角形,解题的关键是求出线段B1D、C1E的长度.本题属于中档题,难度不小,解决该题型题目时,用到了相似三角形和全等三角形的判定及性质,因此找出相等的边角关系是关键.7.【分析】因为人和旗杆均垂直于地面,所以构成相似三角形,利用相似比解题即可.【解答】解:设旗杆高度为h,由题意得=,h=8米.故选:C.【点评】本题考查了考查相似三角形的性质和投影知识,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.8.【分析】根据勾股定理得出OA的长,进而解答即可.【解答】解:由图可得:OA=,所以sinα的值=,故选:A.【点评】此题考查解直角三角形问题,关键是根据勾股定理得出OA的长.9.【分析】先判断出△OBN≌△MAB(SAS),即可判断出∠AEB=120°,即可判断出点F是以O'为圆心的圆上的一段弧(劣弧),然后确定出圆心O'的位置及坐标,设出点M的坐标,即可确定当点P(0,)时,EP的最小值是6﹣2.【解答】解:如图,∵△OAB是等边三角形,∴∠AOB=∠ABM=60°,OB=AB,∵点M、N分别从B、O以相同的速度向O、A运动,∴BM=ON,在△OBN和△MAB中,,∴△OBN≌△MAB(SAS),∴∠OBN=∠BAM,∴∠ABN+∠BAM=∠ABN+∠OBN=∠ABO=60°∴∠AEB=180°﹣(∠ABN+∠BAM)=120°,∴点E是经过点A,B,E的圆上的点,记圆心为O',在⊙O'上取一点C,使点C和点E在弦AB 的两侧,连接AC,BC,∴∠ACB=180°﹣∠AEB=60°,连接O'A,O'B,∴∠AO'B=2∠ACB=120°,∵O'A=O'B,∴∠ABO'=∠BAO',∴∠ABO'=(180°﹣∠AO'B)=(180°﹣120°)=30°,∵∠ABO=60°,∴∠OBO'=90°,∵△AOB是等边三角形,A(3,m),∴AB=OB=2×3,m=,过点O'作O'G⊥AB,∴BG=AB=3,在Rt△BO'G中,∠ABO'=30°,BG=3,∴O'B=,∴O'(6,),设P(0,n),∴O'P=,∴EP=O'P﹣O'E=,只有n﹣=0时,最小为0,即最小为6.当n﹣=0时,即:n=时,EP最小.∴点P的坐标是(0,2).故选:B.【点评】此题是圆的综合题,主要考查了等边三角形的性质,全等三角形的性质和判定,勾股定理等知识点;找出点E的运动轨迹是解本题的关键也是难点.解此类题目的方法是判断出动点的轨迹所在的圆的圆心和确定出半径.10.【分析】根据菱形的性质得到AD∥BC,根据平行线的性质得到对应角相等,根据全等三角形的判定定理△ADP≌△ECP,由相似三角形的性质得到AD=CE,作PI∥CE交DE于I,根据点P是CD的中点证明CE=2PI,BE=4PI,根据相似三角形的性质得到=,得到BP=3PK,故③错误;作OG⊥AE于G,根据平行线等分线段定理得到MG=NG,又OG⊥MN,证明△MON是等腰三角形,故①正确;根据直角三角形的性质和锐角三角函数求出∠OMN=,故②正确;然后根据射影定理和三角函数即可得到PM?PA=3PD2,故④正确.【解答】解:作PI∥CE交DE于I,∵四边形ABCD为菱形,∴AD∥BC,∴∠DAP=∠CEP,∠ADP=∠ECP,在△ADP和△ECP中,,∴△ADP≌△ECP,∴AD=CE,则,又点P是CD的中点,∴=,∵AD=CE,∴=,∴BP=3PK,故③错误;作OG⊥AE于G,∵BM丄AE于M,KN丄AE于N,∴BM∥OG∥KN,∵点O是线段BK的中点,∴MG=NG,又OG⊥MN,∴OM=ON,即△MON是等腰三角形,故①正确;由题意得,△BPC,△AMB,△ABP为直角三角形,设BC=2,则CP=1,由勾股定理得,BP=,则AP=,根据三角形面积公式,BM=,∵点O是线段BK的中点,∴PB=3PO,∴OG=BM=,MG=MP=,tan∠OMN==,故②正确;∵∠ABP=90°,BM⊥AP,∴PB2=PM?PA,∵∠BCD=60°,∴∠ABC=120°,∴∠PBC=30°,∴∠BPC=90°,∴PB=PC,∵PD=PC,∴PB2=3PD,∴PM?PA=3PD2,故④正确.故选:B.【点评】本题考查的是菱形的性质和相似三角形的判定和性质、全等三角形的判定和性质,灵活运用判定定理和性质定理是解题的关键,注意锐角三角函数在解题中的运用.二.填空题(共6小题,满分18分,每小题3分)11.【分析】根据特殊锐角的三角函数值可得.【解答】解:∵tanA=,∴∠A=60°,故答案为:60°.【点评】本题主要考查特殊锐角的三角函数值,应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.12.【分析】先变形为同分母分式的加减运算,再依据法则计算,最后约分即可得.【解答】解:原式=﹣==,故答案为:.【点评】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则.13.【分析】设每次降价的百分率为x,根据该药品的原价及经过两次降价后的价格,可得出关于x 的一元二次方程,此题得解.【解答】解:设每次降价的百分率为x,依题意,得:105(1﹣x)2=88.故答案为:105(1﹣x)2=88.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.14.【分析】根据DE∥BC,可以证明△ADE∽△ABC,根据相似三角形的面积的比等于相似比的平方,即可求得△ADE的面积,同理求得△BDF的面积,用△ABC的面积减去△ADE的面积和△BDF的面积即可求得.【解答】解:∵AD=1,DB=2,∴=,=,∵DE∥BC,∴△ADE∽△ABC,∴=()2=()2=,∴S△ADE=S△ABC=1,同理,S△BDF=S△ABC=4,∴平行四边形DFCE的面积为:9﹣S△ADE﹣S△BDF=9﹣1﹣4=4,故答案为:4.【点评】本题考查了相似三角形的判定与性质,正确理解相似三角形的性质,求得△ADE的面积和△BDF的面积是关键.15.【分析】根据题意,可以证明S2与S1两个平行四边形的高相等,长是S1的3倍,S3与S2的长相等,高是S3的,这样就可以把S1和S3用S2来表示,从而计算出S2的值.【解答】解:根据正三角形的性质,∠ABC=∠HFG=∠DCE=60°,∴AB∥HF∥DC∥GN,设AC与FH交于P,CD与HG交于Q,∴△PFC、△QCG和△NGE是正三角形,∵F、G分别是BC、CE的中点,∴MF=AC=BC,PF=AB=BC,又∵BC=CE=CG=GE,∴CP=MF,CQ=BC=3PF,QG=GC=CQ=AB=3CP,∴S1=S2,S3=3S2,∵S1+S3=20,∴S2+3S2=20,∴S2=6,∴S1=2,故答案为:2;6.【点评】本题考查了面积及等积变换、等边三角形的性质及平行四边形的面积求法,平行四边形的面积等于平行四边形的边长与该边上的高的积.即S=a?h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高.16.【分析】分别求出x=﹣1和x=2时的函数值即可得.【解答】解:∵﹣1<0,∴当x>0时,y随x的增大而减小,∵当x=﹣1时,y=﹣1+1=0;当x=2时,y=﹣4+1=﹣3,∴函数y的最小值为﹣3,故答案为:﹣3.【点评】本题主要考查二次函数的最值,解题的关键是掌握二次函数的图象和性质.三.解答题(共8小题,满分72分)17.【分析】先化为一般式:x2﹣4x﹣1=0.然后把a=1,b=﹣4,c=﹣1代入求根公式计算即可.