高中数学椭圆经典例题(学生+老师)

合集下载

高中二年级数学椭圆试题(有答案)

高中二年级数学椭圆试题(有答案)

高二数学椭圆试题一:选择题1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是()A.m>2或m<﹣1 B.m>﹣2 C.﹣1<m<2 D.m>2或﹣2<m<﹣1解:椭圆的焦点在x轴上∴m2>2+m,即m2﹣2﹣m>0解得m>2或m<﹣1又∵2+m>0∴m>﹣2∴m的取值范围:m>2或﹣2<m<﹣1故选D2.已知椭圆,长轴在y轴上、若焦距为4,则m等于()A.4B.5C.7D.8解:将椭圆的方程转化为标准形式为,显然m﹣2>10﹣m,即m>6,,解得m=8故选D3.椭圆(1﹣m)x2﹣my2=1的长轴长是()A.B.C.D.解:由椭圆(1﹣m)x2﹣my2=1,化成标准方程:由于,∴椭圆(1﹣m)x2﹣my2=1的长轴长是2a=2=.故选B.4.已知点F1、F2分别是椭圆+=1(k>﹣1)的左、右焦点,弦AB过点F1,若△ABF2的周长为8,则椭圆的离心率为()A.B.C.D.解:由椭圆定义有4a=8∴a=2,所以k+2=a2=4∴k=2.从而b2=k+1=3,c2=a2﹣b2=1,所以,故选A5.已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A.(x≠0)B.(x≠0)C.(x≠0)D.(x≠0)解:∵△ABC的周长为20,顶点B (0,﹣4),C (0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选B.6.方程=10,化简的结果是()A.B.C.D.解:根据两点间的距离公式可得:表示点P(x,y)与点F1(2,0)的距离,表示点P(x,y)与点F2(﹣2,0)的距离,所以原等式化简为|PF1|+|PF2|=10,因为|F1F2|=2<10,所以由椭圆的定义可得:点P的轨迹是椭圆,并且a=5,c=2,所以b2=21.所以椭圆的方程为:.故选D.7.设θ是三角形的一个内角,且,则方程x2sinθ﹣y2cosθ=1表示的曲线是()A.焦点在x轴上的双曲线B.焦点在x轴上的椭圆C.焦点在y轴上的双曲线D.焦点在y轴上的椭圆解:因为θ∈(0,π),且sinθ+cosθ=,所以,θ∈(,π),且|sinθ|>|cosθ|,所以θ∈(,),从而cosθ<0,从而x2sinθ﹣y2cosθ=1表示焦点在y轴上的椭圆.故选 D.8.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()A.B.C.D.解:设点P在x轴上方,坐标为,∵△F1PF2为等腰直角三角形∴|PF2|=|F1F2|,即,即故椭圆的离心率e=故选D9.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是()A.B.C.D.解:依题意,设P(﹣c,y0)(y0>0),则+=1,∴y0=,∴P(﹣c,),又A(a,0),B(0,b),AB∥OP,∴k AB=k OP,即==,∴b=c.设该椭圆的离心率为e,则e2====,∴椭圆的离心率e=.故选C.10.若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上的任意一点,则的最大值为()A.2B.3C.6D.8解:由题意,F(﹣1,0),设点P(x0,y0),则有,解得,因为,,所以==,此二次函数对应的抛物线的对称轴为x0=﹣2,因为﹣2≤x0≤2,所以当x0=2时,取得最大值,故选C.11.如图,点F为椭圆=1(a>b>0)的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为()A.B.C.D.解:设线段PF的中点为M,另一个焦点F′,由题意知,OM=b,又OM是△FPF′的中位线,∴OM=PF′=b,PF′=2b,由椭圆的定义知 PF=2a﹣PF′=2a﹣2b,又 MF=PF=(2a﹣2b)=a﹣b,又OF=c,直角三角形OMF中,由勾股定理得:(a﹣b)2+b2=c2,又a2﹣b2=c2,可求得离心率 e==,故答案选 B.12.椭圆顶点A(a,0),B(0,b),若右焦点F到直线AB的距离等于,则椭圆的离心率e=()A.B.C.D.解:由题意可得直线AB的方程为即bx+ay﹣ab=0,F(c,0)∴F(c,0)到直线AB的距离d==,|AF|=a﹣c则∴a2=3b2∴a2=3a2﹣3c2即3c2=2a2∴=故选B13.已知椭圆+=1(a>b>0)的左、右焦点为F1,F2,P为椭圆上的一点,且|PF1||PF2|的最大值的取值范围是[2c2,3c2],其中c=.则椭圆的离心率的取值范围为()A.[,] B.[,1)C.[,1)D.[,]解:∵|PF1|•|PF2|的最大值=a2,∴由题意知2c2≤a2≤3c2,∴,∴.故椭圆m的离心率e的取值范围.故选A.14.在椭圆中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是()A.B.C.D.解:根据椭圆定义|PF1|+|PF2|=2a,将设|PF1|=2|PF2|代入得,根据椭圆的几何性质,|PF2|≥a﹣c,故,即a≤3c,故,即,又e<1,故该椭圆离心率的取值范围是.故选B.二:填空题15.已知F1、F2是椭圆C:(a>b>0)的两个焦点,P为椭圆C上一点,且.若△PF1F2的面积为9,则b= 3 .解:由题意知△PF1F2的面积=,∴b=3,故答案为3.16.若方程表示焦点在y轴上的椭圆,则k的取值范围是4<k<7 .解:∵+=1表示焦点在y轴上的椭圆,∴k﹣1>7﹣k>0.∴4<k<7.故k的取值范围是4<k<7.故答案为:4<k<7.17.已知椭圆的焦距为2,则实数t= 2,3,6 .解:当t2>5t>0即t>5时,a2=t2,b2=5t此时c2=t2﹣5t=6解可得,t=6或t=﹣1(舍)当0<t2<5t即0<t<5时,a2=5t,b2=t2此时c2=a2﹣b2=5t﹣t2=6解可得,t=2或t=3综上可得,t=2或t=3或t=6故答案为:2,3,618.在平面直角坐标系xOy中,已知△ABC顶点A(﹣4,0)和C(4,0),顶点B在椭圆上,则= .解:利用椭圆定义得a+c=2×5=10b=2×4=8由正弦定理得=故答案为19.在平面直角坐标系xOy中,椭圆的焦距为2c,以O为圆心,a 为半径作圆M,若过作圆M的两条切线相互垂直,则椭圆的离心率为.解:设切线PA、PB互相垂直,又半径OA垂直于PA,所以△OAP是等腰直角三角形,故,解得,故答案为.20.