第三届华杯赛决赛一试试题答案
第三届华杯赛全程详解

第三届“华罗庚金杯”少年数学邀请赛初赛部分复赛部分决赛第一试决赛第二试团体决赛口试初赛试题与解答(1)光的速度是每秒30万千米,太阳离地球1亿5千万千米。
问:光从太阳到地球要用几分钟(得数保留一位小数)?[分析]知道距离和速度,求通过全程的时间,这是很容易做的一道题。
但是因为给出的数字很大,同学们在大数算术运算时一定要注意计量单位,不然便会出错。
[解法1] 将距离单位换为“万千米”,时间单位用“分”。
光速=30万千米/秒=1800万千米/分,距离=1亿5千万千米=15000万千米,时间=距离÷速度=15000÷1800[解法2]如果时间单位用“秒”,最后必须按题目要求换算为“分”.光速=30万千米/秒,距离=15000万千米,时间=15000÷30=500(秒),答:光从太阳到地球约需8.3分钟。
(2)计算[分析]这是一道很简单的分数四则运算题,但要在30秒钟内算出正确答案,需要平时养成简捷的思维习惯。
同学们可以比较一下后面的两种解法。
[解法1] 先求出30,35,63的最小公倍数。
30=2×3×5;35=5×7;63=3×3×7;所以公倍数是2×3×3×5×7=630。
原式通分,有〔解法2〕[注] 两种解法同样都用到通分和约分的技巧,只有一点小区别:解法2在通分时不急于把公分母算出来,而是边算边约分。
这一点小小的不同,却节省了求连乘积的运算,约分也简单些,使计算快了不少哩!(3)有3个箱子,如果两箱两箱地称它们的重量,分别是83公斤、85公斤和86公斤。
问:其中最轻的箱子重多少公斤?[分析]如果将3个箱子按重量区分为大、中、小,在草稿纸上可以这样写:83=中+小,85=大+小,86=大+中.这样分析后,便很容易想到简单的解法。
[解法1](83+85+86)是3箱重量之和的2倍,所以小箱重量是[解法2] (83+85)=中+大+2×小,所以小箱重量=(83+85-86)×答:最轻的箱子重41公斤。
四年级下册数学试题-奥数专题讲练:第5讲 数学方法与思想(二) 精英篇(解析版)全国通用

第五讲数学方法和思想(二)内容概述学习数学的一个重要方面就是要掌握一定的解题方法,数学的题型千变万化,如果仅靠题海战术,而不去总结规律,寻找解题方法,将永远是大海捞针,失去方向!遇到题型发生变化,就会一筹莫展,这节课我们将介绍几种重要的解题方法,希望同学能体会贯通,举一反三。
从简单情况考虑有时候我们碰到的题目很复杂,乍一看似乎无从入手,这时候我们往往可以先从简单的情况出发,看看有什么规律。
很多情况下我们可以通过这种方法解决一些看起来很难的问题。
【例1】3×3的末位数字是9,3×3×3的末位数是7,3×3×3×3的末位数字是1.求35个3相乘的结果的末位数字是几?分析:从简单情况做起,列表找规律:仔细观察可发现,乘积的末位数字出现有周期性的规律,4个一组,35个3相乘是其第34项,所以末位数字是7。
【例2】444444444888888888÷666666666的商是_____________分析:这个题目我们当然可以列一个竖式来做,但这样是不是太麻烦了,观察算式的特点,4,8,6都有9个,那我们就先来看一下如果4,8,6分别各有1个,2个,3个商分别是多少,这个计算起来是非常简单的:48÷6=8 ,4488÷66=68 ,444888÷666=668 …同学们找到规律了吗?对了,444444444888888888÷666666666=666666668(8个6 ,一个8)。
【例3】① 12345678987654321是_________的平方② 1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1是_______的平方?③ 12345678987654321×(1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1)是_______的平方,分析:(1)从简单得情况入手,找规律:1的平方是1;11的平方是121;111的平方是12321;1111的平方是1234321;因此111111111的平方是12345678987654321;(2)再来看小括号里的数,从1加到9再加到1,我们从简单情况入手,1+2+1=4=2的平方1+2+3+2+1=9=3的平方1+2+3+4+3+2+1=12=4的平方发现规律后就知道:1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=9的平方。