【解答】解:原方程化为一般式:x2﹣4x﹣1=0.∵a=1,b=﹣4,c=﹣1,∴△=b2﹣4ac=(﹣4)2﹣4×1×(﹣1)=20,∴x===2±,∴x1=2+,x2=2﹣.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的求根公式:x=(b2﹣4ac≥0).18.【分析】(1)根据等边三角形的性质得到∠PCD=∠PDC=∠CPD=60°,于是推出∠ACP=∠PDB=120°,等量代换得到∠BPD=∠CAP,根据相似三角形的性质得到结论;(2)由相似三角形的性质得到,根据等边三角形的性质得到PC=PD=CD,等量代换得到,即可得到结论.【解答】证明:(1)∵△PCD是等边三角形,∴∠PCD=∠PDC=∠CPD=60°,∴∠ACP=∠PDB=120°,∵∠APB=120°,∴∠APC+∠BPD=60°,∵∠CAP+∠APC=60°∴∠BPD=∠CAP,∴△ACP∽△PDB;(2)由(1)得△ACP∽△PDB,∴,∵△PCD是等边三角形,∴PC=PD=CD,∴,∴CD2=AC?BD.【点评】本题考查了相似三角形的判定和性质,等边三角形的性质,熟练掌握相似三角形的性质是解题的关键.19.【分析】(1)直接利用概率公式计算可得;(2)先列表得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得;(3)设有x个红球被换成了黄球,根据颜色是一白一黄的概率为列出关于x的方程,解之可得.【解答】解:(1)∵袋中共有7个小球,其中红球有5个,∴从袋中随机摸出一个球是红球的概率为;(2)列表如下:白白红红红红红白(白,白)(白,白)(白,红)(白,红)(白,红)(白,红)(白,红)白(白,白)(白,白)(白,红)(白,红)(白,红)(白,红)(白,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)红(白,红)(白,红)(红,红)(红,红)(红,红)(红,红)(红,红)由表知共有49种等可能结果,其中两次摸出的球恰好颜色不同的有20种结果,∴两次摸出的球恰好颜色不同的概率为;(3)设有x个红球被换成了黄球.根据题意,得:,解得:x=3,即袋中有3个红球被换成了黄球.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】(1)把点A的坐标代入一次函数解析式求得m的值,然后将点A的坐标代入反比例函数解析式求得k的值即可;(2)根据函数图象可以直接得到答案.【解答】解:(1)∵A(m,2)在一次函数y=﹣x+1的图象上,∴m=﹣1.∴A(﹣1,2).∵A(﹣1,2)在反比例函数y=(k≠0)的图象上,∴k=﹣2.∴反比例函数的表达式为y=﹣.(2)由图象知,当﹣x+1<时,﹣1<x<0或x>2.【点评】本题考查了反比例函数与一次函数的交点问题.用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.21.【分析】(1)作高线AG,利用点B的坐标为(6,0),根据直角三角形30度角的性质及勾股定理可得AE和PE的长;(2)①利用切线的性质和特殊三角函数可得对应t的值即可,注意利用数形结合得出.②利用⊙A在整个运动过程中所扫过的面积=矩形DROC面积+矩形OYHB面积+矩形BGFC面积+△ABC面积+一个圆的面积﹣△LSK面积,求出即可.【解答】(本题满分12分)解:(1)如图1,∵点B的坐标为(6,0),∴OB=6,∵∠CAB=90°,∠ABC=60°,过A作AG⊥BC于G,交⊙A于P,此时P到直线BC的距离最小,∴∠EAB=30°,∴BE=OB=3,∴AE==3,∵AP=1,∴PE=3﹣1,则P到直线BC的最小距离是3﹣1;故答案为:3﹣1;…2分(2)①如图2所示:⊙A在整个运动过程中与坐标轴相切有4种不同的情况,∵∠OCB=30°,OB=6,∴BC=12,OC==6,当⊙O1与y轴相切于点O,可知:t=OO1=1;同理可得:OO4=1,此时t=6+12+6﹣1=17+6;当⊙O2与x轴相切于点T,∴O2T=1,∠OBC=60°,∴sin60°=,∴=,∴O2B=,∴t=6+,同理可得:当⊙O3与y轴相切时,t=6+12﹣2=16;综上所述,当⊙A在整个运动过程中与坐标轴相切时,t的值是1秒或(6+)秒或16秒或(17+6)秒;(10分)②如图3所示:当圆分别在O,B,C位置时,作出公切线DR,YH,FG,PW,切点分别为:D,R,H,G,F,P,W连接CD,CF,BG,过点K作KX⊥BC于点X,PW交BC于点U,∵PU∥OB,∴∠OBC=∠KUX,∵∠KXU=∠COB=90°,∴△COB∽△KXU,∵KX=1,BC=12,∴=,∴,解得:KU=,∵PU∥BO,∴△CPU∽△COB,∴=,∴=,解得:PU==6﹣,则SK=PU﹣KU﹣PS=6﹣﹣﹣1=5﹣,同理可得出:△LSK∽△COB,∴=,∴=,解得:LS=5﹣3,则∠CDR=∠CFG=∠BGF=∠BHY=∠AYH=90°,故⊙A在整个运动过程中所扫过的面积=矩形DROC面积+矩形OYHB面积+矩形BGFC面积+△ABC面积+一个圆的面积﹣△LSK面积,=1×6+1×6+1×12+×6×6+π﹣×(5﹣3)(5﹣),=10+33+π.(12分)【点评】此题是圆的综合题,综合性较强,主要考查了圆的综合应用以及相似三角形的判定与性质,矩形的性质和面积、圆的面积,切线的性质等知识,第2问利用数形结合以及分类讨论得出是解题关键,注意不要漏解.22.【分析】(1)由已知∠A=60°,可知△AHE为等边三角形,所以HE=AE=AB﹣BE=a﹣x;(2)设BE的长是x,则利用x表示出矩形EFGH的面积,根据函数的性质即可求解.【解答】解:(1)设BE=x,则BF=DG=DH=x.∵四边形ABCD为菱形,∴AD=AB=a,∴AH=AE=a﹣x∵∠A=60°,∴△AHE为等边三角形,∴HE=a﹣x;(2)∵∠A=60°,∴∠B=120°,∴EF=BE=x,∴S矩形EFGH=HE?EF=x(a﹣x)=当x==时,函数又最大值,S矩形EFGH=.【点评】本题考查了菱形的性质和二次函数的最值,熟练掌握菱形的性质和等边三角形以及等腰三角形的性质是解题的关键.23.【分析】【发现证明】根据旋转的性质可以得到△ADG≌△ABE,则GF=BE+DF,只要再证明△AFG≌△AFE即可.【类比引申】延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到△ABE是等边三角形,则BE=AB=80米.把△ABE绕点A逆时针旋转150°至△ADG,只要再证明∠GAF=∠FAE即可得出EF=BE+FD.【解答】解:【发现证明】如图(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【类比引申】∠BAD=2∠EAF.理由如下:如图(2),延长CB至M,使BM=DF,连接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究应用】如图3,把△ABE绕点A逆时针旋转150°至△ADG,连接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.∴△ABE是等边三角形,∴BE=AB=80米.