若椭圆的焦点在x轴上,过点(1,)做圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆的方程是.解:设切点坐标为(m,n)则即∵m2+n2=1∴m即AB的直线方程为2x+y﹣2=0∵线AB恰好经过椭圆的右焦点和上顶点∴2c﹣2=0;b﹣2=0解得c=1,b=2所以a2=5故椭圆方程为故答案为三:解答题21.已知F1,F2为椭圆的左、右焦点,P是椭圆上一点.(1)求|PF1|•|PF2|的最大值;(2)若∠F1PF2=60°且△F1PF2的面积为,求b的值.解:(1)∵P点在椭圆上,∴|PF1|+|PF2|=|2a=20,∵|PF1|>0,|PF2|>0,∴|PF1|•|PF2|≤=100,∴|PF1|•|PF2|有最大值100.(2)∵a=10,|F1F2|=2c.设|PF1|=t1,|PF2|=t2,则根据椭圆的定义可得:t1+t2=20①,在△F1PF2中,∠F1PF2=60°,所以根据余弦定理可得:t12+t22﹣2t1t2•cos60°=4c2②,由①2﹣②得3t1•t2=400﹣4c2,所以由正弦定理可得:=.所以c=6,∴b=8.22.如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(Ⅰ)求椭圆C的离心率;(Ⅱ)已知△AF1B的面积为40,求a,b 的值.解:(Ⅰ)∠F1AF2=60°⇔a=2c⇔e==.(Ⅱ)设|BF2|=m,则|BF1|=2a﹣m,在三角形BF1F2中,|BF1|2=|BF2|2+|F1F2|2﹣2|BF2||F1F2|cos120°⇔(2a﹣m)2=m2+a2+am.⇔m=.△AF1B面积S=|BA||F1F2|sin60°⇔=40⇔a=10,∴c=5,b=5.23.已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.解:(1)依题意,可设椭圆C的方程为(a>0,b>0),且可知左焦点为F(﹣2,0),从而有,解得c=2,a=4,又a2=b2+c2,所以b2=12,故椭圆C的方程为.(2)假设存在符合题意的直线l,其方程为y=x+t,由得3x2+3tx+t2﹣12=0,因为直线l与椭圆有公共点,所以有△=(3t)2﹣4×3(t2﹣12)≥0,解得﹣4≤t≤4,另一方面,由直线OA与l的距离4=,从而t=±2,由于±2∉[﹣4,4],所以符合题意的直线l不存在.24.设F1,F2分别是椭圆的左、右焦点,过F1斜率为1的直线ℓ与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,﹣1)满足|PA|=|PB|,求E的方程解:(I)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得l的方程为y=x+c,其中.设A(x1,y1),B(x2,y2),则A、B两点坐标满足方程组化简的(a2+b2)x2+2a2cx+a2(c2﹣b2)=0则因为直线AB斜率为1,得,故a2=2b2所以E的离心率(II)设AB的中点为N(x0,y0),由(I)知,.由|PA|=|PB|,得k PN=﹣1,即得c=3,从而故椭圆E的方程为.25.设椭圆的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(Ⅰ)求椭圆的方程;(Ⅱ)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若,求k的值.解:(I)根据椭圆方程为.∵过焦点且垂直于长轴的直线被椭圆截得的线段长为,∴=,∵离心率为,∴=,解得b=,c=1,a=.∴椭圆的方程为;(II)直线CD:y=k(x+1),设C(x1,y1),D(x2,y2),由消去y得,(2+3k2)x2+6kx+3k2﹣6=0,∴x1+x2=﹣,x1x2=,又A(﹣,0),B(,0),∴=(x1﹣,y1)•(﹣x2.﹣y2)+(x2+,y2)•(﹣x1.﹣y1)=6﹣(2+2k2)x1x2﹣2k2(x1+x2)﹣2k2,=6+=8,解得k=.26.设椭圆E:,O为坐标原点(Ⅰ)求椭圆E的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒在两个交点A,B且?若存在,写出该圆的方程,关求|AB|的取值范围;若不存在,说明理由.解:(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为y=kx+m解方程组得x2+2(kx+m)2=8,即(1+2k2)x2+4kmx+2m2﹣8=0,则△=16k2m2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0,即8k2﹣m2+4>0,要使,需使x1x2+y1y2=0,即,所以3m2﹣8k2﹣8=0,所以又8k2﹣m2+4>0,所以,所以,即或,因为直线y=kx+m为圆心在原点的圆的一条切线,所以圆的半径为,,,所求的圆为,此时圆的切线y=kx+m都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.因为,所以,①当k≠0时因为所以,所以,所以当且仅当时取”=”.2当k=0时,27.已知直线x﹣2y+2=0经过椭圆的左顶点A和上顶点D,椭圆C的右顶点为B,点S是椭圆C上位于x轴上方的动点,直线AS,BS与直线分别交于M,N两点.(1)求椭圆C的方程;(2)求线段MN的长度的最小值;(3)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为?若存在,确定点T的个数,若不存在,说明理由.解:(1)由已知得,椭圆C的左顶点为A(﹣2,0),上顶点为D(0,1),∴a=2,b=1故椭圆C的方程为(4分)(2)依题意,直线AS的斜率k存在,且k>0,故可设直线AS的方程为y=k(x+2),从而,由得(1+4k2)x2+16k2x+16k2﹣4=0设S(x1,y1),则得,从而即,(6分)又B(2,0)由得,∴,(8分)故又k>0,∴当且仅当,即时等号成立.∴时,线段MN的长度取最小值(10分)(2)另解:设S(x s,y S),依题意,A,S,M三点共线,且所在直线斜率存在,由k AM=k AS,可得同理可得:又所以,=不仿设y M>0,y N<0当且仅当y M=﹣y N时取等号,即时,线段MN的长度取最小值.(3)由(2)可知,当MN取最小值时,此时BS的方程为,∴(11分)要使椭圆C上存在点T,使得△TSB的面积等于,只须T到直线BS的距离等于,所以T在平行于BS且与BS距离等于的直线l'上.设直线l':x+y+t=0,则由,解得或.又因为T为直线l'与椭圆C的交点,所以经检验得,此时点T有两个满足条件.(14分)。