第三届华杯赛决赛一试试题及解答

第三届华杯赛决赛一试试题及解答1.计算:++++2.说明:360这个数的约数有多少个?这些约数的和是多少?3.观察下面数表(横排为行):根据前5行数所表达的规律,说明这个数位于由上而下的第几行?在这一行中,它位于由左向右的第几个?4.将一个圆形纸片用直线划分成大小不限的若干小纸片,如果要分成不少于50个小纸片,至少要画多少条直线?请说明.5.某校和某工厂之间有一条公路,该校下午2点钟派车去该厂接某劳模来校作报告,往返需用1小时.这位劳模在下午1点钟便离厂步行向学校走来,途中遇到接他的汽车,更立刻上车驶向学校,在下午2点40分到达.问:汽车速度是劳模步行速度的几倍?6.在一个圆周上放了1枚黑色的和1990枚白色的围棋子(如右图).一个同学进行这样的操作:从黑子开始,按顺时针方向,每隔一枚,取走一枚.当他取到黑子时,圆周上还剩下多少枚白子?1.原式等于2.360的约数有24个,这些约数的和是11703.在第3939行中,自左至右第1949个4.至少要画10条直线5.8倍6.剩下124枚白子1.【解】原式===2.【解】360=2×2×2×3×3×5=23×32×5所以360有(3+1)×(2+1)×(1+1)=24个约数约数的和是(1+2+22+23)×(1十3+32)×(1十5)=11703.【解】我们先注意,第一行的每个数的分子、分母之和等于2,第二行的每个数的分子、分母之和等于3,…,第五行的每个数的分子、分母之和等于6。
由此可看到一个规律,就是每行各数的分子、分母之和等于行数加1.其次,很明显可以看出,每行第一个数的分母是1,第二个数的分母是2.…,即自左起第几个数的分母就是几.因此,所在的行数等于1991+1949-1=3939。
而在第3939行中,位于自左至右第1949个.4.【解】我们来一条一条地画直线.画第一条直线将圆形纸片划分成2块。
华杯赛初赛试题及答案

华杯赛初赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 华南数学竞赛B. 华北数学竞赛C. 华罗庚数学邀请赛D. 华中数学竞赛答案:C2. 华杯赛初赛通常在每年的哪个月份举行?A. 1月B. 4月C. 7月D. 10月答案:B3. 参加华杯赛初赛的选手年龄限制是多少?A. 8-12岁B. 12-15岁C. 15-18岁D. 18-22岁答案:B4. 华杯赛的主办单位是?A. 中国数学会B. 中国科学技术协会C. 中国教育学会D. 中国数学奥林匹克委员会答案:A二、填空题(每题5分,共20分)1. 华杯赛的全称是______。
答案:华罗庚数学邀请赛2. 华杯赛初赛的题型包括______、______和______。
答案:选择题、填空题、解答题3. 华杯赛的初赛一般分为______个等级。
答案:两4. 华杯赛的决赛通常在初赛结束后的______个月内举行。
答案:3三、解答题(每题10分,共60分)1. 请简述华杯赛的历史背景。
答案:华杯赛,即华罗庚数学邀请赛,是为了纪念中国著名数学家华罗庚而设立的。
它始于1986年,旨在激发青少年对数学的兴趣,培养数学人才,促进数学教育的发展。
2. 参加华杯赛初赛需要做哪些准备工作?答案:参加华杯赛初赛的准备工作包括:熟悉竞赛规则,复习相关数学知识,进行模拟练习,保持良好的心态,以及合理安排时间。
3. 华杯赛初赛的评分标准是什么?答案:华杯赛初赛的评分标准通常包括:选择题和填空题根据正确答案给分,解答题则根据解题过程和最终答案的准确性进行评分。