根据旋转的性质得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即点G在CD的延长线上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∠FAE=75°∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈109(米),即这条道路EF的长约为109米.【点评】此题主要考查了四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,旋转的性质,解本题的关键是作出辅助线,构造全等三角形.24.【分析】(1)令二次函数x=0,解出C点坐标(0,﹣8),根据已知条件可知点A(﹣4,0)点B(12,0).代入解析式从而求得抛物线和直线解析式.(2)设点P坐标的横坐标为p,求出对称轴为直线x=4,根据对称性求出点Q的坐标,从而求出PQ的长度,延长PK交直线AR与点M,利用一次函数解析式求出点M的坐标,PM线段长可表示,利用△PHM∽△AEO,求出PH的长度,则I可用点p的代数式表示,从而求得最大值,点P坐标也可求出,由m=IP+IQ+IK求其最小值可知,点I为△PQK的“费马点”.(3)由点A平移13个单位可知点M的坐标,则点N的坐标可求为(8,﹣8)可求AN的长度,MN的长度为13,因为翻折可知MN′的长度也为13,则N′在以点M为圆心13个单位长度为半径的圆上运动,再利用等腰三角形求出点D的坐标.【解答】解(1)∵y=ax2+bx﹣8与y轴的交点为C,令x=0,y=﹣8∴点C(0,﹣8)∴OC=8∵OC=2OA,OB=3OA∴OA=4,OB=12∴A(﹣4,0)B(12,0)将点A代入直线解析式可得0=﹣4k+解得k=∴y=x+将点A和点B代入抛物线中解得a=,b=﹣∴y=x2﹣x﹣8(2)设点P的坐标为(p,p2﹣p﹣8)﹣=4∴抛物线的对称轴为直线x=4∴点Q(8﹣p,)∴PQ=2p﹣8∵PK=2PQ∴PK=4p﹣16如图1所示,延长PK交直线AR于点M,则M(p,)∴PM=﹣()=∵∠PHM=∠MH′A,∠HMP=∠AMH′∴∠HPM=∠MAH′∵直线解析式为y=,令x=0,y=.∴OE=∵OA=4根据勾股定理得∴AE=∴cos∠EAO==∴cos∠HPM===∴PH=∵I=PH﹣PQ∴I=()﹣(2p﹣8)=﹣(p﹣5)2+85∴当p=5时,I取最大值此时点P(5,)∴PQ=2,PK=如图2所示,连接QK,以PQ为边向下做等边三角形PQD,连接KD,在KD取I,使∠PID=60°,以PI为边做等边三角形IPF,连接IQ∵IP=PF,PQ=PD,∠IPQ=∠FPD∴△IPQ≌△FPD∴DF=IQ∴IP+IQ+IK=IF+FD+IK=DK,此时m最小过点D作DN垂直于KP∵∠KPD=∠KPQ+∠QPD=150°∴∠PDN=30°∵DP=PQ=2∴DN=1,根据勾股定理得PN=在△KDN中,KN=5,DN=1,根据勾股定理得KD=2∴m的最小值为2(3)设NM与x轴交于点J∵AM=13,cos∠MAJ=∴AJ=12,根据勾股定理得MJ=5∵OA=4,∴OJ=8∴M(8,5)当x=8时,代入抛物线中,可得y=﹣8∴N(8,﹣8),MN=13在△AJN中,根据勾股定理得AN=4∵点D为x轴上的动点,根据翻折,MN′=13,所以点N′在以M为圆心,13个单位长度为半径的圆上运动,如图3所示①当N′落在AN的垂直平分线上时tan∠MNA==∴tan∠MGJ=,∵MJ=5∴JG=,根据勾股定理得MG=∵MD1为∠GMJ的角平分线∴∴D1J=∴D1(,0)∵MD4也为角平分线∴∠D1MD4=90°根据射影定理得MJ2=JD1?JD4∴JD4=∴D4(,0)②当AN=AN′时D2与点A重合∴D2(﹣4,0)∵MD3为角平分线∴∴JD3=∴D3(,0)综上所述D1(,0),D2(﹣4,0),D3(,0),D4(,0).【点评】本题(1)考查了二次函数及一次函数的待定系数法,(2)考查了二次函数的最值问题及费马点定理,(3)考查了等腰三角形及角平分线分线段成比例及射影定理.此题综合性较强.。

2020年湖北省天门市中考数学试卷(含解析)印刷版

2020年湖北省天门市中考数学试卷一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)下列各数中,比﹣2小的数是()A.0B.﹣3C.﹣1D.|﹣0.6|2.(3分)如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.3.(3分)我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×1054.(3分)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.(3分)下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为16.(3分)下列运算正确的是()A.=±2B.()﹣1=﹣2C.a+2a2=3a3D.(﹣a2)3=﹣a67.(3分)对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<48.(3分)一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm9.(3分)关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或410.(3分)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)已知正n边形的一个内角为135°,则n的值是.12.(3分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了场.13.(3分)如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为海里.14.(3分)有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.15.(3分)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.16.(3分)如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.18.(6分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.36乙36.4a丙36.520丁36.64请根据以上信息,解答下列问题:(1)频数分布表中a=,该班学生体温的众数是,中位数是;(2)扇形统计图中m=,丁组对应的扇形的圆心角是度;(3)求该班学生的平均体温(结果保留小数点后一位).20.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.22.(9分)如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段P A与PB之差最大时,求点P的坐标.23.(10分)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.24.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是米/分钟,妈妈在家装载货物所用时间是分钟,点M的坐标是.