椭圆的参数方程(2)

椭圆的参数方程(2)

cos sin 1 相比较而得到,所以椭圆的参数方程
的实质是三角代换.
x a cos (为参数) y b sin
(acos ,bsin)
θ
说明:
⑴ 这里参数 叫做椭圆的离心角. 椭圆上点M的离心角与直线OM的倾斜角θ 不同:

ቤተ መጻሕፍቲ ባይዱ
b tan tan ; a
x2 y2 ⑵ 椭圆的参数方程可以由方程 2 2 1 与三角恒等式 a b 2 2
则此曲线是(
)
A 椭圆 C 线段
B 椭圆的一部分 D 直线
的离心率、准线方程
x cos , 4、(1)求出曲线 1 y 2 sin .
(2)若曲线上有一点P(x,y)则求出3x+4y的 取值范围. 注意焦点位置
5、已知点A(1,0),椭圆
x 2 y 1 4
2
x+2y-10=0的距离最小,并求出最小距离。
Y
2
2
y
B2
A1
F1
O B1
F2
A2 X X
分别用两种方法做: 1、直接用普通方程求解; 2、用参数方程求解,体会参数方程的作用。
练习
x cos 2 , ( 为参数 ), 3. 线的参数方程 曲 2 y sin .
x y 例4 求椭圆 1的参数方程。 9 4 (1)设x=3cos,为参数; (2)设y=2t,t为参数.
解:(1)把x=3cos代入椭圆方程,得到
9cos 2 y 2 1, 9 4
2
2
所以
y2 4(1 cos2 ) 4sin 2 ,

x2 y 2 由参数的任意性,可取 y 2sin 。所以,椭圆 1的参数方程是 9 4 x 3cos (为参数) y 2sin

【高中数学】圆锥曲线解答题椭圆C类题

【高中数学】圆锥曲线解答题椭圆C类题

C1. 线段AB 的两个端点A ,B 分别在x 轴上,y 轴上滑动,|AB|=5点M 是AB 上一点,且|AM|=2,点M 随线段AB 的运动而变化,求点M 的轨迹方程.14922=+y x 2. 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示). 解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ② 则-①②2得αcos 12221+=⋅b PF PF .故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan 2αb =.3. 已知椭圆1222=+y x ,椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k ,求线段PQ 中点M 的轨迹方程.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y y x . ⑤由①+②得()2222212221=+++y y x x , ○6 将③④平方并整理得212222124x x x x x -=+, ○7 212222124y y y y y -=+, ○8 将⑧⑨代入⑦得()224424212212=-+-y y y x x x , ⑨ 再将212121x x y y -=代入⑩式得 221242212212=⎪⎭⎫⎝⎛--+-x x y x x x , 即 12122=+y x .4. 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.解:椭圆131222=+y x 的焦点为()031,-F ,()032,F . 点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的方程为032=-+y x .解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最小.所求椭圆的长轴562221==+=FF MF MF a ,∴53=a ,又3=c ,∴()3635322222=-=-=c a b .因此,所求椭圆的方程为1364522=+y x .5. 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k , ∴设直线AB 的方程为n x y +-=41. 由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122y x n x y 消去y 得 0481681322=-+-n nx x ①∴13821nx x =+. 于是1342210n x x x =+=,13124100nn x y =+-=, 即点M 的坐标为)1312,134(n n . ∵点M 在直线m x y +=4上,∴m nn +⨯=1344. 解得m n 413-=. ②将式②代入式①得048169261322=-++m mx x ③∵A ,B 是椭圆上的两点,∴0)48169(134)26(22>-⨯-=∆m m .解得1313213132<<-m . (法2)同解法1得出m n 413-=,∴m m x -=-=)413(1340, m m m m x y 3413)(414134100-=--⨯-=--=,即M 点坐标为)3,(m m --.∵A ,B 为椭圆上的两点,∴M 点在椭圆的内部,∴13)3(4)(22<-+-m m . 解得1313213132<<-m . (法3)设),(11y x A ,),(22y x B 是椭圆上关于l 对称的两点,直线AB 与l 的交点M 的坐标为),(00y x .∵A ,B 在椭圆上,∴1342121=+y x ,1342222=+yx .两式相减得0))((4))((321212121=-++-+y y y y x x x x , 即0)(24)(23210210=-⋅+-⋅y y y x x x . ∴)(4321002121x x y x x x y y ≠-=--.又∵直线l AB ⊥,∴1-=⋅l AB k k ,∴14430-=⋅-y x , 即003x y = ①又M 点在直线l 上,∴m x y +=004 ② 由①,②得M 点的坐标为)3,(m m --. 以下同解法2.6. 在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ,∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,134********b a ba 得⎪⎩⎪⎨⎧==.3,41522b a∴所求椭圆方程为1315422=+y x .7. 设椭圆的中心是坐标原点,长轴在x 轴上,离心率e=23,已知点P (0,23)到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上到点P 的距离等于7的点的坐标.[解析]:(1)由题设e=23可得a 2=4b 2, 于是,设椭圆方程为222222244,14y b x by b x -==+即又设M (x ,y )是椭圆上任意一点,且b y b ≤≤-,所以49344)23(222222+-+-=-+=y y y b y x PM34)21(322+++-=b y因为b y b ≤≤-,所以①若b<21,当y=-b 时,2PM 有最大值为4932++b b =2)7( 解得21237>-=b 与b<21相矛盾(即不合题意).②若b 21≥,当y=-21时,2PM 有最大值为342+b =2)7(解得 b=1,a=2.故所求椭圆方程为1422=+y x .(2) 把y=-21代入1422=+y x 中,解得3±=x ,因此椭圆上的点(3,21-),(3-,21-)到点P 的距离都是78. 设椭圆方程为18422=+y x ,过原点且倾斜角为)20(πθθπθ<<-和的两条直线分别交椭圆于A 、C 和B 、D 两点.(1)用θ表示四边形ABCD 的面积S ;(2)当)4,0(πθ∈时,求S 的最大值.[解析]:(1)设经过原点且倾斜角为θ的直线方程为y= x tan θ,代入18422=+y x ,求得θθθ22222tan 48tan 32,tan 4832+=+=y x .由对称性可知四边ABCD 为矩形,又由于)20(πθ<<,所以四边形ABCD 的面积S=4| x y|θθ2tan 2tan 32+=. (2)当40πθ≤<时, 1tan 0≤<θ,设t=tan θ,则S 2232t t +=t t+=232,)10(≤<t设t t t f +=2)(,因为)(t f 在(0,1]上是减函数,所以3112)1()(min =+==f t f .所以,当θ=4π时,332max =S .9. 已知点A 在圆C :31)2(22=-+y x 上运动,点B 在以)0,3(F 为右焦点的椭圆k ky x =+22上运动,求|AB|的最大值。

高中数学椭圆经典例题

高中数学椭圆经典例题

椭圆的经典例题1.已知点A(2,5)、B(3,一1),则线段AB 的方程是( ).(A)6x+y-17=0(B)6x+y-17=0(x ≥3)(C)6x+y-17=0(x ≤3)(D)6x+y-17=0(2≤x ≤3)2.(直接法)已知一条直线l 和它上方的一个点F ,点F 到l 的距离是2,一条曲线也在直线l 的上方,它上面的每一个点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求曲线的方程.3.(相关点法) 动点M 在曲线x 2+y 2=1上移动,M 和定点B(3,O)连线的中点为P ,求P 点的轨迹方程,并指出点P 的轨迹.4.已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围.5. 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.6.已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程.7.已知M 是椭圆14922=+y x 上的一点,21,F F 是椭圆的焦点,则||||21MF MF ⋅的最大值是( ) A 、4 B 、6 C 、9 D 、128.点P 为椭圆22154x y +=上一点,以点P 以及焦点F 1, F 2为顶点的三角形的面积为1,则点P 的坐标是(A )(±2, 1) (B )(2, ±1) (C )(2, 1) (D )(±2, ±1) 9.已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.10.求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.11.已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点, α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).12.已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.13.已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.14.如果椭圆221369x y +=弦被点A (4,2)平分,那么这条弦所在的直线方程是。