4. 华杯赛对参赛者有哪些影响?答案:华杯赛对参赛者的影响主要体现在:提高数学素养,锻炼逻辑思维能力,增强解决问题的能力,以及为未来的学术和职业生涯打下坚实的基础。
5. 请列举华杯赛初赛中常见的题型。
答案:华杯赛初赛中常见的题型包括:数列问题、几何问题、代数问题、组合问题、概率问题等。
6. 华杯赛初赛的获奖标准是什么?答案:华杯赛初赛的获奖标准通常是根据参赛者的总分进行排名,达到一定分数线以上的参赛者可以获得相应的奖项。
小学奥数讲义4年级-8-直线形面积初步-难版

图形的周长与面积的计算是小学数学中最基本、最重要的内容之一。
周长和面积这两个概念是不同的,它们使用的单位、计算公式也是不同的。
周长是指围成平面图形一周的线段的总和;而面积是指围成的平面图形的大小。
所以周长通常采用的长度单位有:米、分米、厘米;面积通常采用的单位有:平方米、平方分米、平方厘米。
1.三角形从三角形的一个角的顶点向它的对边画一条垂线,顶点到垂足间的线段叫做三角形的高。
注意:锐角三角形的高在三角形的内部,直角三角形的两条直角边是它的高,钝角三角形的其中两个高在三角形的外部。
三角形的高所在的边叫做三角形的底。
面积公式=底×高÷2或用字母表示为:S=ah ÷2. 2.平行四边形从平行四边形一条边上的一点向对边引一条垂线,这点到垂足间的线段叫做平行四边形的高,这条边叫做平行四边形的底。
面积公式=底×高或用字母表示为:S=ah 。
长方形与正方形是特殊的平行四边形。
长方形面积=长×宽,周长=(长+宽)×2。
正方形的面积=边长×边长,周长=边长×4。
3.梯形在梯形里,互相平行的一组对边分别叫做梯形的上底和下底,不平行的一组对边叫做梯形的腰;以上底向下底引一条垂线,这点到垂足间的线段叫做梯形的高。
梯形两腰中点的连线叫做梯形的中位线。
中位线的长度=(上底+下底)÷2面积公式=(上底+下底)×高÷2或:中位线×高 用字母表示为:S=(a+b )×h ÷2或:m ×h知识梳理【例1】★已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。
求大、小正方形的面积各是多少平方厘米?【解析】从图中可以看出,大正方形的面积比小正方形的面积大出的40平方厘米,可以分成三部分,其中A 和B 的面积相等。
因此,用40平方厘米减去阴影部分的面积,再除以2就能得到长方形A 和B 的面积,再用A 或B 的面积除以2就是小正方形的边长。
行程问题

行程问题一般行程问题D10–002一辆货车以每小时65千米的速度前进,一辆客车在它后面1500米,以每小时80千米速度同向行驶,客车超过货车前1分钟,两车相距__米。
[题说] 南京市第三届“兴趣杯”少年数学邀请赛初赛C卷第9题答案:250(米)D10–003 两辆汽车同时从某地出发到同一目的地,路程165千米,甲车比乙车早到0.8小时,当甲车到达目的地时,乙车离目的地24千米。
甲车行驶全程用了多少小时?[题说] 第一届《小数报》数学竞赛第二试第4题答案:4.7小时D10–006一个人从县城骑车去乡办厂。
他从县城骑车出发,用30分钟时间行完了一半路程。
然后,他加快了速度,每分钟比原来多行50米。
又骑了20分钟后,他从路旁的里程标志牌上知道,必须再骑2千米才能赶到乡办厂,求县城到乡办厂之间的总路程。
[题说] 第五届《小数报》数学竞赛决赛第2题答案:18000(千米)D10–007小明每天早晨6:50从家出发,7:20到校。
老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家距学校多远?[题说] 第六届《小数报》数学竞赛初赛第1题答案:3000(米)D10–010一架飞机所带的燃料最多可以用6小时,飞机顺风,每小时可以飞1500千米,飞回时逆风,每小时可以飞1200千米,这架飞机最多飞出__千米,就需往回飞?[题说] 北京市第一届“迎春杯”刊赛第48题答案:4000(千米)D10–036光的速度是每小时30万千米,太阳离地球1亿5千万千米。