(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.2020年湖北省天门市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,满分30分.在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.)1.(3分)下列各数中,比﹣2小的数是()A.0B.﹣3C.﹣1D.|﹣0.6|【分析】先计算|﹣0.6|,再比较大小.【解答】解:∵|﹣0.6|=0.6,∴﹣3<﹣2<﹣1<0<|﹣0.6|.故选:B.2.(3分)如图是由4个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【分析】从上面看物体所得到的图形即为俯视图,因此选项C的图形符合题意.【解答】解:俯视图就是从上面看到的图形,因此选项C的图形符合题意,故选:C.3.(3分)我国自主研发的“北斗系统”现已广泛应用于国防、生产和生活等各个领域,多项技术处于国际领先地位,其星载原子钟的精度,已经提升到了每3000000年误差1秒.数3000000用科学记数法表示为()A.0.3×106B.3×107C.3×106D.30×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:3000000=3×106,故选:C.4.(3分)将一副三角尺按如图摆放,点E在AC上,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°【分析】由∠B=∠EDF=90°,∠A=45°,∠F=60°,利用三角形内角和定理可得出∠ACB=45°,由EF∥BC,利用“两直线平行,内错角相等”可得出∠EDC的度数,结合三角形外角的性质可得结论.【解答】解:∵∠B=90°,∠A=45°,∴∠ACB=45°.∵∠EDF=90°,∠F=60°,∴∠DEF=30°.∵EF∥BC,∴∠EDC=∠DEF=30°,∴∠CED=∠ACB﹣∠EDC=45°﹣30°=15°.故选:A.5.(3分)下列说法正确的是()A.为了解人造卫星的设备零件的质量情况,选择抽样调查B.方差是刻画数据波动程度的量C.购买一张体育彩票必中奖,是不可能事件D.掷一枚质地均匀的硬币,正面朝上的概率为1【分析】根据普查、抽查,方差,概率的意义逐项进行判断即可.【解答】解:为了解人造卫星的设备零件的质量情况,应选择全面调查,即普查,不宜选择抽样调查,因此选项A不符合题意;方差是刻画数据波动程度的量,反映数据的离散程度,因此选项B符合题意;购买一张体育彩票中奖,是可能的,只是可能性较小,是可能事件,因此选项C不符合题意;掷一枚质地均匀的硬币,正面朝上的概率为,因此选项D不符合题意;故选:B.6.(3分)下列运算正确的是()A.=±2B.()﹣1=﹣2C.a+2a2=3a3D.(﹣a2)3=﹣a6【分析】根据算术平方根、幂的乘方与积的乘方、合并同类项、负整数指数幂分别进行计算,即可判断.【解答】解:A.因为=2,所以A选项错误;B.因为()﹣1=2,所以B选项错误;C.因为a与2a2不是同类项,不能合并,所以C选项错误;D.因为(﹣a2)3=﹣a6,所以D选项正确.故选:D.7.(3分)对于一次函数y=x+2,下列说法不正确的是()A.图象经过点(1,3)B.图象与x轴交于点(﹣2,0)C.图象不经过第四象限D.当x>2时,y<4【分析】根据题目中的函数解析式和一次函数的性质可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵一次函数y=x+2,∴当x=1时,y=3,∴图象经过点(1,3),故选项A正确;令y=0,解得x=﹣2,∴图象与x轴交于点(﹣2,0),故选项B正确;∵k=1>0,b=2>0,∴不经过第四象限,故选项C正确;∵k=1>0,∴函数值y随x的增大而增大,当x=2时,y=4,∴当x>2时,y>4,故选项D不正确,故选:D.8.(3分)一个圆锥的底面半径是4cm,其侧面展开图的圆心角是120°,则圆锥的母线长是()A.8cm B.12cm C.16cm D.24cm【分析】根据圆锥侧面展开图的实际意义求解即可.【解答】解:圆锥的底面周长为2π×4=8πcm,即为展开图扇形的弧长,由弧长公式得,=8π,解得,R=12,即圆锥的母线长为12cm.故选:B.9.(3分)关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.﹣1B.﹣4C.﹣4或1D.﹣1或4【分析】根据方程的根的判别式,得出m的取值范围,然后根据根与系数的关系可得α+β=﹣2(m﹣1),α•β=m2﹣m,结合α2+β2=12即可得出关于m的一元二次方程,解之即可得出结论.【解答】解:∵关于x的方程x2﹣2(m﹣1)x+m2=0有两个实数根,∴△=[2(m﹣1)]2﹣4×1×(m2﹣m)=﹣4m+4≥0,解得:m≤1.∵关于x的方程x2+2(m﹣1)x+m2﹣m=0有两个实数根α,β,∴α+β=﹣2(m﹣1),α•β=m2﹣m,∴α2+β2=(α+β)2﹣2α•β=[﹣2(m﹣1)]2﹣2(m2﹣m)=12,即m2﹣3m﹣4=0,解得:m=﹣1或m=4(舍去).故选:A.10.(3分)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF.下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有()A.1个B.2个C.3个D.4个【分析】如图,作AM⊥BD于M,AN⊥EC于N.证明△BAD≌△CAE,利用全等三角形的性质一一判断即可.【解答】解:如图,作AM⊥BD于M,AN⊥EC于N.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴EC=BD,∠BDA=∠AEC,故①正确∵∠DOF=∠AOE,∠DFO=∠EAO=90°,∴BD⊥EC,故②正确,∵△BAD≌△CAE,AM⊥BD,AN⊥EC,∴AM=AN,∴F A平分∠EFB,∴∠AFE=45°,故④正确,若③成立,则∠AEF=∠ABD=∠ADB,推出AB=AD,显然与条件矛盾,故③错误,故选:C.二、填空题(本大题共6个小题,每小题3分,满分18分.请将结果直接填写在答题卡对应的横线上.)11.(3分)已知正n边形的一个内角为135°,则n的值是8.【分析】根据多边形的相邻的内角与外角互为邻补角求出每一个外角的度数,再根据多边形的边数等于外角和除以每一个外角的度数进行计算即可得解.【解答】解:∵正n边形的一个内角为135°,∴正n边形的一个外角为180°﹣135°=45°,∴n=360°÷45°=8.故答案为:8.12.(3分)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了9场.【分析】设该队胜了x场,负了y场,根据:①某队14场比赛;②得到23分;列方程组即可求解.【解答】解:设该队胜了x场,负了y场,依题意有,解得.故该队胜了9场.故答案为:9.13.(3分)如图,海中有个小岛A,一艘轮船由西向东航行,在点B处测得小岛A位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D处,测得小岛A在它的北偏西60°方向,此时轮船与小岛的距离AD为20海里.