高中数学选修一3.1.2 椭圆(第二课时)(精练)(解析版)

高中数学选修一3.1.2 椭圆(第二课时)(精练)(解析版)

3.1.2 椭圆【题组一 直线与椭圆的位置关系】1.(2020·全国高二课时练习)若直线2244mx ny x y +=+=和圆没有交点,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为( )A .2个B .至多一个C .1个D .0个【答案】A【解析】直线2244mx ny x y +=+=和圆22202m n >∴<+<点P(m,n)在以原点为圆心,半径为2的圆内,故圆22m n +=2内切于椭圆,,故点P(m,n)在椭圆内,则过点(,)m n 的直线与椭圆22194x y +=的交点个数为2个2.(2018·全国高二课时练习)如果过点M(-2,0)的直线l 与椭圆2x 2+y 2=1有公共点,那么直线l 的斜率k 的取值范围是( )A .-∞⎛ ⎝⎦B .∞⎫+⎪⎪⎣⎭C .11-,22⎡⎤⎢⎥⎣⎦D .⎡⎢⎣⎦【答案】D【解析】设过点M (-2,0)的直线l 的方程为y=k (x+2),联立()22212y k x x y ⎧+⎪⎨+=⎪⎩= ,得(2k 2+1)x 2+8k 2x+8k 2-2=0, ∵过点M (-2,0)的直线l 与椭圆2212x y +=有公共点,∴△=64k 4-4(2k 2+1)(8k 2-2)≥0,整理,得k 2≤12解得-k 22≤≤∴直线l 的斜率k的取值范围是⎡⎢⎣⎦ 故选:D 3.(2020·全国高二课时练习)已知椭圆2244x y +=与直线y x m =+有公共点,则实数m 的取值范围是____________.【答案】2525≤≤-m 【解析】由2241{x y y x m+==+,得225210x mx m ++-=.因为直线与椭圆有公共点,所以()2242010m m ∆=--≥,即254m ≤,解得2525≤≤-m . 4.当m 取何值时,直线:L y x m =+与椭圆22916144x y +=相切、相交、相离. 【答案】详见解析【解析】将y x m =+代入22916144x y +=中,化简得222532161440x mx m ++-=,其判别式257614400m ∆=-+.当>0∆,即55m -<<时,直线和椭圆相交,当0∆=,即5m =±时,直线和椭圆相切.当∆<0,即5m >或5m <-时,直线和椭圆相离. 【题组二 弦长】1.(2019·广西百色田东中学高二期中(文))椭圆22416+=x y 被直线112y x =+截得的弦长为________.【解析】由22416112x y y x ⎧+=⎪⎨=+⎪⎩消去y 并化简得2260,x x +-= 设直线与椭圆的交点为M(x 1,y 1),N(x 2,y 2),则1212x 2,6,x x x +=-=-所以弦长12MN x =-=.2.(2020·辽宁葫芦岛高二期中(文))已知椭圆2241x y +=及直线:l y x m =+.(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦长及此时直线l 的方程.【答案】(1),22⎡-⎢⎣⎦;(2;此时:l y x = 【解析】(1)将直线方程与椭圆方程联立得:()2241x x m ++=即:225210x mx m ++-=直线和椭圆有公共点 ()2242010m m ∴∆=--≥,解得:m ⎡∈⎢⎣⎦(2)由(1)可知,直线与圆相交时,>0∆,即22m ⎛∈- ⎝⎭设直线与椭圆交于()11,A x y ,()22,B x y则1225m x x +=-,21215m x x -=AB ∴==当0m =时,()2max545m-=,则max5AB= ∴直线被椭圆截得的最长弦长为5;此时:l y x =3(2020·武威市第六中学高二月考(理))点P 是椭圆2222:1(0)x y C a b a b+=>>一点,F 为椭圆C 的一个焦点,||PF1-1.(1)求椭圆C 的方程;(2)直线y x m =+被椭圆C ,求m 的值 【答案】(1)2212x y +=;(2)1m =±【解析】(1)由点P 是椭圆2222:?1(0)x y C a b a b+=>>一点,F 为椭圆C 的一个焦点,||PF 的11.可得11a c a c ⎧-=-⎪⎨+=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩1b =,所以椭圆方程为:2212x y +=.(2)设直线y x m =+与曲线C 的交点分别为()()1122M x ,y ,N x ,y联立2212y x m x y =+⎧⎪⎨+=⎪⎩得2234220x mx m ++-=, ()222Δ1612222480m m m =--=->,即m << 又21212422,33m m x x x x --+==,MN ==22242244333m m --⎛⎫⎛⎫-⨯= ⎪ ⎪⎝⎭⎝⎭, 整理得2880m -=,∴1m =±,符合题意.综上,1m =±.4.(2020·四川双流中学)在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上短轴长为2,过左顶点A 的直线l 与椭圆交于另一点B . (1)求椭圆C 的方程; (2)若43AB =,求直线l 的倾斜角. 【答案】(1)2212x y +=;(2)45或135.【解析】(1)由题意的222222b c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩,则1b a =⎧⎪⎨=⎪⎩2212x y +=.(2)由题意直线的斜率存在,因为左顶点为1sin 62x π⎛⎫=-+ ⎪⎝⎭, 设直线l 的方程为()2y k x =+,代入椭圆方程,得到()222221420kx x k +++-=,因为一个根为1x =2x =,则1243AB x =-==, 化简2870k k --=,即21k =,1k =±,则倾斜角45或135.5.(2019·四川高二期末(文))已知椭圆()222:220C x y b b +=>.(1)求椭圆C 的离心率e ;(2)若1b =,斜率为1的直线与椭圆交于A 、B 两点,且3AB =,求AOB ∆的面积.【答案】(1)e =;(2.【解析】(1)椭圆()2222:102x y C b b b+=>,∴椭圆长半轴长为a =,短半轴长为b ,2c e a ∴====;(2)设斜率为1的直线l 的方程为y x m =+,且()11,A x y 、()22,B x y ,1b =,∴椭圆C 的方程为22:22x y +=,由2222y x m x y =+⎧⎨+=⎩,.消去y 得2234220x mx m ++-=,又有1221243223m x x m x x -⎧+=⎪⎪⎨-⎪⋅=⎪⎩.12AB x ∴=-===3=,解得:214m =满足>0∆,∴直线l 的方程为102x y -±=. 故O到直线的距离14d ==,11223412AOE S AB d ∆∴=⋅=⨯=. 【题组三 点差法】1.(2018·海林市朝鲜族中学高二课时练习)椭圆221369x y +=的一条弦被点(4,2)平分,则此弦所在的直线方程是( ) A .20x y -= B .24x y += C .2314x y += D .28x y +=【答案】D【解析】设过点A 的直线与椭圆相交于两点,E (x 1,y 1),F (x 2,y 2),则有22111369x y +=①,22221369x y +=②,①﹣②式可得:()()()()121212120369x x x x y y y y -+-++=又点A 为弦EF 的中点,且A (4,2),∴x 1+x 2=8,y 1+y 2=4,∴836(x 1﹣x 2)﹣49(y 1﹣y 2)=0 即得k EF =121212y y x x -=--∴过点A 且被该点平分的弦所在直线的方程是y ﹣2=﹣12(x ﹣4),即x+2y ﹣8=0.故选:D . 2.(2020·湖北宜都二中高二期末(理))椭圆221169x y +=中以点M(1,2)为中点的弦所在直线斜率为( ) A .932-B .9 32C .9 64D .9 16【答案】A【解析】设弦的两端点为()11,A x y ,()22,B x y ,代入椭圆得2211222211691169x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得()()()()121212120169x x x x y y y y +-+-+=,即()()()()12121212 169x x x x y y y y +-+-=-,即()()()()12121212916x x y y y y x x +--=+-,即121292164y y x x -⨯-=⨯-,即12129 32y y x x -=--,∴弦所在的直线的斜率为932-,故选A.3.(2019·内蒙古一机一中高二期中(文))斜率为13-的直线l 被椭圆:C 22221(0)x y a b a b+=>>截得的弦恰被点(1,1)M 平分,则C 的离心率是______.. 【解析】设直线l 与椭圆的交点为1122(,),(,)A x y B x y因为弦恰被点(1,1)M 平分,所以12122,2x x y y +=+=由2222112222221,1x y x y a b a b+=+=,两式相减可得:1212121222()()()()0x x x x y y y y a b +-+-+= 化简可得:212212y y b x x a -=--,因为直线l 的斜率为13-,所以21221213y y b x x a -=-=-- 即2213b a =所以离心率e ==4.过点M (-2,0)的直线l 与椭圆x 2+2y 2=2交于P 1,P 2两点,线段P 1P 2中点为P ,设直线l 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2(O 为原点),则k 1·k 2的值为________. 【答案】-12【解析】设直线l 的方程为:1(2)y k x =+,由122(2)21y k x x y =+⎧⎨+=⎩,整理得 :2222111(12)8810k x k x k +++-=,所以211221812k x x k -+=+,2112218112k x x k -=+,所以1121112112214(2)(2)(4)12k y y k x k x k x x k +=+++=++=+,所以211221142(,)1212k k P k k -++,12122112121214212k k k k k k -+==--+,所以1212k k =-5.(2019·甘肃兰州一中高二期末(理))椭圆221(0,0)ax by a b +=>>与直线1y x =-交于A ,B 两点,过原点与线段ABb a 的值为( )【答案】A【解析】把y =1﹣x 代入椭圆ax 2+by 2=1得ax 2+b (1﹣x )2=1, 整理得(a +b )x 2﹣2bx +b ﹣1=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 22b a b =+,y 1+y 2=22ba b-+, ∴线段AB 的中点坐标为(b a b +,aa b+), ∴过原点与线段AB 中点的直线的斜率k 2aa ab b b a b+===+.∴b a =.故选:A . 6.(2019·山东高考模拟(理))已知椭圆(22212x y a a +=>的左、右焦点分别为12,F F ,过左焦点1F 作斜率为-2的直线与椭圆交于A ,B 两点,P 是AB 的中点,O 为坐标原点,若直线OP 的斜率为14,则a 的值是______. 【答案】2【解析】椭圆(22212x y a a +=>,所以焦点在x 轴上11 / 11 因为过左焦点1F 作的直线斜率为-2, P 是AB 的中点,设00(,)P x y ,1122(,),(,)A x y B x y将A 、B 坐标代入椭圆方程,可得22112222221212x y a x y a ⎧+=⎪⎪⎨⎪+=⎪⎩ ,两式相减,化简得 ()()1212212122x x y y a y y x x +--=+-,即0202x k a y -= 进一步化简得0202y k a x -=⨯,代入22124a -=-⨯解得a=2。