问:光从太阳到地球要用几分钟(得数保留一位小数)?[题说] 第三届“华杯赛”初赛第1题答案:813≈8.3(分)D10–043某公共汽车线路中间有10个站。
车有快车及慢车两种。
快车的车速是慢车车速的1.2倍。
慢车每站都停,快车则只停靠中间1个站。
每站停留时间都是3分钟。
当某次慢车出发40分钟后,快车从同一始发站开车,两车恰同时到达终点。
四年级计算规律性问题学生版

知识要点规律性问题无论是在奥数的学习中,还是在日常生活中,我们都会发现很多很多规律,它可以帮助我们更好的认识问题。
特别是在奥数学习中,一些数列、数阵的排列,图形周长、面积的变化、庞大数字的计算等等都有一定的规律。
规律的得出常常要经过观察与归纳这样的思维活动。
观察是寻找规律不可少的手段,是发现本质、归纳规律的先导,有些问题解答不出来,究其原因,与其说是“想不出”,不如说是“看不出”。
在寻找规律的过程中,必须要高度重视对数、形、式等现象的观察,善于抓住问题的本质特征进行归纳,从而得出规律。
只有经过观察、思考和试算,发现数与数、图形与图形相互之间的关系,才能得到题目的答案。
同学们,通过学习,希望你在平时多积累,多归纳,善于发现、总结一些规律,因为学会发现往往比学会几道题目重要得多。
个数面积周长数与数字奇偶性数字图形数阵的排列数列规律性问题 (本讲)周期问题【例 1】(2005年第十届“华罗庚金杯”少年数学邀请赛小学组决赛第1题)下表中每一列为同一年在不同历法中的年号,请完成下表:公元历200519851910希伯莱历5746伊斯兰历1332印度历1927【例 2】流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次是5红、4黄、3绿、2黑、1白、……,如此继续涂下去,到第2010个小球该涂什么颜色?在前2010个小球中,涂黑色的小球有多少个?【例 3】流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次是5红、4黄、3绿、2黑、1白、……,如此继续涂下去,涂到第2010个黑球时,涂色的小球一共有多少个?【例 4】小明在桌上将若干个红球排成一排,然后在每相邻的2个球之间放2个黄球,最后在每相邻的2个球之间再放2个蓝球,这时桌上共有2008个球,那么其中黄球有_______个。
【例 5】如图的图案表示一个花圃的设计方案,汉字表示每盆花的颜色,请问第7行第5盆花的颜色?第20行第5盆花的颜色?(从左往右计数)红蓝白黄黄红蓝白红蓝【例 6】(1989年第二届“华罗庚金杯”少年数学邀请赛小学组初赛第13题)四个小动物换座位。
华杯赛行程问题汇编(1-18届)

1。
(第一届华杯赛初赛第8题)早晨8点多钟有两辆汽车先后离开化肥厂向幸福村开去。
两辆车的速度都是每小时60千米。
8点32分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的三倍.到了8点39分的时候,第一辆汽车离开化肥厂的距离是第二辆汽车的2倍.那么,第一辆汽车是8点几分离开化肥厂的?2. (第一届华杯赛初赛第16题)有一路电车的起点站和终点站分别是甲站和乙站.每隔5分钟有一辆电车从甲站出发开往乙站,全程要走15分钟。
有一个人从乙站出发沿电车路线骑车前往甲站。
他出发的时候,恰好有一辆电车到达乙站。
在路上他又遇到了10辆迎面开来的电车,才到达甲站.这时候,恰好又有一辆电车从甲站开出。
问他从乙站到甲站用了多少分钟?3。
(第一届华杯赛决赛第12题)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4公里的地方追上了他,然后爸爸立刻回家,到家后又立刻回头去追小明,再追上他时候,离家恰好是8公里。
问这时是几点几分?4. (第一届华杯赛总决赛一试第13题)如下图,甲、乙、丙是三个站,乙站到甲、丙两站的距离相等。
小明和小强分别从甲、丙两站同时出发相向而行,小明过乙站100米后与小强相遇,然后两人又继续前进,小明走到丙站立即返回,经过乙站后300米又追上小强。