【分析】如图,过点A作AC⊥BD于点C,根据题意可得,∠BAC=∠ABC=45°,∠ADC=30°,AB =20,再根据锐角三角函数即可求出轮船与小岛的距离AD.【解答】解:如图,过点A作AC⊥BD于点C,根据题意可知:∠BAC=∠ABC=45°,∠ADC=30°,AB=20,在Rt△ABC中,AC=BC=AB•sin45°=20×=10,在Rt△ACD中,∠ADC=30°,∴AD=2AC=20(海里).答:此时轮船与小岛的距离AD为20海里.故答案为:20.14.(3分)有3张看上去无差别的卡片,上面分别写着2,3,4.随机抽取1张后,放回并混在一起,再随机抽取1张,则两次取出的数字之和是奇数的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到的两张卡片上的数字之和为奇数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次取出的数字之和是奇数的有4种结果,∴两次取出的数字之和是奇数的概率为,故答案为:.15.(3分)某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为70元.【分析】根据题意,可以得到利润和售价之间的函数关系,然后化为顶点式,即可得到当售价为多少元时,利润达到最大值.【解答】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x﹣50)[200+(80﹣x)×20]=﹣20(x﹣70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.16.(3分)如图,已知直线a:y=x,直线b:y=﹣x和点P(1,0),过点P作y轴的平行线交直线a 于点P1,过点P1作x轴的平行线交直线b于点P2,过点P2作y轴的平行线交直线a于点P3,过点P3作x轴的平行线交直线b于点P4,…,按此作法进行下去,则点P2020的横坐标为21010.【分析】点P(1,0),P1在直线y=x上,得到P1(1,1),求得P2的纵坐标=P1的纵坐标=1,得到P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,求得P4n=2,于是得到结论.【解答】解:∵点P(1,0),P1在直线y=x上,∴P1(1,1),∵P1P2∥x轴,∴P2的纵坐标=P1的纵坐标=1,∵P2在直线y=﹣x上,∴1=﹣x,∴x=﹣2,∴P2(﹣2,1),即P2的横坐标为﹣2=﹣21,同理,P3的横坐标为﹣2=﹣21,P4的横坐标为4=22,P5=22,P6=﹣23,P7=﹣23,P8=24…,∴P4n=2,∴P2020的横坐标为2=21010,故答案为:21010.三、解答题(本大题共8个小题,满分72分.)17.(12分)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.【分析】(1)先把除法变成乘法,算乘法,最后代入求出即可;(2)先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)原式=•=,当a=﹣1时,原式==2;(2),∵解不等式①得:x>﹣2,解不等式②得:x≤4,∴不等式组的解集是:﹣2<x≤4,在数轴上表示为:.18.(6分)在平行四边形ABCD中,E为AD的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(1)如图1,在BC上找出一点M,使点M是BC的中点;(2)如图2,在BD上找出一点N,使点N是BD的一个三等分点.【分析】(1)连接AC和BD,它们的交点为O,延长EO并延长交AD于M,则M点为所作;(2)连接CE交BD于点N,则N点为所作.【解答】解:(1)如图1,M点就是所求作的点:(2)如图2,点N就是所求作的点:19.(7分)5月20日九年级复学啦!为了解学生的体温情况,班主任张老师根据全班学生某天上午的《体温监测记载表》,绘制了如下不完整的频数分布表和扇形统计图.学生体温频数分布表组别温度(℃)频数(人数)甲36.36乙36.4a丙36.520丁36.64请根据以上信息,解答下列问题:(1)频数分布表中a=10,该班学生体温的众数是36.5,中位数是36.5;(2)扇形统计图中m=15,丁组对应的扇形的圆心角是36度;(3)求该班学生的平均体温(结果保留小数点后一位).【分析】(1)根据丙组的人数和所占的百分比求出总人数,再用总人数乘以乙组所占的百分比,求出a 的值;再根据众数与中位数的定义求解;(2)用甲组的人数除以总人数得出甲组所占百分比,求出m的值;用360°丁组所占百分比,即可求出丁组对应的扇形圆心角的度数;(3)利用加权平均数的公式计算即可.【解答】解:(1)20÷50%=40(人),a=40×25%=10;36.5出现了20次,次数最多,所以众数是36.5;40个数据按从小到大的顺序排列,其中第20、21个数据都是36.5,所以中位数是(36.5+36.5)÷2=36.5.故答案为:10,36.5,36.5;(2)m%=×100%=15%,m=15;360°×=36°.故答案为:15,36;(3)该班学生的平均体温为:=36.455≈36.5(℃).20.(8分)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.【分析】(1)根据二次函数图象左加右减,上加下减的平移规律进行求解;(2)根据二次函数的最小值即可判断;(3)根据二次函数的性质可以求得y1与y2的大小.【解答】解:(1)∵y=x2+2x+3=(x+1)2+2,∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x﹣3)2﹣3,∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.(2)动点P(a,﹣6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴函数的最小值为﹣3,∵﹣6<﹣3,∴动点P(a,﹣6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,∴y1>y2.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D的直线EF交AC于点F,交AB的延长线于点E,且∠BAC=2∠BDE.(1)求证:DF是⊙O的切线;(2)当CF=2,BE=3时,求AF的长.【分析】(1)连接OD,AD,根据切线的判定即可求证.(2)先证明△EOD∽△EAF,设OD=x,根据相似三角形的性质列出关于x的方程从而可求出答案.【解答】(1)证明:连接OD,AD,∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴∠BAC=2∠BAD,∵∠BAC=2∠BDE,∴∠BDE=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∵∠ADO+∠ODB=90°,∴∠BDE+∠ODB=90°,∴∠ODE=90°,即DF⊥OD,∵OD是⊙O的半径,∴DF是⊙O的切线.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵BO=AO,∴OD∥AC,∴△EOD∽△EAF,∴,设OD=x,∵CF=2,BE=3,∴OA=OB=x,AF=AC﹣CF=2x﹣2,∴EO=x+3,EA=2x+3,∴=,解得x=6,经检验,x=6是分式方程的解,∴AF=2x﹣2=10.22.