高中数学破题致胜微方法(椭圆的基本性质):4.利用椭圆的定义求轨迹方程含答案

高中数学破题致胜微方法(椭圆的基本性质):4.利用椭圆的定义求轨迹方程含答案

今天我们研究利用椭圆的定义求轨迹方程.平面内与两定点的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆。

建立适当的坐标系,求出动点的轨迹方程。

先看例题:例:已知ABC ∆的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。

注意:当y =0时,ABC 不构成三角形,所以不符合题意,即y ≠0。

归纳整理:椭圆定义:平面内与两定点的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.a MF MF 221=+,合理利用椭圆的定义,先定出轨迹名称,再利用椭圆性质求解,可以降低运算量. 两个定点在x 轴上,得轨迹方程22221(0)x y a b a b +=>> 两个定点在 y轴上,得轨迹方程22221(0)y x a b a b +=>>求轨迹方程时,要根据题意,特别注意变量的取值范围。

要留意是否有一些特殊点,或特殊区域不能取到. 再看一个例题,加深印象例:设j i R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量,,)2(j y i x a ++= j y i x b )2(-+=,且8||||=+b a .求点),(y x M 的轨迹C的方程。

解:由已知可得()()2,2,a x y b x y →→=+=-,,又因为8||||=+→→b a故轨迹C 的方程为2211216x y += 总结:1。

根据已知条件, 得出平面内动点与两定点的距离之和等于常数(大于两定点的距离),符合椭圆的定义.2. 建立适当的坐标系, 注意两个定点的位置,得到不同形式的椭圆的标准方程,同时注意变量的取值范围,求出动点的轨迹方程。

练习:1。

已知ABC ∆的三边长||,||,||CB AB CA 成等差数列,若点,A B 的坐标分别为(1,0),(1,0)-.求顶点C 的轨迹W的方程;2.已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程。