问甲、丙两站的距离是多少米?5。
(第一届华杯赛总决赛二试第4题)快、中、慢三辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人,这三辆车分别用6分钟、10分钟、12分钟追上骑车人,现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走多少千米?6。
(第二届华杯赛初赛第2题)一个充气的救生圈(如右图).虚线所示的大圆,半径是33厘米.实线所示的小圆,半径是9厘米.有两只蚂蚁同时从A点出发,以同样的速度分别沿大圆和小圆爬行.问:小圆上的蚂蚁爬了几圈后,第一次碰上大圆上的蚂蚁?7. (第二届华杯赛决赛第11题)王师傅驾车从甲地开乙地交货.如果他往返都以每小时60公里的速度行驶,正好可以按时返回甲地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三届华杯赛决赛一试试题答案
第三届华杯赛决赛一试试题答案
参考答案
第三届华杯赛决赛一试试题答案:1.原式等于2.360的约数有24个,这些约数的和是1170
3.在第3939行中,自左至右第1949个
4.至少要画10条直线
5.8倍
6.剩下124枚白子
1.【解】原式===
2.【解】360=2×2×2×3×3×5=23×32×5
所以360有(3+1)×(2+1)×(1+1)=24个约数
约数的和是
(1+2+22+23)×(1十3+32)×(1十5)=1170
3.【解】我们先注意,第一行的每个数的分子、分母之和等于2,第二行的每个数的分子、分母之和等于3,…,第五行的每个数的分子、分母之和等于6。
由此可看到一个规律,就是每行各数的分子、分母之和等于行数加1.
其次,很明显可以看出,每行第一个数的分母是1,第二个数的分母是2.…,即自左起第几个数的分母就是几.
因此,所在的行数等于1991+1949-1=3939。
而在第3939行中,位于自左至右第1949个.
4.【解】我们来一条一条地画直线.画第一条直线将圆形纸片划分成2块。
画第二条直线,如果与第一条直线在圆内相交,则将圆形纸片划分成4块(增加了2块),否则只能划分成3块。
类似地,画第三条直线,如果与前两条直线都在圆内相交,且交点互不相同(即没有3条直线交于一点),则将圆形纸片划分成7块(增加了3块),否则划分的块数少于7块。
下图是画3条直线的各种情形
由此可见,若希望将纸片划分成尽可能多的块教,应该使新画出的直线与原有的直线都在圆内相交,且交点互不相同。
这时增加的块
数等于直线的条数。
这样划分出的.块数,列表如下:
直线条数纸片最多划分成的块数
1 1+1
2 1+1+2
3 1+1+2+3
5 1+1+2+3+4
5 1+1+2+3+4+5
不难看出,表中每行右边的数等于1加上从1到行数的所有整数的和。
因为1+1+2+3+…+10=56,1+1+2+3+…+9=46,可见第9行右边还不到50,而第10行右边已经超过50了.
答:至少要画10条直线.
5.【解】我们先画一个图如下,其中A是学校,B是工厂,C是汽车和劳模相遇的地点。
汽车从A到B往返需1小时,即从A到B需30分钟,汽车从A 到C往返用了40分钟,即从A到C需20分钟,从而从C到B需30-20=10(分钟)。
因为汽车到达C点是2点20分,所以劳模从B到C共用
60+20=80(分钟),从而汽车速度是劳模步行速度的8(=80÷10)倍。
6.【解】由于1990是偶数,在第一圈操作中,一共取走=995枚白子,其中最后取的是黑子前面的一个子(即反时针方向第一个子)。
这时还剩下995枚白子.下一次取走黑子后面一个子(即顺时针方向第一个)。
由于995是奇数,第二圈操作最后取的仍是黑子前面的一个子,共取走=498枚白子,还剩下497枚白子。
类似地,第三圈操作取走=249枚白子,还剩下248枚白子。
由于248是偶数,第四圈操作最后取走黑子,这时圆周上还剩下=124枚白子
答.圆周上还剩下124枚白子。