(9分)如图,直线AB与反比例函数y=(x>0)的图象交于A,B两点,已知点A的坐标为(6,1),△AOB的面积为8.(1)填空:反比例函数的关系式为y=;(2)求直线AB的函数关系式;(3)动点P在y轴上运动,当线段P A与PB之差最大时,求点P的坐标.【分析】(1)将点A坐标(6,1)代入反比例函数解析式y=,求出k的值即可;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),根据△AOB的面积为8,得3n﹣m=8,得方程3n2﹣8n﹣3=0,解出可得B的坐标,利用待定系数法可得AB的解析式;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,P A﹣PB有最大值是AB,可解答.【解答】解:(1)将点A坐标(6,1)代入反比例函数解析式y=,得k=1×6=6,则y=,故答案为:y=;(2)过点A作AC⊥x轴于点C,过B作BD⊥y轴于D,延长CA,DB交于点E,则四边形ODEC是矩形,设B(m,n),∴mn=6,∴BE=DE﹣BD=6﹣m,AE=CE﹣AC=n﹣1,∴S△ABE==,∵A、B两点均在反比例函数y=(x>0)的图象上,∴S△BOD=S△AOC==3,∴S△AOB=S矩形ODEC﹣S△AOC﹣S△BOD﹣S△ABE=6n﹣3﹣3﹣=3n﹣m,∵△AOB的面积为8,∴3n﹣m=8,∴m=6n﹣16,∵mn=6,∴3n2﹣8n﹣3=0,解得:n=3或﹣(舍),∴m=2,∴B(2,3),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=﹣x+4;(3)如图,根据“三角形两边之差小于第三边可知:当点P为直线AB与y轴的交点时,P A﹣PB有最大值是AB,把x=0代入y=﹣x+4中,得:y=4,∴P(0,4).23.(10分)实践操作:第一步:如图1,将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD沿过点E的直线折叠,点C恰好落在AD上的点C′处,点B落在点B'处,得到折痕EF,B'C′交AB于点M,C′F交DE于点N,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA'D的形状是正方形;(2)如图2,线段MC′与ME是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若AC′=2cm,DC'=4cm,求DN:EN的值.【分析】(1)由折叠性质得AD=AD′,AE=A′E,∠ADE=∠A′DE,再根据平行线的性质和等腰三角形的判定得到四边形AEA′D是菱形,进而结合内角为直角条件得四边形AEA′D为正方形;(2)连接C′E,证明Rt△EC′A≌Rt△CEB′,得∠C′EA=∠EC′B′,便可得结论;(3)设DF=xcm,则FC′=FC=(8﹣x)cm,由勾股定理求出x的值,延长BA、FC′交于点G,求得AG,再证明△DNF∽△ENG,便可求得结果.【解答】解:(1)∵ABCD是矩形,∴∠A=∠ADC=90°,∵将矩形纸片ABCD沿过点D的直线折叠,使点A落在CD上的点A'处,得到折痕DE,∴AD=AD′,AE=A′E,∠ADE=∠A′DE=45°,∴∵AB∥CD,∴∠AED=∠A′DE=∠ADE,∴AD=AD′,∴AD=AE=A′E=A′D,∴四边形AEA′D是菱形,∵∠A=90°,∴四边形AEA′D是正方形.故答案为:正方形;(2)MC′=ME.证明:如图1,连接C′E,由(1)知,AD=AE,∵四边形ABCD是矩形,∴AD=BC,∠EAC′=∠B=90°,由折叠知,B′C′=BC,∠B=∠B′,∴AE=B′C′,∠EAC′=∠B′,又EC′=C′E,∴Rt△EC′A≌Rt△CEB′(HL),∴∠C′EA=∠EC′B′,∴MC′=ME;(3)∵Rt△EC′A≌Rt△CEB′,∴AC′=B′E,由折叠知,B′E=BD,∴AC′=BE,∵AC′=2cm,DC′=4cm,∴AB=CD=2+4+2=8(cm),设DF=xcm,则FC′=FC=(8﹣x)cm,∵DC′2+DF2=FC′2,∴42+x2=(8﹣x)2,解得,x=3,即DF=3cm,如图2,延长BA、FC′交于点G,则∠AC′G=∠DC′F,∴tan∠AC′G=tan∠DC′F=,∴,∴,∵DF∥EG,∴△DNF∽△ENG,∴.24.(12分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟,在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段AB表示小华和商店的距离y1(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是120米/分钟,妈妈在家装载货物所用时间是5分钟,点M的坐标是(20,1200).(2)直接写出妈妈和商店的距离y2(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.【分析】(1)根据图象即可求出答案.(2)根据时间范围列出函数关系式即可(3)根据两人的运动情况分类讨论,列出相应的方程即可求出答案.【解答】解:(1)妈妈骑车的速度为120米/分钟,妈妈在家装载货物时间为5分钟,点M的坐标为(20,1200).故答案为:120,5,(20,1200).(2),其图象如图所示,(3)由题意可知:小华速度为60米/分钟,妈妈速度为120米/分钟,①相遇前,依题意有60t+120t+360=1800,解得t=8分钟,②相遇后,依题意有,60t+120t﹣360=1800,解得t=12分钟.③依题意,当t=20分钟时,妈妈从家里出发开始追赶小华,此时小华距商店为1800﹣20×60=600米,只需10分钟,即t=30分钟,小华到达商店.而此时妈妈距离商店为1800﹣10×120=600米>360米,∴120(t﹣5)+360=1800×2,解得t=32分钟,∴t=8,12或32分钟时,两人相距360米。

2023年湖北省天门市中考联考数学试卷(5月份)

试卷第 3 页,共 7 页
(2)
2x 5
3
2x
1

3 x 1 24 x
17.图①、图②、图③均是 4 4 的正方形网格,每个小正方形的边长均为 1.每个小正
方形的顶点称为格点,点 A、B、C 均为格点,只用无刻度的直尺,分别在给定的网格
中找一格点 M,按下列要求作图:
(1)在图①中,连结 MA、MB,使 MA MB .
2023 年湖北省天门市中考联考数学试卷(5 月份)
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.在实数 36 , 3 2 , 22 ,0.1010010001…, , 5 ,中,无理数有( )个
7
3
A.2
B.3
C.4
得超过 65 元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关 系.若周销售最大利润是 1400 元,求 m 的值. 23.在 VABC 中, ACB 90 , AC m , D 是边 BC 上一点,将△ ABD 沿 AD 折叠得
BC 到△ AED ,连接 BE .