(完整)高中数学椭圆知识点与例题,推荐文档

(完整)高中数学椭圆知识点与例题,推荐文档

2知识点一:椭圆的定义第一定义:平面内一个动点 P 到两个定点F i 、F 2的距离之和为定值焦点的距离叫作椭圆的焦距知识点二:椭圆的标准方程椭圆的焦点总在长轴上题型一、椭圆的定义 1、方程.x 22 y 2x 2 2 y 2 10化简的结果是2、若 ABC 的两个顶点 A 4,0 ,B 4,0 , ABC 的周长为18,则顶点C 的轨迹方程是2 2椭圆(PF i2aF 1F 2),这个动点P 的轨迹叫椭圆•这两个定点叫椭圆的焦点,两注意:若(PRPF 2F i F 2 ),则动点 P 的轨迹为线段F i F 2 ;若(PF iF 1F 2),则动点P 的轨迹不存在.1 .当焦点在x2X~2a 2厂(a b 0),其中 c 2a 2b 22.当焦点在y 轴上时,椭圆的标准方程:2 ya2X d 21(a b 0),b 2其中a 2b 2.注意: 只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;在椭圆的两种标准方程中,都有(b 0)和c 2a 2b 2 ;当焦点在X 轴上时,椭圆的焦点坐标为(c,0) , ( c,0); 当焦点在y 轴上时,椭圆的焦点坐标为 (0,c) , (0, c)3、椭圆—L 1上的点M到焦点F1的距离为2, N为MF_!的中点,贝y ON (O为坐25 9标原点)的值为()A. 4B. 2C. 83 D.—X y24、椭圆———1两焦点为Fp F2, A 3,1 ,点P在椭圆上,贝U PR PA的最大值25 16为____ ,最小值为____题型二、椭圆的标准方程5、方程Ax2+By2=C表示椭圆的条件是(A) A, B同号且A M B ( B) A, B同号且C与异号(C) A, B, C同号且A M B ( D)不可能表示椭圆2 26、若方程—- 1 ,5 k k 3(1)表示圆,则实数k的取值是_____________ . __________(2) ______________________________________________________ 表示焦点在x轴上的椭圆,则实数k的取值范围是 _______________________________________ . __________(3) ______________________________________________________ 表示焦点在y型上的椭圆,则实数k的取值范围是 _______________________________________ . __________(4)表示椭圆,则实数k的取值范围是______________ . _________227、椭圆—y_1的焦距为2,贝U m =4m8、已知椭圆 2 mx3y2 6m0的一个焦点为(0, 2)求m的值9、已知椭圆的中心在原点,且经过点P 3,0 , a 3b,求椭圆的标准方程.2 210、求与椭圆4x 9y 36共焦点,且过点(3, 2)的椭圆方程。

高中数学 破题致胜微方法(椭圆的参数方程)一 椭圆的参

高中数学 破题致胜微方法(椭圆的参数方程)一 椭圆的参

椭圆的参数方程今天我们研究椭圆的参数方程.已知椭圆的标准方程,则可以将椭圆的方程改写成参数方程,反之,也可以把椭圆的参数方程改写成普通方程.通过例题,掌握椭圆的参数方程和普通方程的互化.通过例题来看.例1:已知曲线C 的参数方程为2cos ,3sin x y q q ì=ïíï=î(θ为参数), 写出C 的普通方程.解:把两个等式两端同时平方:22224cos ,3sin x y q q ì=ïí=ïî,总结:中心在原点,坐标轴为对称轴的椭圆的参数方程有以下两种情况: 焦点在x 轴上的椭圆:22221(0)x y a b a b +=>>,cos ,()sin x a y b θθθ=⎧⎨=⎩为参数.焦点在y 轴上的椭圆:22221(0)y x a b a b +=>>,cos ,()sin x b y a θθθ=⎧⎨=⎩为参数.以上的[)0,2θπ∈.例2:已知曲线C :2211625x y +=. 写出曲线C 的参数方程.解:22145x y ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,令=cos 4x θ ,=sin 5y θ, 则4cos ,()5sin x y θθθ=⎧⎨=⎩为参数. 例3:已知曲线C :22(1)(2)1259x y -++=. 写出曲线C 的参数方程.总结:1.掌握椭圆普通方程和参数方程的互化.2.如果椭圆中心在原点时,把椭圆普通方程化为参数方程时,注意焦点的位置.3.如果椭圆中心不在原点时,将椭圆普通方程化为参数方程,与圆的处理方法类似. 练习题:1.已知曲线C :22149x y +=,曲线C 的参数方程为 . 2.椭圆2cos ,sin x y αα=⎧⎨=⎩(α为参数)的长轴长为 ,短轴长为 , 焦点坐标 是 ,离心率是 .3. 椭圆3cos ,()4sin x y θθθ=⎧⎨=⎩为参数离心率是 . 练习题解析:1.已知曲线C :22149x y +=,曲线C 的参数方程为 . 答案:2cos ,()3sin x y θθθ=⎧⎨=⎩为参数2.椭圆2cos ,sin x yαα=⎧⎨=⎩ (α为参数)的长轴长为 ,短轴长为 , 焦点坐标 是 ,离心率是 .3. 椭圆3cos ,()4sin x y θθθ=⎧⎨=⎩为参数离心率是 .解析:两式相加得:22+1916x y =.227c a b e a -∴===。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

. 专业.专注 .(教师版)椭圆标准方程典型例题例 1 已知椭圆 mx2 3y2 6m 0 的一个焦点为( 0, 2)求m的值.剖析:把椭圆的方程化为标准方程,由 c 2 ,依据关系 a2 b2 c2可求出 m 的值.解:方程变形为x2y2 1 .由于焦点在y轴上,所以2m 6 ,解得 m 3 .6 2m又 c 2 ,所以2m 6 22,m 5合适.故m 5.例 2 已知椭圆的中心在原点,且经过点P 3,0,a3b ,求椭圆的标准方程.剖析:因椭圆的中心在原点,故其标准方程有两种状况.依据题设条件,运用待定系数法,求出参数 a 和b(或 a2 和 b2 )的值,即可求得椭圆的标准方程.解:当焦点在 x 轴上时,设其方程为x2 y2 1 a b 0 .a 2 b2由椭圆过点 P 3,0 ,知90 1.又a 3b ,代入得 b2 1 , a 2 9 ,故椭圆的方程为x2 y2 1 .a2 b2 9当焦点在 y 轴上时,设其方程为y2 x2 1 a b 0 .a2 b2由椭圆过点P3,0 ,知90 1 .又a3b ,联立解得a2 81 , b2 9,故椭圆的方程为a2 b2y2 x2 81 1.9例 3ABC 的底边 BC 16 , AC 和 AB 两边上中线长之和为30 ,求此三角形重心G 的轨迹和极点 A 的轨迹.剖析:( 1 )由已知可得GC GB 20 ,再利用椭圆定义求解.( 2 )由G的轨迹方程G 、 A 坐标的关系,利用代入法求 A 的轨迹方程.解:(1)以BC所在的直线为x轴,BC中点为原点成立直角坐标系.设G点坐标为x,y ,由.word 完满格式.. 专业.专注 .GC GB 20 ,知 G 点的轨迹是以 B 、 C 为焦点的椭圆 ,且除掉轴上两点 .因 a10 , c 8 ,有 b 6 ,故其方程为x 2y20 .1001 y36( 2 )设 A x , y , G x ,y x 2y 2①,则1 y 0 .10036xx,的轨迹方程为x 2y 2(除掉 x 轴上两由题意有3代入①,得A900 1 y 0 ,其轨迹是椭圆y y3243点).例 4 已知 P 点在以坐标轴为对称轴的椭圆上 ,点 P 到两焦点的距离分别为4 5和2 5,过 P 点作焦点所在轴33的垂线 ,它恰巧过椭圆的一个焦点 ,求椭圆方程 .4 52 5. 从 椭 圆 定 义 知 2a PF 1PF 2 2 5.即解:设两焦点为 F 1、F 2,且 PF 1, PF 233a5 .从 PF 1PF 2 知 PF 2 垂直焦点所在的对称轴 ,所以在 Rt PF 2F 1 中, sin PF 1F 2PF 2 1 ,PF 1 2可求出PF 1 F 26 , 2cPF 1 cos2 5 ,进而 b 2a 2 c 210 .6 33∴所求椭圆方程为 x23y 21或 3x 2y 2 1.51010 5例 5 已知椭圆方程x 2 y 2 1 a b0 ,长轴端点为 A 1, A 2 ,焦点为 F 1 , F 2 , P 是a2b2椭圆上一点 , A 1PA 2 , F 1PF 2 . 求: F 1 PF 2 的面积 (用 a 、 b 、 表示 ).剖析 :求面积要联合余弦定理及定义求角的两邻边 ,进而利用 S1ab sin C 求面积 .2解:如图 ,设 P x , y ,由椭圆的对称性 ,不如设 P 在第一象限 ..word 完满格式.. 专业.专注 .2 2 22 PF1 ·PF2 cos 4c2.①由余弦定理知: F1F2 PF1 PF2由椭圆定义知: PF PF 2a ②,则②2-①得PF1 PF2 2b2 .1 2 1 cos故S FPF 1 PF1 PF2 sin 1 2b2 sin b2 tan .1 2 2 2 1 cos 2例 6 已知动圆P过定点A3,0 ,且在定圆 B:x 3 2y264 的内部与其相内切,求动圆圆心P 的轨迹方程.剖析:要点是依据题意,列出点P知足的关系式.解:以下图,设动圆 P 和定圆 B 内切于点 M .动点 P 到两定点,即定点 A 3,和定圆圆心 B 3,0 距离之和恰巧等于定圆半径,即 PA PB PM PB BM 8 .∴点 P 的轨迹是以 A , B 为两焦点,半长轴为 4 ,半短轴长为b 42 32 7 的椭圆的方程:x2 y2 1 .16 7说明:本题是先依据椭圆的定义,判断轨迹是椭圆,而后依据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.例 7 已知椭圆x2y2 1,2(1)求过点P 1 1且被 P 均分的弦所在直线的方程;2,2(2)求斜率为 2 的平行弦的中点轨迹方程;(3)过A 2,1 引椭圆的割线,求截得的弦的中点的轨迹方程;( 4 )椭圆上有两点P 、Q, O 为原点,且有直线 OP 、OQ斜率知足k OP k OQ 1 ,2求线段 PQ 中点M的轨迹方程..word 完满格式.. 专业.专注.剖析:本题中四问都跟弦中点有关,所以可考虑设弦端坐标的方法.解:设弦两头点分别为M x1, y1 , N x2, y2 ,线段 MN 的中点R x,y,则2 2 ,①x1 2y1 2 ①-②得 x1 x2 x1 x2 2 y1 y2 y1 y2 0 .2 2 ,②x2 2y2 2x1 x2,③由题意知x1 x2 ,则上式两端同除以 x1x2,有2xy1 y2,④2y y1 y2x1x22 y1y2x1 x2 0 ,将③④代入得 x2 yy1 y2 0 .⑤x1 x2( 1 )将x 1 ,y 1 代入⑤,得y1y21,故所求直线方程为: 2 x 4 y 3 0 .⑥2 2 x1 x2 2将⑥ 代入椭圆方程x2 2 y2 2 得 6 y 2 6 y 1 0 ,36 4 6 1 0 切合题意, 2x 4 y 3 0 为所4 4 求.( 2 )将y1 y2 2 代入⑤得所求轨迹方程为:x 4 y 0 .(椭圆内部分)x1 x2( 3 )将y1 y2 y1代入⑤得所求轨迹方程为:x2 2y 2 2x 2 y 0 .(椭圆内部分)x1 x2 x 2(4)由①+② 得:x12 x22 y12 y22 2 ,⑦,将③④ 平方并整理得2x12 x22 4x2 2x1 x2,⑧,y12 y22 4 y2 2 y1 y2,⑨将⑧⑨ 代入⑦得:4x2 2x1 x2 4 y 2 2 y1 y2 2 ,⑩4再将 y1 y2 1x1x2 代入⑩式得:2x2 x1 x2 4 y2 21x1 x2 2 ,即x 2y21.2 2 12此即为所求轨迹方程.自然,本题除了设弦端坐标的方法,还可用其余方法解决..word 完满格式.. 专业.专注 .例 8 已知椭圆 4x 2y 21及直线 y x m .( 1 )当 m 为什么值时 ,直线与椭圆有公共点?( 2 )若直线被椭圆截得的弦长为2 10,求直线的方程.5解:( 1)把直线方程 y x m 代入椭圆方程 4x 2y 2 1得 4x 2 x m 21 ,即 5x 22mx m 21 0 .2m 2 4 5 m 2116m 2 20 0 ,解得5 m5 .22( 2 )设直线与椭圆的两个交点的横坐标为x 1 , x 2 ,由(1)得 x 1x 2 2mm 2 1, x 1 x 25 .5221依据弦长公式得: 1 122m4m2 10 . 解得 m 0 . 方程为 y x .555说明 :办理有关直线与椭圆的地点关系问题及有关弦长问题,采纳的方法与办理直线和圆的有所差别 .这里解决直线与椭圆的交点问题,一般考虑鉴别式;解决弦长问题 ,一般应用弦长公式 .用弦长公式 ,若能合理运用韦达定理 (即根与系数的关系 ), 可大大简化运算过程 .例 9以椭圆 x2y 2 1 的焦点为焦点 ,过直线 l : x y 90上一点 M 作椭圆,要使12 3所作椭圆的长轴最短 ,点 M 应在哪处 ?