(1)特例发现:如图1,当 m 1, AE 落在直线 AC 上时.求证: DAC EBC ; (2)类比探究 如图 2 ,当 m 1, AE 与边 BC 相交时,在 AD 上取一点 G ,使 ACG BCE ,CG 交 AE 于点 H.探究 CG 的值 ( 用含 m 的式子表示 ) ,并写出探究过程;
C. 1 3
D. 1
2
9.用大小完全相同的长方形纸片在直角坐标系中摆成如图所示图案,已知 A 1,5 ,
则 B 点的坐标是( )
A.( - 6, 4)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2020年湖北省天门市中考数学模拟试卷(5月份)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B铅笔填涂一.选择题(每小题3分,共30分)1.(3分)|﹣6|的相反数是()A.6 B.﹣6 C.D.2.(3分)如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A.B.C.D.3.(3分)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×1094.(3分)不等式组的解集在数轴上表示为()A.B.C.D.5.(3分)下列命题是真命题的是()A.必然事件发生的概率等于0.5B.5名同学二模的数学成绩是92,95,95,98,110,则他们的平均分是98分,众数是95C.射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定D.要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法6.(3分)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30° B.35° C.40° D.50°7.(3分)如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(2,2)B.(﹣2,4)C.(﹣2,2) D.(﹣2,2)8.(3分)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠59.(3分)如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=()A.B.C.D.10.(3分)如图,根据二次函数y=ax2+bx+c(a≠0)的图象,有下列几种说法:①a+b+c>0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1个 B.2个C.3个D.4个二.填空题(每小题3分,共18分).11.(3分)已知ab=2,a﹣2b=﹣3,则a3b﹣4a2b2+4ab3的值为.12.(3分)某学校为了增强学生体质,准备购买一批体育器材,已知A类器材比B类器材的单价低10元,用150元购买A类器材与用300元购买B类器材的数量相同,则B类器材的单价为元.13.(3分)如图,点A、B的坐标分别为(1,2)、(4,0),将△AOB沿x轴向右平移,得到△CDE,已知DB=1,则点C的坐标为.14.(3分)点P的坐标是(a,b),从﹣2,﹣1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是.15.(3分)如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC 交CE的延长线于F.则四边形AFBD的面积为.16.(3分)如图,已知点A1,A2,…,An均在直线y=x﹣1上,点B1,B2,…,Bn均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为a n(n为正整数).若a1=﹣1,则a2018=三.解答下列各题(9个大题,共72分)17.(5分)计算:|﹣3|+•tan30°﹣﹣3(2018﹣π)0+()﹣118.(6分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完成;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).19.(6分)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)20.(6分)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.21.(8分)如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF,如果S△BAF=4S,求点D的坐标.△DFO22.(9分)已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E,如图①.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求BD的长;(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=,tan∠BAD=,求⊙O的半径.23.(10分)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t 的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)24.(10分)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y 轴交于点C,且OA=2,OB=8,OC=6.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时,点N从B出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动,当△MBN存在时,求运动多少秒使△MBN的面积最大,最大面积是多少?(3)在(2)的条件下,△MBN面积最大时,在BC上方的抛物线上是否存在点P,使△BPC的面积是△MBN面积的9倍?若存在,求点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(每小题3分,共30分)1.(3分)|﹣6|的相反数是()A.6 B.﹣6 C.D.【解答】解:|﹣6|=6,6的相反数是﹣6,故选:B.2.(3分)如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A.B.C.D.【解答】解:所给图形的俯视图是D选项所给的图形.故选:D.3.(3分)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×109【解答】解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.4.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【解答】解:,解不等式2x﹣1≥5,得:x≥3,解不等式8﹣4x<0,得:x>2,故不等式组的解集为:x≥3,故选:C.5.(3分)下列命题是真命题的是()A.必然事件发生的概率等于0.5B.5名同学二模的数学成绩是92,95,95,98,110,则他们的平均分是98分,众数是95C.射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定D.要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法【解答】解:A、必然事件发生的概率等于1,错误;B、5名同学二模的数学成绩是92,95,95,98,110,则他们的平均分是98分,众数是95,正确;C、射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则甲稳定,错误;D、要了解金牌获得者的兴奋剂使用情况,可采用全面调查的方法,错误;故选:B.6.(3分)如图,直线m∥n,∠1=70°,∠2=30°,则∠A等于()A.30° B.35° C.40° D.50°【解答】解:如图,∵直线m∥n,∴∠1=∠3,∵∠1=70°,∴∠3=70°,∵∠3=∠2+∠A,∠2=30°,∴∠A=40°,故选:C.7.(3分)如图,点O为平面直角坐标系的原点,点A在x轴上,△OAB是边长为4的等边三角形,以O为旋转中心,将△OAB按顺时针方向旋转60°,得到△OA′B′,那么点A′的坐标为()A.(2,2)B.(﹣2,4)C.(﹣2,2) D.(﹣2,2)【解答】解:作BC⊥x轴于C,如图,∵△OAB是边长为4的等边三角形∴OA=OB=4,AC=OC=1,∠BOA=60°,∴A点坐标为(﹣4,0),O点坐标为(0,0),在Rt△BOC中,BC==2,∴B点坐标为(﹣2,2);∵△OAB按顺时针方向旋转60°,得到△OA′B′,∴∠AOA′=∠BOB′=60°,OA=OB=OA′=OB′,∴点A′与点B重合,即点A′的坐标为(﹣2,2),故选:D.8.(3分)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根∴16+4(a﹣5)≥0,∴a≥1.∴a的取值范围为a≥1.故选:A.9.(3分)如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则sin∠ECF=()A.B.C.D.【解答】解:过E作EH⊥CF于H,由折叠的性质得:BE=EF,∠BEA=∠FEA,∵点E是BC的中点,∴CE=BE,∴EF=CE,∴∠FEH=∠CEH,∴∠AEB+∠CEH=90°,在矩形ABCD中,∵∠B=90°,∴∠BAE+∠BEA=90°,∴∠BAE=∠CEH,∠B=∠EHC,∴△ABE∽△EHC,∴,∵AE==10,∴EH=,∴sin∠ECF=sin∠ECH==,故选:D.10.(3分)如图,根据二次函数y=ax2+bx+c(a≠0)的图象,有下列几种说法:①a+b+c>0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:根据抛物线可知:当x=1时y>0,则有a+b+c>0,故①正确;由二次函数的图象可知,抛物线经过点(﹣2,0),(0,0),开口向上,∴抛物线的对称轴为直线x=﹣1,故②正确;当x=1时,y=a+b+c,∵抛物线的对称轴是直线x=﹣1,∴=﹣1,∴b=2a,又∵抛物线经过(0,0),∴c=0,∴y=3a,故③错误;当x=m时,对应的函数值为y=am2+bm+c,当x=﹣1时,对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1),故④正确;故选:C.二.填空题(每小题3分,共18分).11.(3分)已知ab=2,a﹣2b=﹣3,则a3b﹣4a2b2+4ab3的值为18 .【解答】解:∵ab=2,a﹣2b=﹣3,∴a3b﹣4a2b2+4ab3=ab(a2﹣4ab+4b2)=ab(a﹣2b)2=2×(﹣3)2=18.故答案为18.12.(3分)某学校为了增强学生体质,准备购买一批体育器材,已知A类器材比B类器材的单价低10元,用150元购买A类器材与用300元购买B类器材的数量相同,则B类器材的单价为20 元.