并求出此时的椭圆方程.剖析 : 椭圆的焦点简单求出,依照椭圆的定义 ,本题实质上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点 )的距离之和最小 ,只须利用对称便可解决 .解:以下图 ,椭圆x 2y 2 1 的焦点为 F 1 3,0 , F 2 3,0 .12 3点F 1 对于直线 l : x y 90 的对称点 F 的坐标为 (- 9, 6), 直线 FF 2 的方程为 x 2 y 3 0 .x 2y 3 0解方程组得交点 M 的坐标为 (- 5 , 4). 此时 MF MF2 最小.x y 9 01. word 完满格式 .. 专业.专注 .所求椭圆的长轴 :2MF 1MF 2 FF 2 6 5 ,∴a 3 5 ,又 c 3 ,a∴ 2a 2c 23 52236 .所以 ,所求椭圆的方程为 x2y 21. b34536例 10已知方程x 2y 2k 5 31表示椭圆 ,求 k 的取值范围 .kk 50,解:由 3 k0,得 3k 5,且 k 4.k 5 3 k,∴知足条件的 k 的取值范围是 3k 5 ,且 k 4 . 说明 :本题易出现以下错解 k 5 0, 5 ,故 k 的取值范围是 3 k 5 .:由k得 3 k3 0,犯错的原由是没有注意椭圆的标准方程中a b 0 这个条件 ,当 a b 时,其实不表示椭圆 .例 11已知 x 2siny 2 cos1 (0) 表示焦点在 y 轴上的椭圆 ,求 的取值范围 .剖析 :依照已知条件确立 的三角函数的大小关系 .再依据三角函数的单一性,求出的取值范围 .解:方程可化为x 2 y 21 1 0 . 1 1. 由于焦点在 y 轴上 ,所以sin1 cossincos所以 sin0且 tan1进而(,3) .2 4说明 : (1)由椭圆的标准方程知1 0 10 ,这是简单忽略的地方 .sin,cos(2) 由 焦 点 在 y 轴 上 , 知a 21, b 21 . (3)求的取值范围时,应注意题目中的条件cossin..word 完满格式.. 专业.专注 .例 12求中心在原点 ,对称轴为坐标轴 ,且经过 A( 3 , 2) 和 B( 2 3 ,1) 两点的椭圆方程 .剖析 :由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情况,为了计算简易起见 ,可设其方程为 mx 2 ny 21( m 0 , n 0),且不用去考虑焦点在哪个坐标轴上,直接可求出方程 .解:设所求椭圆方程为 mx 2ny 2 1( m 0 , n 0).由 A( 3 ,2)和B( 2 3 , 1) 两点在椭圆上可得m ( 3) 2 n ( 2) 21,3m 4n 1,1, n1.故所求的椭圆方程为x 2y 21.3) 2 n 12即12m n所以 mm ( 21,1,15 515 5例 13知圆 x 2 y 2 1,从这个圆上随意一点 P 向 y轴作垂线段 ,求线段中点 M 的轨迹 .剖析 :本题是已知一些轨迹 ,求动点轨迹问题 . 这类题目一般利用中间变量 (有关点 )求轨迹方程或轨迹 . 解:设点 M 的坐标为 ( x , y) ,点 P 的坐标为 ( x 0 ,y 0 ) ,则 xx 0 , y y 0.2由于P( x 0 , y 0 )在圆x2y 21 上,所以 x 02y 0 2 1.将x 0 2x ,y 0221 得 4x2y 21.所以点M 的轨迹是一个椭圆y代 入 方 程x 0y 04x 2y 21.说明 :本题是利用有关点法求轨迹方程的方法,这类方法详细做法以下 :第一设动点的坐标为 ( x , y),设已知轨迹上的点的坐标为( x 0 , y 0 ),而后依据题目要求 ,使x ,y 与x 0 ,y 0 成立等式关系 ,进而由这些等式关系求出x 0 和 y 0 代入已知的轨迹方程 ,就能够求出对于 x , y 的方程 ,化简后即我们所求的方程 .这类方法是求轨迹方程的最基本的方法,一定掌握 .例 14 已知长轴为 12 ,短轴长为6,焦点在 x 轴上的椭圆 ,过它对的左焦点 F 1 作倾斜解为的直线交椭圆于3A ,B 两点,求弦 AB 的长.剖析:能够利用弦长公式 AB 1 k 2 x1 x2(1 k 2 )[( x1 x2 )2 4x1x2 ] 求得,.word 完满格式.. 专业.专注 .也能够利用椭圆定义及余弦定理,还能够利用焦点半径来求.解: ( 法 1) 利用直线与椭圆订交的弦长公式求解.AB1 k2 x 1 x 2(1 k 2 )[( x 1 x 2 )24x 1 x 2 ] . 由于 a6 , b 3 ,所以 c 3 3.由于焦点在 x 轴上,x 2 y 2 3 , 0) ,进而直线方程为 y3x9.所以椭圆方程为1,左焦点 F ( 3369由直线方程与椭圆方程联立得: 13x 272 3x36 8 0 . 设 x 1 , x 2 为方程两根 ,所以 x 1 x 272 3 ,13x 1x 236 8 , k 3 ,进而 AB1 k2 x 1 x 2(1 k 2 )[( x 1 x 2 )24x 1 x 2 ] 48 .1313( 法 2) 利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为x 2y 2 1,设 AF m , BFn ,则 AF 12m , BF12 n .2369 112222F 1F 2 cos ,即 (12 m)2 m 236 3 2 m 6 3 1在AF 1F 2 中, AF 2AF 1F 1 F 22 AF 1 ;3 2所以 m6 BF 1F 2 中,用余弦定理得 n 6 m 48.同理在,所以 ABn . 434 313( 法 3) 利用焦半径求解 .先依据直线与椭圆联立的方程13x 2 72 3x 36 80 求出方程的两根 x 1 , x 2 , 它们分别是 A ,B 的横坐标.再依据焦半径 AF 1 a ex 1, BF 1 a ex 2 ,进而求出 AB AF 1 BF 1 .例 15 椭圆x 2y 2 1 上的点 M 到焦点 F 1 的距离为 2, N 为 MF 1 的中点,则 ON ( O 为坐标原点 )的值为 25 9A . 4B . 2C . 8D .32. word 完满格式 .. 专业.专注 .解:以下图,设椭圆的另一个焦点为 F 2,由椭圆第必定义得MF 1 MF 2 2a 10 ,所以 MF 2 10MF 1 10 2 8 ,又由于 ON 为 MF 1F 2 的中位线 ,所以 ON1MF 24 ,故答案为 A .2说明 : (1)椭圆定义 :平面内与两定点的距离之和等于常数 (大于 F 1F 2 )的点的轨迹叫做椭圆 .(2) 椭圆上的点必然合适椭圆的这必定义,即 MF 1 MF 2 2a ,利用这个等式能够解决椭圆上的点与焦点的有关距离 .例 16x 2y 24x m ,椭圆 C 上有不一样的两点已知椭圆 C :1 ,试确立 m 的取值范围 ,使得对于直线 l : y4 3对于该直线对称 .剖析 :若设椭圆上A ,B 两点对于直线 l 对称 ,则已知条件等价于 : (1)直线 AB l ; (2) 弦 AB 的中点 M 在 l上.利用上述条件成立 m 的不等式即可求得 m 的取值范围 .解: ( 法 1) 设椭圆上 A( x 1 , y 1 ) , B( x 2 , y 2 ) 两点对于直线 l 对称 ,直线 AB 与 l 交于 M( x 0, y 0 ) 点 .4 ,∴设直线 AB 1y 1x n ,消去 y 得∵ 的斜率 k l的方程为 yxn .由方程组 4l4x 2 y 2 1,4313 x 2 8nx 16n 248 0①。

相关文档
最新文档