【解答】解:设B类器材的单价为x元,则A类器材的单价是x﹣10元,由题意得=解得:x=20经检验x=20是原方程的解,答:B类器材的单价为20元.故答案为:20.13.(3分)如图,点A、B的坐标分别为(1,2)、(4,0),将△AOB沿x轴向右平移,得到△CDE,已知DB=1,则点C的坐标为(4,2).【解答】解:∵点A、B的坐标分别为(1,2)、(4,0),将△AOB沿x轴向右平移,得到△CDE,DB=1,∴OD=3,∴△AOB沿x轴向右平移了3个单位长度,∴点C的坐标为:(4,2).故答案为:(4,2).14.(3分)点P的坐标是(a,b),从﹣2,﹣1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是.【解答】解:画树状图为:共有20种等可能的结果数,其中点P(a,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a,b)在平面直角坐标系中第二象限内的概率==.故答案为.15.(3分)如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC 交CE的延长线于F.则四边形AFBD的面积为12 .【解答】解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC=AB•AC=×4×6=12,∴S四边形AFBD=12.故答案为:1216.(3分)如图,已知点A1,A2,…,An均在直线y=x﹣1上,点B1,B2,…,Bn均在双曲线y=﹣上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为a n(n为正整数).若a1=﹣1,则a2018= 2【解答】解:∵a1=﹣1,∴B1的坐标是(﹣1,1),∴A2的坐标是(2,1),即a2=2,∵a2=2,∴B2的坐标是(2,﹣),∴A3的坐标是(,﹣),即a3=,∵a3=,∴B3的坐标是(,﹣2),∴A4的坐标是(﹣1,﹣2),即a4=﹣1,∵a4=﹣1,∴B4的坐标是(﹣1,1),∴A5的坐标是(2,1),即a5=2,…,∴a1,a2,a3,a4,a5,…,每3个数一个循环,分别是﹣1、2、,∵2018÷3=672…2,∴a2018是第673个循环的第2个数,∴a2018=2.故答案为:2.三.解答下列各题(9个大题,共72分)17.(5分)计算:|﹣3|+•tan30°﹣﹣3(2018﹣π)0+()﹣1【解答】解:原式=3+×﹣2﹣3+2=1.18.(6分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球、B乒乓球、C跳绳、D踢毽子,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200 人;(2)请你将条形统计图补充完成;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).【解答】解:(1)根据题意得:这次被调查的学生共有20÷=200(人).故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)列表如下:甲乙丙丁甲﹨(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹨(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹨(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹨∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.19.(6分)某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=,∴AB=AN+BN=13.8米.20.(6分)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵点E为AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中点;(2)解:若AB=AC,则四边形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四边形AFBD是矩形.21.(8分)如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF,如果S△BAF=4S,求点D的坐标.△DFO【解答】解:(l)∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∵tan∠ABO=,∴=,即=,解得CE=3.结合图象可知C点的坐标为(一2,3),将C(﹣2,3)代入反比例函数解析式可得3=,解得m=﹣6.故反比例函数解析式为y=﹣.(2)方法一:∵点D是y=﹣的图象上的点,且DF⊥y轴,∴S△DFO=×|﹣6|=3.∴S△BAF=4S△DFO=4×3=12.∴AF•OB=12.∴×AF×4=12.∴AF=6.∴EF=AF﹣OA=6﹣2=4.∴点D的纵坐标为﹣4.把y=﹣4代入y=﹣,得﹣4=﹣.∴x=.∴D(,﹣4).方法二:设点D的坐标为(a,b).∵S△BAF=4S△DFO,∴AF•OB=4×OF•FD.∴(AO+OF) OB=4OF•FD.∴[2+(﹣b)]×4=﹣4ab,∴8﹣4b=﹣4ab.又∵点D在反比例函数图象上,∴b=﹣.∴ab=﹣6.∴8﹣4b=24.解得:b=﹣4.把b=﹣4代ab=﹣6中,解得:a=.∴D(,﹣4).同理点D在第二象限时坐标为(﹣,7)22.(9分)已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E,如图①.(1)求证:DE是⊙O的切线;(2)若AB=10,AC=6,求BD的长;(3)如图②,若F是OA中点,FG⊥OA交直线DE于点G,若FG=,tan∠BAD=,求⊙O的半径.【解答】(1)证明:如图①中,连接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAE,∴∠ODA=∠DAE,∴OD∥AE,∴∠ODE+∠AED=180°,∵∠AED=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)如图①中,连接BC,交OD于点N,∵AB是直径,∴∠BCA=90°,∵OD∥AE,O是AB的中点,∴ON∥AC,且ON=AC,∴∠ONB=90°,且ON=3,则BN=4,ND=2,∴BD==2.(3)如图②中,设FG与AD交于点H,根据题意,设AB=5x,AD=4x,则AF=x,FH=AF•tan∠BAD=x•=x,AH===x,HD=AD﹣AH=4x﹣x=,由(1)可知,∠HDG+∠ODA=90°,在Rt△HFA中,∠FAH+∠FHA=90°,∵∠OAD=∠ODA,∠FHA=∠DHG,∴∠DHG=∠HDG,∴GH=GD,过点G作GM⊥HD,交HD于点M,∴MH=MD,∴HM=HD=×x=x,∵∠FAH+∠AHF=90°,∠MHG+∠HGM=90°,∴∠FAH=∠HGM,在Rt△HGM中,HG===x,∵FH+GH=,∴x+x=,解得x=,∴此圆的半径为×=4.23.(10分)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t 的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)【解答】解:(1)由题意,得:,解得,答:a的值为0.04,b的值为30;(2)①当0≤t≤50时,设y与t的函数解析式为y=k1t+n1,将(0,15)、(50,25)代入,得:,解得:,∴y与t的函数解析式为y=t+15;当50<t≤100时,设y与t的函数解析式为y=k2t+n2,将点(50,25)、(100,20)代入,得:,解得:,∴y与t的函数解析式为y=﹣t+30;②由题意,当0≤t≤50时,W=20000(t+15)﹣(400t+300000)=3600t,∵3600>0,∴当t=50时,W最大值=180000(元);当50<t≤100时,W=(100t+15000)(﹣t+30)﹣(400t+300000)=﹣10t2+1100t+150000=﹣10(t﹣55)2+180250,∵﹣10<0,∴当t=55时,W最大值=180250(元),综上所述,放养55天时,W最大,最大值为180250元.24.(10分)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.【解答】解:(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,则S四边形ACBD′=S△ACE﹣S△BED′=15﹣=10;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,∴四边形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根据勾股定理得:AE==,∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3,则S四边形ACBD′=S△AED′+S矩形ECBD′=+12﹣3=12﹣.25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y 轴交于点C,且OA=2,OB=8,OC=6.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时,点N从B出发,在线段BC上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动,当△MBN存在时,求运动多少秒使△MBN的面积最大,最大面积是多少?(3)在(2)的条件下,△MBN面积最大时,在BC上方的抛物线上是否存在点P,使△BPC的面积是△MBN面积的9倍?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:(1)∵OA=2,OB=8,OC=6,∴根据函数图象得A(﹣2,0),B(8,0),C(0,6),根据题意得,解得,∴抛物线的解析式为y=﹣x2+x+6;(2)设运动时间为t秒,则AM=3t,BN=t.∴MB=10﹣3t.由题意得,点C的坐标为(0,6).在Rt△BOC中,BC==10.如图,过点N作NH⊥AB于点H.∴NH∥CO,∴△BHN∽△BOC,∴=,即=,∴HN=t.∴S△MBN=MB•HN=(10﹣3t)•t=﹣t2+3t=﹣(t﹣)2+,当△MBN存在时,0<t<,∴当t=时,S△MBN最大=.答:运动秒使△MBN的面积最大,最大面积是;(3)设直线BC的解析式为y=kx+c(k≠0).把B(8,0),C(0,6)代入,得,解得,∴直线BC的解析式为y=﹣x+6.∵点P在抛物线上.∴设点P的坐标为(m,﹣m2+m+6),如图,过点P作PE∥y轴,交BC于点E,则E点的坐标为(m,﹣m+6).∴EP=﹣m2+m+6﹣(﹣m+6)=﹣m2+3m,当△MBN的面积最大时,S△PBC=9 S△MBN=,∴S△PBC=S△CEP+S△BEP=EP•m+•EP•(8﹣m)=×8•EP=4×(﹣m2+3m)=﹣m2+12m,即﹣m2+12m=.解得m1=3,m2=5,∴P(3,)或(5,).。

相关文档
最新文档